Coherency in the solar spectral irradiance
October 30, 2017 | Author: Anonymous | Category: N/A
Short Description
irradiance also provides Reconstruction of the Solar Spectral Irradiance Evolution: New Insights ......
Description
Coherency in the solar spectral irradiance (a blind source separation approach)
Thierry Dudok de Wit1, Gaël Cessateur1,2, Saïd Moussaoui3, Matthieu Kretzschmar1,4, Jean Lilensten2, Luis Vieira1 1
2 IPAG, Grenoble LPC2E, Orléans 3 IRCCYN, Nantes, 4 ROB, Brussels This work was supported by the FP7 SOTERIA and ATMOP projects
Dignity ?
T.
Dudok
de
Wit
(SORCE,
9/2011)
2
Coherency !
T.
Dudok
de
Wit
(SORCE,
9/2011)
Coherency ! 6
years
of
observaHons
(SORCE
&
TIMED)
sunspot
nr
relative flux
XUV
(1‐10
nm) EUV
(10‐120
nm) Lyα
(120.5
nm) FUV
(120‐200
nm) MUV
(200‐300
nm) NUV
(300‐400
nm) VIS
(400‐700
nm) NIR
(700‐1000
nm)
2004
2005
2006
2007
2008 year
T.
Dudok
de
Wit
(SORCE,
9/2011)
2009
2010
2011
especially at short timescales 3
months
sunspot
nr
relative flux
XUV
(1‐10
nm) EUV
(10‐120
nm) Lyα
(120.5
nm) FUV
(120‐200
nm) MUV
(200‐300
nm) NUV
(300‐400
nm) VIS
(400‐700
nm) NIR
(700‐1000
nm)
Jun04
Jul04
Aug04 year
T.
Dudok
de
Wit
(SORCE,
9/2011)
Sep04
Motivation Commonali>es
=
likely
same
physical
drivers =
gives
deeper
insight
into
the
physics
Departure
from
this
coherency =
most
likely
due
to
instrumental
noise
or
to
par>cular
processes
T.
Dudok
de
Wit
(SORCE,
9/2011)
6
Model assumption Decompose
the
SSI
into
elementary
contribu>ons I(λ, t) I(λ, t) = A1 (t) · S1 (λ) + A2 (t) · S2 (λ) + . . . amplitude source (mixing
coefficient)
Assume
linear
decomposi>on instantaneous
decomposi>on This
is
“blind
source
separa>on”
because
neither
the
sources
nor
their
mixing
coefficients
are
known
beforehand T.
Dudok
de
Wit
(SORCE,
9/2011)
7
0
2
4
6 time [s]
8
amplitude [a.u.]
amplitude [a.u.]
Example from ECG
0 T.
Dudok
de
Wit
(SORCE,
9/2011)
2
4
6 time [s]
8
8
Key questions How
many
sources
?
3
? 42
? ...
Are
they
unique
? Ill‐posed
problem:
what
physical
constraints
can
we
use?
T.
Dudok
de
Wit
(SORCE,
9/2011)
9
Various approaches
I(λ, t) = A1 (t) · S1 (λ) + A2 (t) · S2 (λ) + . . .
1)
Sources
and
mixing
coefficients
are
orthogonal ! !Sk (λ)Sl (λ)" = 0 if k #= l !Ak (t)Al (t)" = 0 The
solu>on
is
given
by
the
Singular
Value
Decomposi>on
(SVD) Similar
to
principal
component
analysis Simple,
unique
solu>on,
but
not
very
realis>c T.
Dudok
de
Wit
(SORCE,
9/2011)
10
Various approaches 2)
Sources
and
mixing
coefficients
are
independent P(Sk , Sl ) P(Ak , Al )
= =
P(Sk )P(Sl ) P(Ak )P(Al )
The
solu>on
is
given
by
Independent
Component
Analysis
(ICA) Computa>onally
most
costly,
but
also
more
realis>c Very
popular
in
acous>cs
&
image
processing
T.
Dudok
de
Wit
(SORCE,
9/2011)
11
Various approaches 3)
Sources
and
mixing
coefficients
are
independent
and
posi/ve Sk (λ) ≥ 0
Ak (t) ≥ 0
The
solu>on
is
given
by
Bayesian
Posi>ve
Source
Separa>on Computa>onally
costly,
but
also
more
realis>c Recent
but
very
ac>ve
field
of
research
(chemometrics,
image
processing,
astrophysics,
...) [Kuruoglu,
IEEE
signal
proc.
magazine
87
(2010)] T.
Dudok
de
Wit
(SORCE,
9/2011)
12
First example XUV to VIS (TIMED & SORCE)
T.
Dudok
de
Wit
(SORCE,
9/2011)
13
Example 1: SVD analysis
relative flux
7
years
of
daily
observa>ons
from
0.6
‐
600
nm
(TIMED/ SEE,
SORCE/XPS‐SOLSTICE‐SIM)
2004
2005
2006
2007
2008
2009
2010
2011
year
T.
Dudok
de
Wit
(SORCE,
9/2011)
14
Example 1: SVD analysis
different
)me
scales
=
different
physical
processes
➞
decompose
the
data
beforehand
into
different
)me‐scales
we
focus
here
on
>me
scales
ons data
are
normalized
to
their
solar
cycle
variability
T.
Dudok
de
Wit
(SORCE,
9/2011)
15
Example 1: SVD analysis Distribu>ons
of
the
weights I(λ, t) = W1 A1 (t) S1 (λ) + W2 A2 (t) S2 (λ) + . . . weight spectrum
2
10
2
to
4
outstanding
sources
1
k
weight W2 [%]
10
0
10
−1
10
−2
10
0
10
T.
Dudok
de
Wit
(SORCE,
9/2011)
20 30 mode number
40
50
16
Mixing coefficients
W A (t) 39% 1 1
mixing coefficient A(t) [a.u.]
W A (t) 24% 2 2 W A (t) 6.4% 3 3 W4A4(t) 4.1% W A (t) 2.1% 5 5 W A (t) 1.6% 6 6
2004 T.
Dudok
de
Wit
(SORCE,
9/2011)
2005
2006
2007
2008 year
2009
2010
2011
2012 17
Mixing coefficients
W A (t) 1 1
mixing coefficient A(t) [a.u.]
W2A2(t) W A (t) 3 3 W4A4(t) W5A5(t) W A (t) 6 6
TSI Mg
II
Apr04 T.
Dudok
de
Wit
(SORCE,
9/2011)
Jul04
Oct04
Jan05 year
Apr05
Jul05 18
Sources XPS
SEE
SOLSTICE FUV
SOLSTICE
MUV
SIM S (!) 1
source S(!) [a.u.]
S (!) 2 S3(!) S4(!) S5(!) S6(!)
0 T.
Dudok
de
Wit
(SORCE,
9/2011)
100
200
300 400 wavelength( [nm]
500
600 19
Similarity map Most
of
the
salient
features
are
captured
by
sources
1
&
2
only
The
similarity
maps
provides
a
very
compact
representa>on
of
the
spectral
variability W2
S2(λ)
W1
S1(λ) T.
Dudok
de
Wit
(SORCE,
9/2011)
20
Similarity map
W2 S2(!)
400 300 200
wavelength [nm]
500
100
W1 S1(!)
T.
Dudok
de
Wit
(SORCE,
9/2011)
0
21
Similarity map facular
brightening
W2 S2(!)
400 300 200
wavelength [nm]
500
100 0
W1 S1(!)
T.
Dudok
de
Wit
(SORCE,
9/2011)
sunspot
darkening
22
Similarity map with proxies
DSA MWSI
ISN f10.7
MPSI MgII
400
Lya
300
SEM
200
wavelength [nm]
W2 S2(!)
500
TSI
100
W1 S1(!)
T.
Dudok
de
Wit
(SORCE,
9/2011)
0
23
Conclusion 1 The
variability
is
very
coherent:
2
sources
capture
the
salient
features other
ones
contain
a
significant
amount
of
instrumental
artefacts
Guidance
for
the
choice
of
proxies
Instrumental
effects
are
omnipresent be
*very*
careful
in
the
interpreta>on
of
sources
>
2
T.
Dudok
de
Wit
(SORCE,
9/2011)
24
Second example EUV & FUV (TIMED/SEE)
T.
Dudok
de
Wit
(SORCE,
9/2011)
25
Example 2 Homogeneous
data
set:
amplitude [a.u.]
8
years
of
daily
observa>ons
by
TIMED/SEE
28‐195
nm,
0.1
nm
resolu>on no
flares
25c) use
Bayesian
Posi>ve
Source
Separa>on 3
sources
are
sta>s>cally
significant T.
Dudok
de
Wit
(SORCE,
9/2011)
26
Example 2 Source
nr
4
contains
plain
instrumental
noise 8 mixing coeff 4 measured temperature
6 4
T [a.u.]
2 0 −2 −4 −6 −8 2002 T.
Dudok
de
Wit
(SORCE,
9/2011)
2003
2004
2005 year
2006
2007
2008 27
Mixing coefficients
A1
1 amplitude/max
A2 0.8
A3
0.6 0.4 0.2 0 2002
2003
T.
Dudok
de
Wit
(SORCE,
9/2011)
2004
2005
2006
2007
2008
2009
2010
2011 28
Mixing coefficients (excerpt) A1
1
amplitude/max
A2 0.8
A3
0.6 0.4 0.2 0 2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
A1 A2 amplitude [a.u.]
A3
Oct02 T.
Dudok
de
Wit
(SORCE,
9/2011)
MgII
Jan03
Apr03
Jul03 29
ave amplitude [a.u.]
Superposed
epoch
analysis
of
mixing
coefficients
confirms
limb
(XUV‐like)
contribu>on
of
source
3
ave amplitude [a.u.]
Mixing coefficients 1
A1 A2 A3
0.5
0
1
MgII SEM
0.5
0 −10
T.
Dudok
de
Wit
(SORCE,
9/2011)
0 10 delay [days]
20 30
spectrum [W/m2/nm] 10 −5
20 40
T.
Dudok
de
Wit
(SORCE,
9/2011)
60 80 100 120 140 wavelength ! [nm] Si II
He II
CSiIVIV
OI
0 C II Si IV
HI OOIIVIVI N HI
HCI III
O II HI
Mg X O IV
Si XII Si XII
Fe XV He II Fe XVI Fe XVI Mg IX Fe XV
amplitude / ave spectrum
amplitude amplitude / ave spectrum / ave spectrum
Sources
10
5
0 2
1
160 180
S1
Coronal
&
transiHon
region
lines
S2
Quiet
Sun
only
0 10 S3
5
200
Ho\est
coronal
lines
spectrum
31
Conclusions 2 Posi>ve
source
separa>on
gives
physically
meaningful
sources
[Amblard
et
al.,
A&A
487
(2008)] Given
the
instrumental
noise
level the
variability
in
the
EUV
&
FUV
has
3
degrees
of
freedom
only
e.g.
[Lean
et
al.,
JGR
87
(1982)] they
correspond
to
different
temperature
layers
of
the
solar
atmosphere
Perspec>ves
for
reconstruc>ng
the
EUV/FUV
from
proxy
data T.
Dudok
de
Wit
(SORCE,
9/2011)
32
Perspectives The
remarkable
coherency
of
the
solar
spectral
irradiance
also
provides
a
means
for elimina>ng
part
of
the
instrumental
noise filling
gaps/s>tching
together
records
(see
poster) 10
10 NIMBUS/SBUV NOAA/SBUV UARS/SUSIM MgII index
9
8.5
8
7.5
7 1975
9.5 intensity [mW/m2/nm]
intensity [mW/m2/nm]
9.5
NIMBUS/SBUV NOAA/SBUV UARS/SUSIM MgII index
9
8.5
8
7.5
1980
1985
1990
1995 year
T.
Dudok
de
Wit
(SORCE,
9/2011)
2000
2005
2010
7 1975
1980
1985
1990
1995 year
2000
2005
2010
33
View more...
Comments