Control Systems engineers - upload.wikimedia .
October 30, 2017 | Author: Anonymous | Category: N/A
Short Description
attempt to cover the topic of control systems from both a graduate and undergraduate level ......
Description
Control Systems
Wikibooks.org
March 12, 2013
On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page 313. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page 309. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 319, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 313. This PDF was generated by the LATEX typesetting software. The LATEX source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting Save Attachment. After extracting it from the PDF file you have to rename it to source.7z. To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX source itself was generated by a program written by Dirk Hünniger, which is freely available under an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf. This distribution also contains a configured version of the pdflatex compiler with all necessary packages and fonts needed to compile the LATEX source included in this PDF file.
Contents 1
Preface
2
Introduction 2.1 This Wikibook . . . . . . . . . . 2.2 What are Control Systems? . . . 2.3 Classical and Modern . . . . . . . 2.4 Who is This Book For? . . . . . . 2.5 What are the Prerequisites? . . . 2.6 How is this Book Organized? . . 2.7 Differential Equations Review . . 2.8 History . . . . . . . . . . . . . . . 2.9 Branches of Control Engineering 2.10 MATLAB . . . . . . . . . . . . . 2.11 About Formatting . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
5 5 5 6 7 7 8 9 10 12 13 13
System Identification 3.1 Systems . . . . . . . 3.2 System Properties . 3.3 Initial Time . . . . . 3.4 Additivity . . . . . . 3.5 Homogeneity . . . . 3.6 Linearity . . . . . . . 3.7 Memory . . . . . . . 3.8 Causality . . . . . . 3.9 Time-Invariance . . . 3.10 LTI Systems . . . . . 3.11 Lumpedness . . . . . 3.12 Relaxed . . . . . . . 3.13 Stability . . . . . . . 3.14 Inputs and Outputs .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
15 15 15 15 16 17 18 19 19 19 20 20 21 21 21
. . . . . .
23 23 25 26 27 28 28
3
4
3
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
Digital and Analog 4.1 Digital and Analog . . . . . . 4.2 Analog . . . . . . . . . . . . . 4.3 Digital . . . . . . . . . . . . . 4.4 Hybrid Systems . . . . . . . . 4.5 Continuous and Discrete . . . 4.6 Sampling and Reconstruction
. . . . . . . . . . . . . .
. . . . . .
. . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
III
Contents 5
6
7
8
9
IV
System Metrics 5.1 System Metrics . . 5.2 Standard Inputs . . 5.3 Steady State . . . . 5.4 Target Value . . . 5.5 Rise Time . . . . . 5.6 Percent Overshoot 5.7 Steady-State Error 5.8 Settling Time . . . 5.9 System Order . . . 5.10 System Type . . . 5.11 Visually . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
31 31 31 34 35 35 36 36 36 37 37 39
System Modeling 6.1 The Control Process . 6.2 External Description . 6.3 Internal Description . 6.4 Complex Descriptions 6.5 Representations . . . . 6.6 Analysis . . . . . . . . 6.7 Modeling Examples . . 6.8 Manufacture . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
41 41 41 42 43 43 43 44 45
Transforms 7.1 Transforms . . . . 7.2 Laplace Transform 7.3 Fourier Transform 7.4 Complex Plane . . 7.5 Euler's Formula . . 7.6 MATLAB . . . . . 7.7 Further Reading .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
47 47 47 55 57 57 58 58
Transfer Functions 8.1 Transfer Functions . . . . . 8.2 Impulse Response . . . . . . 8.3 Convolution . . . . . . . . . 8.4 Convolution Theorem . . . 8.5 Using the Transfer Function 8.6 Frequency Response . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
59 59 59 63 64 64 66
. . . . . . .
67 67 67 68 70 72 76 76
. . . . . . . . . . .
. . . . . . .
Sampled Data Systems 9.1 Ideal Sampler . . . . 9.2 Geometric Series . . 9.3 The Star Transform 9.4 The Z-Transform . . 9.5 Star ↔ Z . . . . . . 9.6 Z ↔ Fourier . . . . . 9.7 Reconstruction . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
Contents 9.8
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 System Delays 10.1 Delays . . . . . . . . . . . 10.2 Time Shifts . . . . . . . . 10.3 Delays and Stability . . . 10.4 Delay Margin . . . . . . . 10.5 Transform-Domain Delays 10.6 Modified Z-Transform . .
82
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
83 83 83 84 84 85 86
11 Poles and Zeros 11.1 Poles and Zeros . . . . . . . 11.2 Time-Domain Relationships 11.3 What are Poles and Zeros . 11.4 Effects of Poles and Zeros . 11.5 Second-Order Systems . . . 11.6 Higher-Order Systems . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
87 87 87 88 89 89 90
. . . . . . . . . .
91 91 92 92 93 94 97 99 100 101 102
. . . .
103 103 103 104 105
14 Time-Variant System Solutions 14.1 General Time Variant Solution . . . . . . . . . . . . . . . . . . . . . . . . 14.2 Time-Variant, Zero Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3 Time-Variant, Non-zero Input . . . . . . . . . . . . . . . . . . . . . . . . .
111 111 112 116
15 Digital State-Space 15.1 Digital Systems . . . . . . . . . . 15.2 Digital Systems . . . . . . . . . . 15.3 Relating Continuous and Discrete 15.4 Converting Difference Equations 15.5 Solving for x[n] . . . . . . . . . . 15.6 Time Variant Solutions . . . . . . 15.7 MATLAB Calculations . . . . . .
117 117 117 118 120 121 122 123
12 State-Space Equations 12.1 Time-Domain Approach . . . . . . . 12.2 State-Space . . . . . . . . . . . . . . 12.3 State Variables . . . . . . . . . . . . 12.4 Multi-Input, Multi-Output . . . . . . 12.5 State-Space Equations . . . . . . . . 12.6 Obtaining the State-Space Equations 12.7 State-Space Representation . . . . . 12.8 Discretization . . . . . . . . . . . . . 12.9 Note on Notations . . . . . . . . . . 12.10 MATLAB Representation . . . . . .
. . . . . . . . . .
13 Solutions for Linear Systems 13.1 State Equation Solutions . . . . . . . . 13.2 Solving for x(t) With Zero Input . . . 13.3 Solving for x(t) With Non-Zero Input 13.4 State-Transition Matrix . . . . . . . .
. . . . . . . . . .
. . . .
. . . . . . . . . .
. . . .
. . . . . . . . . . Systems . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . . . . .
. . . .
. . . . . . .
. . . . . . .
V
Contents 16 Eigenvalues and Eigenvectors 16.1 Eigenvalues and Eigenvectors . . . 16.2 Characteristic Equation . . . . . . 16.3 Exponential Matrix Decomposition 16.4 Non-Unique Eigenvalues . . . . . . 16.5 Equivalence Transformations . . . 17 MIMO Systems 17.1 Multi-Input, Multi-Output . 17.2 State-Space Representation 17.3 Transfer Function Matrix . 17.4 Discrete MIMO Systems . .
. . . .
. . . .
. . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
125 125 125 127 129 131
. . . .
133 133 133 134 136
18 System Realization 139 18.1 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 18.2 Realization Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 18.3 Realizing the Transfer Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 139 19 Gain 141 19.1 What is Gain? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 19.2 Responses to Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 19.3 Gain and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 20 Block Diagrams 20.1 Systems in Series . . . . . . 20.2 Systems in Parallel . . . . . 20.3 State Space Model . . . . . 20.4 Adders and Multipliers . . . 20.5 Simplifying Block Diagrams 20.6 External Sites . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
21 Feedback Loops 21.1 Feedback . . . . . . . . . . . . . . 21.2 Basic Feedback Structure . . . . 21.3 Negative vs Positive Feedback . . 21.4 Feedback Loop Transfer Function 21.5 Open Loop vs Closed Loop . . . 21.6 Placement of a Controller . . . . 21.7 Second-Order Systems . . . . . . 21.8 System Sensitivity . . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
143 143 146 146 148 148 149
. . . . . . . .
151 151 151 152 154 156 156 157 157
22 Signal Flow Diagrams 159 22.1 Signal Flow Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 22.2 Mason's Gain Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 23 Bode Plots 163 23.1 Bode Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 23.2 Bode Gain Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 23.3 Bode Phase Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
VI
Contents 23.4 23.5 23.6
Bode Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
24 Nichols Charts 173 24.1 Nichols Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 25 Stability 25.1 Stability . . . . . . . . . . . . 25.2 BIBO Stability . . . . . . . . 25.3 Determining BIBO Stability . 25.4 Poles and Stability . . . . . . 25.5 Poles and Eigenvalues . . . . 25.6 Transfer Functions Revisited . 25.7 State-Space and Stability . . 25.8 Marginal Stablity . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
175 175 175 176 177 177 178 178 179
26 Introduction to Digital Controls 26.1 Discrete-Time Stability . . . . . 26.2 Input-Output Stability . . . . . 26.3 Stability of Transfer Function . 26.4 Lyapunov Stability . . . . . . . 26.5 Poles and Eigenvalues . . . . . 26.6 Finite Wordlengths . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
181 181 181 182 182 182 183
27 Routh-Hurwitz Criterion 185 27.1 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 27.2 Routh-Hurwitz Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 28 Jury's Test 189 28.1 Routh-Hurwitz in Digital Systems . . . . . . . . . . . . . . . . . . . . . . 189 28.2 Jury's Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 28.3 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 29 Root Locus 29.1 The Problem . . . . . . . . 29.2 Root-Locus . . . . . . . . . 29.3 The Root-Locus Procedure 29.4 Root Locus Rules . . . . . . 29.5 Root Locus Equations . . . 29.6 Root Locus and Stability . . 29.7 Examples . . . . . . . . . . 30 Nyquist Criterion 30.1 Nyquist Stability Criteria 30.2 Contours . . . . . . . . . . 30.3 Argument Principle . . . . 30.4 The Nyquist Contour . . . 30.5 Nyquist Criteria . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
. . . . .
. . . . . . .
193 193 193 195 196 198 199 200
. . . . .
205 205 205 206 208 208
VII
Contents 30.6 Nyquist ↔ Bode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 30.7 Nyquist in the Z Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 31 State-Space Stability 31.1 State-Space Stability . . . 31.2 Eigenvalues and Poles . . 31.3 Impulse Response Matrix 31.4 Positive Definiteness . . . 31.5 Lyapunov Stability . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
211 211 213 214 214 215
32 Controllability and Observability 32.1 System Interaction . . . . . . . 32.2 Controllability . . . . . . . . . . 32.3 Observability . . . . . . . . . . 32.4 Duality Principle . . . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
217 217 217 220 223
33 System Specifications 33.1 System Specification . 33.2 Steady-State Accuracy 33.3 Sensitivity . . . . . . . 33.4 Disturbance Rejection 33.5 Control Effort . . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
225 225 225 225 225 225
34 Controllers and Compensators 34.1 Controllers . . . . . . . . . . . 34.2 Proportional Controllers . . . 34.3 Derivative Controllers . . . . 34.4 Integral Controllers . . . . . . 34.5 PID Controllers . . . . . . . . 34.6 Bang-Bang Controllers . . . . 34.7 Compensation . . . . . . . . . 34.8 Phase Compensation . . . . . 34.9 Phase Lead . . . . . . . . . . 34.10 Phase Lag . . . . . . . . . . . 34.11 Phase Lead-Lag . . . . . . . . 34.12 External Sites . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
227 227 227 228 229 230 233 233 233 234 234 234 235
. . . . .
. . . . .
. . . . .
35 Nonlinear Systems 237 35.1 Nonlinear General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 237 35.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 36 Common Nonlinearities 36.1 Hysteresis . . . . . . 36.2 Backlash . . . . . . . 36.3 Dead-Zone . . . . . . 36.4 Inverse Nonlinearities 37 Noise Driven Systems 37.1 Noise-Driven Systems
VIII
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
241 241 241 241 242
243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Contents 37.2 37.3 37.4 37.5 37.6
Probability Refresher . . . . . . . Noise-Driven System Description Mean System Response . . . . . System Covariance . . . . . . . . Alternate Analysis . . . . . . . .
38 Appendix: Physical Models 38.1 Physical Models . . . . . . . 38.2 Electrical Systems . . . . . 38.3 Mechanical Systems . . . . 38.4 Civil/Construction Systems 38.5 Chemical Systems . . . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
243 244 244 245 246
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
249 249 249 249 249 249
39 Appendix: Z Transform Mappings 39.1 Z Transform Mappings . . . . . . 39.2 Bilinear Transform . . . . . . . . 39.3 Matched Z-Transform . . . . . . 39.4 Simpson's Rule . . . . . . . . . . 39.5 (w, v) Transform . . . . . . . . . 39.6 Z-Forms . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
251 251 251 253 254 254 254
40 Appendix: Transforms 40.1 Laplace Transform . . 40.2 Fourier Transform . . 40.3 Z-Transform . . . . . . 40.4 Modified Z-Transform 40.5 Star Transform . . . . 40.6 Bilinear Transform . . 40.7 Wikipedia Resources .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
255 255 257 259 261 261 262 263
. . . . .
265 265 265 265 266 266
. . . . . . . . . .
269 269 270 270 270 271 271 271 272 272 273
. . . . . . .
41 System Representations 41.1 System Representations 41.2 General Description . . 41.3 State-Space Equations . 41.4 Transfer Functions . . . 41.5 Transfer Matrix . . . . . 42 Matrix Operations 42.1 Laws of Matrix Algebra 42.2 Transpose Matrix . . . . 42.3 Determinant . . . . . . . 42.4 Inverse . . . . . . . . . . 42.5 Eigenvalues . . . . . . . 42.6 Eigenvectors . . . . . . . 42.7 Left-Eigenvectors . . . . 42.8 Generalized Eigenvectors 42.9 Transformation Matrix . 42.10 MATLAB . . . . . . . .
. . . . . . .
. . . . .
. . . . . . . . . .
. . . . . . .
. . . . .
. . . . . . . . . .
. . . . . . .
. . . . .
. . . . . . . . . .
. . . . . . .
. . . . .
. . . . . . . . . .
. . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
. . . . .
. . . . . . . . . .
IX
Contents 43 Appendix: MATLAB 43.1 MATLAB . . . . . . . . . 43.2 Step Response . . . . . . . 43.3 Classical ↔ Modern . . . 43.4 z-Domain Digital Filters . 43.5 State-Space Digital Filters 43.6 Root Locus Plots . . . . . 43.7 Digital Root-Locus . . . . 43.8 Bode Plots . . . . . . . . . 43.9 Nyquist Plots . . . . . . . 43.10 Lyapunov Equations . . . 43.11 Controllability . . . . . . . 43.12 Observability . . . . . . . 43.13 Further Reading . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
275 275 276 277 278 278 279 280 280 281 282 282 282 282
of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
283 283 285 287 288 289 291 293 295
45 List of Equations 45.1 Fundamental Equations . . . 45.2 Basic Inputs . . . . . . . . . . 45.3 Error Constants . . . . . . . . 45.4 System Descriptions . . . . . 45.5 Feedback Loops . . . . . . . . 45.6 Transforms . . . . . . . . . . 45.7 Transform Theorems . . . . . 45.8 State-Space Methods . . . . . 45.9 Root Locus . . . . . . . . . . 45.10 Lyapunov Stability . . . . . . 45.11 Controllers and Compensators
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
297 297 298 298 299 300 300 301 301 302 303 303
. . . . . .
305 305 306 306 306 308 308
44 Glossary and List 44.1 A, B, C . . . 44.2 D, E, F . . . 44.3 G, H, I . . . . 44.4 J, K, L . . . . 44.5 M, N, O . . . 44.6 P, Q, R . . . 44.7 S, T, U, V . . 44.8 W, X, Y, Z .
. . . . . . . . . . . . .
46 Resources and Further Reading 46.1 Wikibooks . . . . . . . . . . . 46.2 Wikiversity . . . . . . . . . . 46.3 Wikipedia . . . . . . . . . . . 46.4 Software . . . . . . . . . . . . 46.5 External Publications . . . . 46.6 External Resources . . . . . . 47 Contributors
X
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
309
Contents List of Figures
313
48 Licenses 319 48.1 GNU GENERAL PUBLIC LICENSE . . . . . . . . . . . . . . . . . . . . 319 48.2 GNU Free Documentation License . . . . . . . . . . . . . . . . . . . . . . 320 48.3 GNU Lesser General Public License . . . . . . . . . . . . . . . . . . . . . . 321
1
1 Preface This book will discuss the topic of Control Systems, which is an interdisciplinary engineering topic. Methods considered here will consist of both "Classical" control methods, and "Modern" control methods. Also, discretely sampled systems (digital/computer systems) will be considered in parallel with the more common analog methods. This book will not focus on any single engineering discipline (electrical, mechanical, chemical, etc.), although readers should have a solid foundation in the fundamentals of at least one discipline. This book will require prior knowledge of linear algebra, integral and differential calculus, and at least some exposure to ordinary differential equations. In addition, a prior knowledge of integral transforms, specifically the Laplace and Z transforms will be very beneficial. Also, prior knowledge of the Fourier Transform will shed more light on certain subjects. Wikibooks with information on calculus topics or transformation topics required for this book will be listed below: • • • •
1 2 3 4
Calculus1 Linear Algebra2 Signals and Systems3 Digital Signal Processing4
http://en.wikibooks.org/wiki/Calculus http://en.wikibooks.org/wiki/Linear%20Algebra http://en.wikibooks.org/wiki/Signals%20and%20Systems http://en.wikibooks.org/wiki/Digital%20Signal%20Processing
3
2 Introduction 2.1 This Wikibook This book was written at Wikibooks, a free online community where people write opencontent textbooks. Any person with internet access is welcome to participate in the creation and improvement of this book. Because this book is continuously evolving, there are no finite "versions" or "editions" of this book. Permanent links to known good versions of the pages may be provided. All other works that reference or cite this book should include a link to the project page at Wikibooks: http://en.wikibooks.org/wiki/Control_Systems. Printed or other distributed versions of this book should likewise contain that link. All text contributions are the property of the respective contributors, and this book may only be used under the terms of the GFDL1 .
2.2 What are Control Systems? w:Control system2 w:Control engineering3 The study and design of automatic Control Systems, a field known as control engineering, has become important in modern technical society. From devices as simple as a toaster or a toilet, to complex machines like space shuttles and power steering, control engineering is a part of our everyday life. This book introduces the field of control engineering and explores some of the more advanced topics in the field. Note, however, that control engineering is a very large field, and this book serves as a foundation of control engineering and introduction to selected advanced topics in the field. Topics in this book are added at the discretion of the authors, and represent the available expertise of our contributors. Control systems are components that are added to other components, to increase functionality, or to meet a set of design criteria. For example: We have a particular electric motor that is supposed to turn at a rate of 40 RPM. To achieve this speed, we must supply 10 Volts to the motor terminals. However, with 10 volts supplied to the motor at rest, it takes 30 seconds for our motor to get up to speed. This is valuable time lost. This simple example, however can be complex to both users and designers of the motor system. It may seem obvious that the motor should start at a higher voltage, so that it
1 2 3
http://en.wikibooks.org/wiki/GFDL http://en.wikipedia.org/wiki/Control%20system http://en.wikipedia.org/wiki/Control%20engineering
5
Introduction accelerates faster. Then we can reduce the supply back down to 10 volts once it reaches ideal speed. This is clearly a simplistic example, but it illustrates an important point: we can add special "Controller units" to preexisting systems, to improve performance and meet new system specifications. Here are some formal definitions of terms used throughout this book: Control System A Control System is a device, or a collection of devices that manage the behavior of other devices. Some devices are not controllable. A control system is an interconnection of components connected or related in such a manner as to command, direct, or regulate itself or another system. Controller A controller is a control system that manages the behavior of another device or system. Compensator A Compensator is a control system that regulates another system, usually by conditioning the input or the output to that system. Compensators are typically employed to correct a single design flaw, with the intention of affecting other aspects of the design in a minimal manner. There are essentially two methods to approach the problem of designing a new control system: the Classical Approach, and the Modern Approach.
2.3 Classical and Modern Classical and Modern control methodologies are named in a misleading way, because the group of techniques called "Classical" were actually developed later than the techniques labeled "Modern". However, in terms of developing control systems, Modern methods have been used to great effect more recently, while the Classical methods have been gradually falling out of favor. Most recently, it has been shown that Classical and Modern methods can be combined to highlight their respective strengths and weaknesses. Classical Methods, which this book will consider first, are methods involving the Laplace Transform domain. Physical systems are modeled in the so-called "time domain", where the response of a given system is a function of the various inputs, the previous system values, and time. As time progresses, the state of the system and its response change. However, timedomain models for systems are frequently modeled using high-order differential equations which can become impossibly difficult for humans to solve and some of which can even become impossible for modern computer systems to solve efficiently. To counteract this problem integral transforms, such as the Laplace Transform and the Fourier Transform, can be employed to change an Ordinary Differential Equation (ODE) in the time domain into a regular algebraic polynomial in the transform domain. Once a given system has been converted into the transform domain it can be manipulated with greater ease and analyzed quickly by humans and computers alike.
6
Who is This Book For? Modern Control Methods, instead of changing domains to avoid the complexities of timedomain ODE mathematics, converts the differential equations into a system of lower-order time domain equations called State Equations, which can then be manipulated using techniques from linear algebra. This book will consider Modern Methods second. A third distinction that is frequently made in the realm of control systems is to divide analog methods (classical and modern, described above) from digital methods. Digital Control Methods were designed to try and incorporate the emerging power of computer systems into previous control methodologies. A special transform, known as the Z-Transform, was developed that can adequately describe digital systems, but at the same time can be converted (with some effort) into the Laplace domain. Once in the Laplace domain, the digital system can be manipulated and analyzed in a very similar manner to Classical analog systems. For this reason, this book will not make a hard and fast distinction between Analog and Digital systems, and instead will attempt to study both paradigms in parallel.
2.4 Who is This Book For? This book is intended to accompany a course of study in under-graduate and graduate engineering. As has been mentioned previously, this book is not focused on any particular discipline within engineering, however any person who wants to make use of this material should have some basic background in the Laplace transform (if not other transforms), calculus, etc. The material in this book may be used to accompany several semesters of study, depending on the program of your particular college or university. The study of control systems is generally a topic that is reserved for students in their 3rd or 4th year of a 4 year undergraduate program, because it requires so much previous information. Some of the more advanced topics may not be covered until later in a graduate program. Many colleges and universities only offer one or two classes specifically about control systems at the undergraduate level. Some universities, however, do offer more than that, depending on how the material is broken up, and how much depth that is to be covered. Also, many institutions will offer a handful of graduate-level courses on the subject. This book will attempt to cover the topic of control systems from both a graduate and undergraduate level, with the advanced topics built on the basic topics in a way that is intuitive. As such, students should be able to begin reading this book in any place that seems an appropriate starting point, and should be able to finish reading where further information is no longer needed.
2.5 What are the Prerequisites? Understanding of the material in this book will require a solid mathematical foundation. This book does not currently explain, nor will it ever try to fully explain most of the necessary mathematical tools used in this text. For that reason, the reader is expected to have read the following wikibooks, or have background knowledge comparable to them:
7
Introduction Algebra4 Calculus5 The reader should have a good understanding of differentiation and integration. Partial differentiation, multiple integration, and functions of multiple variables will be used occasionally, but the students are not necessarily required to know those subjects well. These advanced calculus topics could better be treated as a co-requisite instead of a pre-requisite. Linear Algebra6 State-space system representation draws heavily on linear algebra techniques. Students should know how to operate on matrices. Students should understand basic matrix operations (addition, multiplication, determinant, inverse, transpose). Students would also benefit from a prior understanding of Eigenvalues and Eigenvectors, but those subjects are covered in this text. Ordinary Differential Equations7 All linear systems can be described by a linear ordinary differential equation. It is beneficial, therefore, for students to understand these equations. Much of this book describes methods to analyze these equations. Students should know what a differential equation is, and they should also know how to find the general solutions of first and second order ODEs. Engineering Analysis8 This book reinforces many of the advanced mathematical concepts used in this book, and this book will refer to the relevant sections in the Engineering Analysis9 book for further information on some subjects. This is essentially a math book, but with a focus on various engineering applications. It relies on a previous knowledge of the other math books in this list. Signals and Systems10 The Signals and Systems11 book will provide a basis in the field of systems theory, of which control systems is a subset. Readers who have not read the Signals and Systems12 book will be at a severe disadvantage when reading this book.
2.6 How is this Book Organized? This book will be organized following a particular progression. First this book will discuss the basics of system theory, and it will offer a brief refresher on integral transforms. Section 4 5 6 7 8 9 10 11 12
8
http://en.wikibooks.org/wiki/Algebra http://en.wikibooks.org/wiki/Calculus http://en.wikibooks.org/wiki/Linear%20Algebra http://en.wikibooks.org/wiki/Ordinary%20Differential%20Equations http://en.wikibooks.org/wiki/Engineering%20Analysis http://en.wikibooks.org/wiki/Engineering%20Analysis http://en.wikibooks.org/wiki/Signals%20and%20Systems http://en.wikibooks.org/wiki/Signals%20and%20Systems http://en.wikibooks.org/wiki/Signals%20and%20Systems
Differential Equations Review 2 will contain a brief primer on digital information, for students who are not necessarily familiar with them. This is done so that digital and analog signals can be considered in parallel throughout the rest of the book. Next, this book will introduce the state-space method of system description and control. After section 3, topics in the book will use state-space and transform methods interchangeably (and occasionally simultaneously). It is important, therefore, that these three chapters be well read and understood before venturing into the later parts of the book. After the "basic" sections of the book, we will delve into specific methods of analyzing and designing control systems. First we will discuss Laplace-domain stability analysis techniques (Routh-Hurwitz, root-locus), and then frequency methods (Nyquist Criteria, Bode Plots). After the classical methods are discussed, this book will then discuss Modern methods of stability analysis. Finally, a number of advanced topics will be touched upon, depending on the knowledge level of the various contributors. As the subject matter of this book expands, so too will the prerequisites. For instance, when this book is expanded to cover nonlinear systems, a basic background knowledge of nonlinear mathematics will be required.
2.6.1 Versions This wikibook has been expanded to include multiple versions13 of its text, differentiated by the material covered, and the order in which the material is presented. Each different version is composed of the chapters of this book, included in a different order. This book covers a wide range of information, so if you don't need all the information that this book has to offer, perhaps one of the other versions would be right for you and your educational needs. Each separate version has a table of contents outlining the different chapters that are included in that version. Also, each separate version comes complete with a printable version, and some even come with PDF versions as well. Take a look at the All Versions Listing Page14 to find the version of the book that is right for you and your needs.
2.7 Differential Equations Review Implicit in the study of control systems is the underlying use of differential equations. Even if they aren't visible on the surface, all of the continuous-time systems that we will be looking at are described in the time domain by ordinary differential equations (ODE), some of which are relatively high-order. Let's review some differential equation basics. Consider the topic of interest from a bank. The amount of interest accrued on a given principal balance (the amount of money you put into the bank) P, is given by:
13 14
http://en.wikibooks.org/wiki/Control%20Systems%2FAll%20Versions http://en.wikibooks.org/wiki/Control%20Systems%2FAll%20Versions
9
Introduction dP dt
= rP
Where dP dt is the interest (rate of change of the principal), and r is the interest rate. Notice in this case that P is a function of time (t), and can be rewritten to reflect that: dP (t) dt
= rP (t)
To solve this basic, first-order equation, we can use a technique called "separation of variables", where we move all instances of the letter P to one side, and all instances of t to the other: dP (t) P (t)
= r dt
And integrating both sides gives us: ln |P (t)| = rt + C This is all fine and good, but generally, we like to get rid of the logarithm, by raising both sides to a power of e: P (t) = ert+C Where we can separate out the constant as such: D = eC P (t) = Dert D is a constant that represents the initial conditions of the system, in this case the starting principal. Differential equations are particularly difficult to manipulate, especially once we get to higher-orders of equations. Luckily, several methods of abstraction have been created that allow us to work with ODEs, but at the same time, not have to worry about the complexities of them. The classical method, as described above, uses the Laplace, Fourier, and Z Transforms to convert ODEs in the time domain into polynomials in a complex domain. These complex polynomials are significantly easier to solve than the ODE counterparts. The Modern method instead breaks differential equations into systems of low-order equations, and expresses this system in terms of matrices. It is a common precept in ODE theory that an ODE of order N can be broken down into N equations of order 1. Readers who are unfamiliar with differential equations might be able to read and understand the material in this book reasonably well. However, all readers are encouraged to read the related sections in Calculus15 .
2.8 History The field of control systems started essentially in the ancient world. Early civilizations, notably the Greeks and the Arabs were heavily preoccupied with the accurate measurement of time, the result of which were several "water clocks" that were designed and implemented.
15
10
http://en.wikibooks.org/wiki/Calculus
History However, there was very little in the way of actual progress made in the field of engineering until the beginning of the renaissance in Europe. Leonhard Euler (for whom Euler's Formula is named) discovered a powerful integral transform, but Pierre-Simon Laplace used the transform (later called the Laplace Transform) to solve complex problems in probability theory. Joseph Fourier was a court mathematician in France under Napoleon I. He created a special function decomposition called the Fourier Series, that was later generalized into an integral transform, and named in his honor (the Fourier Transform).
Figure 1 Pierre-Simon Laplace 1749-1827
Figure 2 Joseph Fourier 1768-1840
The "golden age" of control engineering occurred between 1910-1945, where mass communication methods were being created and two world wars were being fought. During this period, some of the most famous names in controls engineering were doing their work: Nyquist and Bode. Hendrik Wade Bode and Harry Nyquist, especially in the 1930's while working with Bell Laboratories, created the bulk of what we now call "Classical Control Methods". These methods were based off the results of the Laplace and Fourier Transforms, which had been previously known, but were made popular by Oliver Heaviside around the turn of the century. Previous to Heaviside, the transforms were not widely used, nor respected mathematical tools. Bode is credited with the "discovery" of the closed-loop feedback system, and the logarithmic plotting technique that still bears his name (bode plots). Harry Nyquist did extensive research in the field of system stability and information theory. He created a powerful stability criteria that has been named for him (The Nyquist Criteria). Modern control methods were introduced in the early 1950's, as a way to bypass some of the shortcomings of the classical methods. Rudolf Kalman is famous for his work in modern control theory, and an adaptive controller called the Kalman Filter was named in his
11
Introduction honor. Modern control methods became increasingly popular after 1957 with the invention of the computer, and the start of the space program. Computers created the need for digital control methodologies, and the space program required the creation of some "advanced" control techniques, such as "optimal control", "robust control", and "nonlinear control". These last subjects, and several more, are still active areas of study among research engineers.
2.9 Branches of Control Engineering Here we are going to give a brief listing of the various different methodologies within the sphere of control engineering. Oftentimes, the lines between these methodologies are blurred, or even erased completely. Classical Controls Control methodologies where the ODEs that describe a system are transformed using the Laplace, Fourier, or Z Transforms, and manipulated in the transform domain. Modern Controls Methods where high-order differential equations are broken into a system of first-order equations. The input, output, and internal states of the system are described by vectors called "state variables". Robust Control Control methodologies where arbitrary outside noise/disturbances are accounted for, as well as internal inaccuracies caused by the heat of the system itself, and the environment. Optimal Control In a system, performance metrics are identified, and arranged into a "cost function". The cost function is minimized to create an operational system with the lowest cost. Adaptive Control In adaptive control, the control changes its response characteristics over time to better control the system. Nonlinear Control The youngest branch of control engineering, nonlinear control encompasses systems that cannot be described by linear equations or ODEs, and for which there is often very little supporting theory available. Game Theory Game Theory is a close relative of control theory, and especially robust control and optimal control theories. In game theory, the external disturbances are not considered to be random noise processes, but instead are considered to be "opponents". Each player has a cost function that they attempt to minimize, and that their opponents attempt to maximize. This book will definitely cover the first two branches, and will hopefully be expanded to cover some of the later branches, if time allows.
12
MATLAB
2.10 MATLAB Information about using MATLAB for control systems can be found in the Appendix16 MATLAB ® is a programming tool that is commonly used in the field of control engineering. We will discuss MATLAB in specific sections of this book devoted to that purpose. MATLAB will not appear in discussions outside these specific sections, although MATLAB may be used in some example problems. An overview of the use of MATLAB in control engineering can be found in the appendix at: Control Systems/MATLAB17 . For more information on MATLAB in general, see: MATLAB Programming18 . For more information about properly referencing MATLAB, see: Resources19 Nearly all textbooks on the subject of control systems, linear systems, and system analysis will use MATLAB as an integral part of the text. Students who are learning this subject at an accredited university will certainly have seen this material in their textbooks, and are likely to have had MATLAB work as part of their classes. It is from this perspective that the MATLAB appendix is written. In the future, this book may be expanded to include information on Simulink ®, as well as MATLAB. There are a number of other software tools that are useful in the analysis and design of control systems. Additional information can be added in the appendix of this book, depending on the experience and prior knowledge of contributors.
2.11 About Formatting This book will use some simple conventions throughout.
2.11.1 Mathematical Conventions Mathematical equations will be labeled with the {{eqn}} template, to give them names. Equations that are labeled in such a manner are important, and should be taken special note of. For instance, notice the label to the right of this equation: Inverse Laplace Transform −1
f (t) = L
16 17 18 19
1 {F (s)} = 2πi
Z c+i∞
est F (s) ds
c−i∞
Chapter 43 on page 275 Chapter 43 on page 275 http://en.wikibooks.org/wiki/MATLAB%20Programming Chapter 46 on page 305
13
Introduction Equations that are named in this manner will also be copied into the List of Equations Glossary20 in the end of the book, for an easy reference. Italics will be used for English variables, functions, and equations that appear in the main text. For example e, j, f(t) and X(s) are all italicized. Wikibooks contains a LaTeX mathematics formatting engine, although an attempt will be made not to employ formatted mathematical equations inline with other text because of the difference in size and font. Greek letters, and other non-English characters will not be italicized in the text unless they appear in the midst of multiple variables which are italicized (as a convenience to the editor). Scalar time-domain functions and variables will be denoted with lower-case letters, along with a t in parenthesis, such as: x(t), y(t), and h(t). Discrete-time functions will be written in a similar manner, except with an [n] instead of a (t). Fourier, Laplace, Z, and Star transformed functions will be denoted with capital letters followed by the appropriate variable in parenthesis. For example: F(s), X(jω), Y(z), and F*(s). Matrices will be denoted with capital letters. Matrices which are functions of time will be denoted with a capital letter followed by a t in parenthesis. For example: A(t) is a matrix, a(t) is a scalar function of time. Transforms of time-variant matrices will be displayed in uppercase bold letters, such as H(s). Math equations rendered using LaTeX will appear on separate lines, and will be indented from the rest of the text.
2.11.2 Text Conventions Information which is tangent or auxiliary to the main text will be placed in these "sidebox" templates. Examples will appear in TextBox templates, which show up as large grey boxes filled with text and equations. Important Definitions Will appear in TextBox templates as well, except we will use this formatting to show that it is a definition. Notes of interest will appear in "infobox" templates. These notes will often be used to explain some nuances of a mathematical derivation or proof. BWarningWarnings will appear in these "warning" boxes. These boxes will point out common mistakes, or other items to be careful of.
20
14
Chapter 45 on page 297
3 System Identification 3.1 Systems Systems, in one sense, are devices that take input and produce an output. A system can be thought to operate on the input to produce the output. The output is related to the input by a certain relationship known as the system response. The system response usually can be modeled with a mathematical relationship between the system input and the system output.
3.2 System Properties Physical systems can be divided up into a number of different categories, depending on particular properties that the system exhibits. Some of these system classifications are very easy to work with and have a large theory base for analysis. Some system classifications are very complex and have still not been investigated with any degree of success. By properly identifying the properties of a system, certain analysis and design tools can be selected for use with the system. The early sections of this book will focus primarily on linear time-invariant (LTI) systems. LTI systems are the easiest class of system to work with, and have a number of properties that make them ideal to study. This chapter discusses some properties of systems. Later chapters in this book will look at time variant systems and nonlinear systems. Both time variant and nonlinear systems are very complex areas of current research, and both can be difficult to analyze properly. Unfortunately, most physical real-world systems are time-variant, nonlinear, or both. An introduction to system identification and least squares techniques can be found here1 . An introduction to parameter identification techniques can be found here2 .
3.3 Initial Time The initial time of a system is the time before which there is no input. Typically, the initial time of a system is defined to be zero, which will simplify the analysis significantly. Some
1 2
http://wikis.controltheorypro.com/index.php?title=Introduction_to_System_ Identification http://wikis.controltheorypro.com/index.php?title=Introduction_to_Parameter_ Identification
15
System Identification techniques, such as the Laplace Transform require that the initial time of the system be zero. The initial time of a system is typically denoted by t0 . The value of any variable at the initial time t0 will be denoted with a 0 subscript. For instance, the value of variable x at time t0 is given by: x(t0 ) = x0 Likewise, any time t with a positive subscript are points in time after t0 , in ascending order: t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn So t1 occurs after t0 , and t2 occurs after both points. In a similar fashion above, a variable with a positive subscript (unless specifying an index into a vector) also occurs at that point in time: x(t1 ) = x1
x(t2 ) = x2 This is valid for all points in time t.
3.4 Additivity A system satisfies the property of additivity, if a sum of inputs results in a sum of outputs. By definition: an input of x3 (t) = x1 (t) + x2 (t) results in an output of y3 (t) = y1 (t) + y2 (t). To determine whether a system is additive, use the following test: Given a system f that takes an input x and outputs a value y, assume two inputs (x1 and x2 ) produce two outputs: y1 = f (x1 )
y2 = f (x2 ) Now, create a composite input that is the sum of the previous inputs: x3 = x1 + x2 Then the system is additive if the following equation is true: y3 = f (x3 ) = f (x1 + x2 ) = f (x1 ) + f (x2 ) = y1 + y2
16
Homogeneity Systems that satisfy this property are called additive. Additive systems are useful because a sum of simple inputs can be used to analyze the system response to a more complex input.
3.4.1 Example: Sinusoids Given the following equation: y(t) = sin(3x(t)) Create a sum of inputs as: x(t) = x1 (t) + x2 (t) and construct the expected sum of outputs: y(t) = y1 (t) + y2 (t) Now, substituting these values into our equation, test for equality: y1 (t) + y2 (t) = sin(3[x1 (t) + x2 (t)]) The equality is not satisfied, and therefore the sine operation is not additive.
3.5 Homogeneity A system satisfies the condition of homogeneity if an input scaled by a certain factor produces an output scaled by that same factor. By definition: an input of ax1 results in an output of ay1 . In other words, to see if function f() is homogeneous, perform the following test: Stimulate the system f with an arbitrary input x to produce an output y: y = f (x) Now, create a second input x1 , scale it by a multiplicative factor C (C is an arbitrary constant value), and produce a corresponding output y1 : y1 = f (Cx1 ) Now, assign x to be equal to x1 : x1 = x Then, for the system to be homogeneous, the following equation must be true: y1 = f (Cx) = Cf (x) = Cy Systems that are homogeneous are useful in many applications, especially applications with gain or amplification.
17
System Identification
3.5.1 Example: Straight-Line Given the equation for a straight line: y = f (x) = 2x + 3 y1 = f (Cx1 ) = 2(Cx1 ) + 3 = C2x1 + 3 x1 = x Comparing the two results, it is easy to see they are not equal: y1 = C2x + 3 6= Cy = C(2x + 3) = C2x + C3 Therefore, the equation is not homogeneous.
3.6 Linearity A system is considered linear if it satisfies the conditions of Additivity and Homogeneity. In short, a system is linear if the following is true: Take two arbitrary inputs, and produce two arbitrary outputs: y1 = f (x1 )
y2 = f (x2 ) Now, a linear combination of the inputs should produce a linear combination of the outputs: f (Ax + By) = f (Ax) + f (By) = Af (x) + Bf (y) This condition of additivity and homogeneity is called superposition. A system is linear if it satisfies the condition of superposition.
3.6.1 Example: Linear Differential Equations Is the following equation linear: dy(t) dt
+ y(t) = x(t)
To determine whether this system is linear, construct a new composite input: x(t) = Ax1 (t) + Bx2 (t) Now, create the expected composite output: y(t) = Ay1 (t) + By2 (t) Substituting the two into our original equation:
18
Memory d[Ay1 (t)+By2 (t)] dt
+ [Ay1 (t) + By2 (t)] = Ax1 (t) + Bx2 (t)
Factor out the derivative operator, as such: d dt [Ay1 (t) + By2 (t)] + [Ay1 (t) + By2 (t)]
= Ax1 (t) + Bx2 (t)
Finally, convert the various composite terms into the respective variables, to prove that this system is linear: dy(t) dt
+ y(t) = x(t)
For the record, derivatives and integrals are linear operators, and ordinary differential equations typically are linear equations.
3.7 Memory A system is said to have memory if the output from the system is dependent on past inputs (or future inputs!) to the system. A system is called memoryless if the output is only dependent on the current input. Memoryless systems are easier to work with, but systems with memory are more common in digital signal processing applications. Systems that have memory are called dynamic systems, and systems that do not have memory are static systems.
3.8 Causality Causality is a property that is very similar to memory. A system is called causal if it is only dependent on past and/or current inputs. A system is called anti-causal if the output of the system is dependent only on future inputs. A system is called non-causal if the output depends on past and/or current and future inputs. A system design that is not causal cannot be physically implemented. If the system can't be built, the design is generally worthless.
3.9 Time-Invariance A system is called time-invariant if the system relationship between the input and output signals is not dependent on the passage of time. If the input signal x(t) produces an output y(t) then any time shifted input, x(t + δ), results in a time-shifted output y(t + δ) This property can be satisfied if the transfer function of the system is not a function of time except expressed by the input and output. If a system is time-invariant then the system block is commutative with an arbitrary delay. This facet of time-invariant systems will be discussed later. To determine if a system f is time-invariant, perform the following test: Apply an arbitrary input x to a system and produce an arbitrary output y:
19
System Identification
y(t) = f (x(t)) Apply a second input x1 to the system, and produce a second output: y1 (t) = f (x1 (t)) Now, assign x1 to be equal to the first input x, time-shifted by a given constant value δ: x1 (t) = x(t − δ) Finally, a system is time-invariant if y1 is equal to y shifted by the same value δ: y1 (t) = y(t − δ)
3.10 LTI Systems A system is considered to be a Linear Time-Invariant (LTI) system if it satisfies the requirements of time-invariance and linearity. LTI systems are one of the most important types of systems, and they will be considered almost exclusively in the beginning chapters of this book. Systems which are not LTI are more common in practice, but are much more difficult to analyze.
3.11 Lumpedness A system is said to be lumped if one of the two following conditions are satisfied: 1. There are a finite number of states that the system can be in. 2. There are a finite number of state variables. The concept of "states" and "state variables" are relatively advanced, and they will be discussed in more detail in the discussion about modern controls. Systems which are not lumped are called distributed. A simple example of a distributed system is a system with delay, that is, A(s)y(t) = B(s)u(t − τ ), which has an infinite number of state variables (Here we use s to denote the Laplace variable). However, although distributed systems are quite common, they are very difficult to analyze in practice, and there are few tools available to work with such systems. Fortunately, in most cases, a delay can be sufficiently modeled with the Pade approximation. This book will not discuss distributed systems much.
20
Relaxed
3.12 Relaxed A system is said to be relaxed if the system is causal, and at the initial time t0 the output of the system is zero, i.e., there is no stored energy in the system. y(t0 ) = f (x(t0 )) = 0 In terms of differential equations, a relaxed system is said to have "zero initial state". Systems without an initial state are easier to work with, but systems that are not relaxed can frequently be modified to approximate relaxed systems.
3.13 Stability Control Systems engineers will frequently say that an unstable system has "exploded". Some physical systems actually can rupture or explode when they go unstable. Stability is a very important concept in systems, but it is also one of the hardest function properties to prove. There are several different criteria for system stability, but the most common requirement is that the system must produce a finite output when subjected to a finite input. For instance, if 5 volts is applied to the input terminals of a given circuit, it would be best if the circuit output didn't approach infinity, and the circuit itself didn't melt or explode. This type of stability is often known as "Bounded Input, Bounded Output" stability, or BIBO. There are a number of other types of stability, most of which are based off the concept of BIBO stability. Because stability is such an important and complicated topic, an entire section of this text is devoted to its study.
3.14 Inputs and Outputs Systems can also be categorized by the number of inputs and the number of outputs the system has. Consider a television as a system, for instance. The system has two inputs: the power wire and the signal cable. It has one output: the video display. A system with one input and one output is called single-input, single output, or SISO. a system with multiple inputs and multiple outputs is called multi-input, multi-output, or MIMO. These systems will be discussed in more detail later. Exercise: Based on the definitions of SISO and MIMO, above, determine what the acronyms SIMO and MISO mean.
21
4 Digital and Analog 4.1 Digital and Analog There is a significant distinction between an analog system and a digital system, in the same way that there is a significant difference between analog and digital data. This book is going to consider both analog and digital topics, so it is worth taking some time to discuss the differences, and to display the different notations that will be used with each.
4.1.1 Continuous Time This operation can be performed using this MATLAB command: isct A signal is called continuous-time if it is defined at every time t. A system is a continuous-time system if it takes a continuous-time input signal, and outputs a continuous-time output signal. Here is an example of an analog waveform:
Figure 3
23
Digital and Analog
4.1.2 Discrete Time This operation can be performed using this MATLAB command: isdt A signal is called discrete-time if it is only defined for particular points in time. A discrete-time system takes discrete-time input signals, and produces discrete-time output signals. The following image shows the difference between an analog waveform and the sampled discrete time equivalent:
Figure 4
4.1.3 Quantized A signal is called Quantized if it can only be certain values, and cannot be other values. This concept is best illustrated with examples: 1. Students with a strong background in physics will recognize this concept as being the root word in "Quantum Mechanics". In quantum mechanics, it is known that energy comes only in discrete packets. An electron bound to an atom, for example, may occupy one of several discrete energy levels, but not intermediate levels. 2. Another common example is population statistics. For instance, a common statistic is that a household in a particular country may have an average of "3.5 children", or some other fractional number. Actual households may have 3 children, or they may have 4 children, but no household has 3.5 children. 3. People with a computer science background will recognize that integer variables are quantized because they can only hold certain integer values, not fractions or decimal points.
24
Analog The last example concerning computers is the most relevant, because quantized systems are frequently computer-based. Systems that are implemented with computer software and hardware will typically be quantized. Here is an example waveform of a quantized signal. Notice how the magnitude of the wave can only take certain values, and that creates a step-like appearance. This image is discrete in magnitude, but is continuous in time:
Figure 5
4.2 Analog By definition: Analog A signal is considered analog if it is defined for all points in time and if it can take any real magnitude value within its range. An analog system is a system that represents data using a direct conversion from one form to another. In other words, an analog system is a system that is continuous in both time and magnitude.
4.2.1 Example: Motor If we have a given motor, we can show that the output of the motor (rotation in units of radians per second, for instance) is a function of the voltage that is input to the motor. We can show the relationship as such: Θ(v) = f (v)
25
Digital and Analog Where Θ is the output in terms of Rad/sec, and f(v) is the motor's conversion function between the input voltage (v) and the output. For any value of v we can calculate out specifically what the rotational speed of the motor should be.
4.2.2 Example: Analog Clock Consider a standard analog clock, which represents the passage of time though the angular position of the clock hands. We can denote the angular position of the hands of the clock with the system of equations: φh = fh (t) φm = fm (t) φs = fs (t) Where ϕh is the angular position of the hour hand, ϕm is the angular position of the minute hand, and ϕs is the angular position of the second hand. The positions of all the different hands of the clock are dependent on functions of time. Different positions on a clock face correspond directly to different times of the day.
4.3 Digital Digital data is represented by discrete number values. By definition: Digital A signal or system is considered digital if it is both discrete-time and quantized. Digital data always have a certain granularity, and therefore there will almost always be an error associated with using such data, especially if we want to account for all real numbers. The tradeoff, of course, to using a digital system is that our powerful computers with our powerful, Moore's law microprocessor units, can be instructed to operate on digital data only. This benefit more than makes up for the shortcomings of a digital representation system. Discrete systems will be denoted inside square brackets, as is a common notation in texts that deal with discrete values. For instance, we can denote a discrete data set of ascending numbers, starting at 1, with the following notation: x[n] = [1 2 3 4 5 6 ...] n, or other letters from the central area of the alphabet (m, i, j, k, l, for instance) are commonly used to denote discrete time values. Analog, or "non-discrete" values are denoted in regular expression syntax, using parenthesis. Here is an example of an analog waveform and the digital equivalent. Notice that the digital waveform is discrete in both time and magnitude:
26
Hybrid Systems
Figure 6
Figure 7 Analog Waveform
Digital Waveform
4.3.1 Example: Digital Clock As a common example, let's consider a digital clock: The digital clock represents time with binary electrical data signals of 1 and 0. The 1's are usually represented by a positive voltage, and a 0 is generally represented by zero voltage. Counting in binary, we can show that any given time can be represented by a base-2 numbering system: {| class="wikitable" !Minute !! Binary Representation |- |1 || 1 |- |10 || 1010 |- |30 || 11110 |- |59 || 111011 |} But what happens if we want to display a fraction of a minute, or a fraction of a second? A typical digital clock has a certain amount of precision, and it cannot express fractional values smaller than that precision.
4.4 Hybrid Systems Hybrid Systems are systems that have both analog and digital components. Devices called samplers are used to convert analog signals into digital signals, and Devices called reconstructors are used to convert digital signals into analog signals. Because of the use of samplers, hybrid systems are frequently called sampled-data systems.
4.4.1 Example: Automobile Computer Most modern automobiles today have integrated computer systems that monitor certain aspects of the car, and actually help to control the performance of the car. The speed of the car, and the rotational speed of the transmission are analog values, but a sampler converts them into digital values so the car computer can monitor them. The digital computer will then output control signals to other parts of the car, to alter analog systems such as the engine timing, the suspension, the brakes, and other parts. Because the car has both digital and analog components, it is a hybrid system.
27
Digital and Analog
4.5 Continuous and Discrete Note: We are not using the word "continuous" here in the sense of continuously differentiable, as is common in math texts. A system is considered continuous-time if the signal exists for all time. Frequently, the terms "analog" and "continuous" will be used interchangeably, although they are not strictly the same. Discrete systems can come in three flavors: 1. Discrete time (sampled) 2. Discrete magnitude (quantized) 3. Discrete time and magnitude (digital) Discrete magnitude systems are systems where the signal value can only have certain values. Discrete time systems are systems where signals are only available (or valid) at particular times. Computer systems are discrete in the sense of (3), in that data is only read at specific discrete time intervals, and the data can have only a limited number of discrete values. A discrete-time system has a sampling time value associated with it, such that each discrete value occurs at multiples of the given sampling time. We will denote the sampling time of a system as T. We can equate the square-brackets notation of a system with the continuous definition of the system as follows: x[n] = x(nT ) Notice that the two notations show the same thing, but the first one is typically easier to write, and it shows that the system in question is a discrete system. This book will use the square brackets to denote discrete systems by the sample number n, and parenthesis to denote continuous time functions.
4.6 Sampling and Reconstruction The process of converting analog information into digital data is called "Sampling". The process of converting digital data into an analog signal is called "Reconstruction". We will talk about both processes in a later chapter. For more information on the topic than is available in this book, see the Analog and Digital Conversion1 wikibook. Here is an example of a reconstructed waveform. Notice that the reconstructed waveform here is quantized because it is constructed from a digital signal:
1
28
http://en.wikibooks.org/wiki/Analog%20and%20Digital%20Conversion
Sampling and Reconstruction
Figure 8
29
5 System Metrics 5.1 System Metrics When a system is being designed and analyzed, it doesn't make any sense to test the system with all manner of strange input functions, or to measure all sorts of arbitrary performance metrics. Instead, it is in everybody's best interest to test the system with a set of standard, simple, reference functions. Once the system is tested with the reference functions, there are a number of different metrics that we can use to determine the system performance. It is worth noting that the metrics presented in this chapter represent only a small number of possible metrics that can be used to evaluate a given system. This wikibook will present other useful metrics along the way, as their need becomes apparent.
5.2 Standard Inputs Note: All of the standard inputs are zero before time zero. All the standard inputs are causal. There are a number of standard inputs that are considered simple enough and universal enough that they are considered when designing a system. These inputs are known as a unit step, a ramp, and a parabolic input. Unit Step A unit step function is defined piecewise as such: Unit Step Function (
u(t) =
0, t < 0 1, t ≥ 0
The unit step function is a highly important function, not only in control systems engineering, but also in signal processing, systems analysis, and all branches of engineering. If the unit step function is input to a system, the output of the system is known as the step response. The step response of a system is an important tool, and we will study step responses in detail in later chapters.
31
System Metrics
Figure 9
Ramp A unit ramp is defined in terms of the unit step function, as such: Unit Ramp Function r(t) = tu(t) It is important to note that the unit step function is simply the differential of the unit ramp function: Z
r(t) =
u(t)dt = tu(t)
This definition will come in handy when we learn about the Laplace Transform.
32
Standard Inputs
Figure 10
Parabolic A unit parabolic input is similar to a ramp input: Unit Parabolic Function 1 p(t) = t2 u(t) 2 Notice also that the unit parabolic input is equal to the integral of the ramp function: Z
p(t) =
Z
r(t)dt =
1 1 tu(t)dt = t2 u(t) = tr(t) 2 2
Again, this result will become important when we learn about the Laplace Transform.
33
System Metrics
Figure 11
Also, sinusoidal and exponential functions are considered basic, but they are too difficult to use in initial analysis of a system.
5.3 Steady State Note: To be more precise, we should have taken the limit as t approaches infinity. However, as a shorthand notation, we will typically say "t equals infinity", and assume the reader understands the shortcut that is being used. When a unit-step function is input to a system, the steady state value of that system is the output value at time t = ∞. Since it is impractical (if not completely impossible) to wait till infinity to observe the system, approximations and mathematical calculations are used to determine the steady-state value of the system. Most system responses are asymptotic, that is that the response approaches a particular value. Systems that are asymptotic are typically obvious from viewing the graph of that response.
5.3.1 Step Response The step response of a system is most frequently used to analyze systems, and there is a large amount of terminology involved with step responses. When exposed to the step input, the system will initially have an undesirable output period known as the transient response. The transient response occurs because a system is approaching its final output value. The steady-state response of the system is the response after the transient response has ended. The amount of time it takes for the system output to reach the desired value (before the transient response has ended, typically) is known as the rise time. The amount of time it
34
Target Value takes for the transient response to end and the steady-state response to begin is known as the settling time. It is common for a systems engineer to try and improve the step response of a system. In general, it is desired for the transient response to be reduced, the rise and settling times to be shorter, and the steady-state to approach a particular desired "reference" output.
Figure 12
Figure 13
An arbitrary step function with
A step response graph of input x(t) to a made-up system
x(t) = M u(t)
5.4 Target Value The target output value is the value that our system attempts to obtain for a given input. This is not the same as the steady-state value, which is the actual value that the target does obtain. The target value is frequently referred to as the reference value, or the "reference function" of the system. In essence, this is the value that we want the system to produce. When we input a "5" into an elevator, we want the output (the final position of the elevator) to be the fifth floor. Pressing the "5" button is the reference input, and is the expected value that we want to obtain. If we press the "5" button, and the elevator goes to the third floor, then our elevator is poorly designed.
5.5 Rise Time Rise time is the amount of time that it takes for the system response to reach the target value from an initial state of zero. Many texts on the subject define the rise time as being the time it takes to rise between the initial position and 80% of the target value. This is because some systems never rise to 100% of the expected, target value, and therefore they would have an infinite rise-time. This book will specify which convention to use for each individual problem. Rise time is typically denoted tr , or trise . Rise time is not the amount of time it takes to achieve steady-state, only the amount of time it takes to reach the desired target value for the first time.
35
System Metrics
5.6 Percent Overshoot Underdamped systems frequently overshoot their target value initially. This initial surge is known as the "overshoot value". The ratio of the amount of overshoot to the target steady-state value of the system is known as the percent overshoot. Percent overshoot represents an overcompensation of the system, and can output dangerously large output signals that can damage a system. Percent overshoot is typically denoted with the term PO. Example: Refrigerator Consider an ordinary household refrigerator. The refrigerator has cycles where it is on and when it is off. When the refrigerator is on, the coolant pump is running, and the temperature inside the refrigerator decreases. The temperature decreases to a much lower level than is required, and then the pump turns off. When the pump is off, the temperature slowly increases again as heat is absorbed into the refrigerator. When the temperature gets high enough, the pump turns back on. Because the pump cools down the refrigerator more then it needs to initially, we can say that it "overshoots" the target value by a certain specified amount. Example: Refrigerator Another example concerning a refrigerator concerns the electrical demand of the heat pump when it first turns on. The pump is an inductive mechanical motor, and when the motor first activates, a special counter-acting force known as "back EMF" resists the motion of the motor, and causes the pump to draw more electricity until the motor reaches its final speed. During the startup time for the pump, lights on the same electrical circuit as the refrigerator may dim slightly, as electricity is drawn away from the lamps, and into the pump. This initial draw of electricity is a good example of overshoot.
5.7 Steady-State Error Usually, the letter e or E will be used to denote error values. Sometimes a system might never achieve the desired steady state value, but instead will settle on an output value that is not desired. The difference between the steady-state output value to the reference input value at steady state is called the steady state error of the system. We will use the variable ess to denote the steady-state error of the system.
5.8 Settling Time After the initial rise time of the system, some systems will oscillate and vibrate for an amount of time before the system output settles on the final value. The amount of time it takes to reach steady state after the initial rise time is known as the settling time. Notice that damped oscillating systems may never settle completely, so we will define settling time as being the amount of time for the system to reach, and stay in, a certain acceptable range. The acceptable range for settling time is typically determined on a per-problem basis,
36
System Order although common values are 20%, 10%, or 5% of the target value. The settling time will be denoted as ts .
5.9 System Order The order of the system is defined by the highest degree of the linear differential equation that describes the system. In a transfer function representation, the order is the highest exponent in the transfer function. In a proper system, the system order is defined as the degree of the denominator polynomial. In a state-space equation, the system order is the number of state-variables used in the system. The order of a system will frequently be denoted with an n or N, although these variables are also used for other purposes. This book will make clear distinction on the use of these variables.
5.9.1 Proper Systems A proper system is a system where the degree of the denominator is larger than or equal to the degree of the numerator polynomial. A strictly proper system is a system where the degree of the denominator polynomial is larger than (but never equal to) the degree of the numerator polynomial. A biproper system is a system where the degree of the denominator polynomial equals the degree of the numerator polynomial. It is important to note that only proper systems can be physically realized. In other words, a system that is not proper cannot be built. It makes no sense to spend a lot of time designing and analyzing imaginary systems.
5.9.2 Example: System Order Find the order of this system: G(s) =
1+s 1+s+s2
The highest exponent in the denominator is s2 , so the system is order 2. Also, since the denominator is a higher degree than the numerator, this system is proper. in the above example, G(s) is a second-order transfer function because in the denominator one of the s variables has an exponent of 2. Second-order functions are the easiest to work with.
5.10 System Type Let's say that we have a transfer function that is in the following generalized form (known as pole-zero form): Pole-Zero Form
37
System Metrics
K (s − si ) G(s) = M Qi s j (s − sj ) Q
Poles at the origin are called integrators, because they have the effect of performing integration on the input signal. we call the parameter M the system type. Note that increased system type number correspond to larger numbers of poles at s = 0. More poles at the origin generally have a beneficial effect on the system, but they increase the order of the system, and make it increasingly difficult to implement physically. System type will generally be denoted with a letter like N, M, or m. Because these variables are typically reused for other purposes, this book will make clear distinction when they are employed. Now, we will define a few terms that are commonly used when discussing system type. These new terms are Position Error, Velocity Error, and Acceleration Error. These names are throwbacks to physics terms where acceleration is the derivative of velocity, and velocity is the derivative of position. Note that none of these terms are meant to deal with movement, however. Position Error The position error, denoted by the position error constant Kp . This is the amount of steady state error of the system when stimulated by a unit step input. We define the position error constant as follows: Position Error Constant Kp = lim G(s) s→0
Where G(s) is the transfer function of our system. Velocity Error The velocity error is the amount of steady state error when the system is stimulated with a ramp input. We define the velocity error constant as such: Velocity Error Constant Kv = lim sG(s) s→0
Acceleration Error The acceleration error is the amount of steady-state error when the system is stimulated with a parabolic input. We define the acceleration error constant to be: Acceleration Error Constant Ka = lim s2 G(s) s→0
Now, this table will show briefly the relationship between the system type, the kind of input (step, ramp, parabolic), and the steady state error of the system:
38
Visually {| class="wikitable" ! ! colspan=3 | Unit System Input |- ! Type, M !! Au(t) !! Ar(t) !! Ap(t) |- |0 || ess = || ess = ∞ || ess = ∞ |- |1 || ess = 0 || ess = |- | > 2 || ess = 0 || ess = 0 || ess = 0 |}
A Kv
|| ess = ∞ |- |2 || ess = 0 || ess = 0 ||
A 1+Kp ess = KAa
5.10.1 Z-Domain Type Likewise, we can show that the system order can be found from the following generalized transfer function in the Z domain: K i (z − zi ) Q G(z) = (z − 1)M j (z − zj ) Q
Where the constant M is the order of the digital system. Now, we will show how to find the various error constants in the Z-Domain: Z-Domain Error Constants {| class="wikitable" ! Error Constant !! Equation |- | Kp || Kp = limz→1 G(z) |- | Kv || Kv = limz→1 (z − 1)G(z) |- | Ka || Ka = limz→1 (z − 1)2 G(z) |}
5.11 Visually Here is an image of the various system metrics, acting on a system in response to a step input:
Figure 14
39
System Metrics The target value is the value of the input step response. The rise time is the time at which the waveform first reaches the target value. The overshoot is the amount by which the waveform exceeds the target value. The settling time is the time it takes for the system to settle into a particular bounded region. This bounded region is denoted with two short dotted lines above and below the target value.
40
6 System Modeling 6.1 The Control Process It is the job of a control engineer to analyze existing systems, and to design new systems to meet specific needs. Sometimes new systems need to be designed, but more frequently a controller unit needs to be designed to improve the performance of existing systems. When designing a system, or implementing a controller to augment an existing system, we need to follow some basic steps: 1. 2. 3. 4.
Model the system mathematically Analyze the mathematical model Design system/controller Implement system/controller and test
The vast majority of this book is going to be focused on (2), the analysis of the mathematical systems. This chapter alone will be devoted to a discussion of the mathematical modeling of the systems.
6.2 External Description An external description of a system relates the system input to the system output without explicitly taking into account the internal workings of the system. The external description of a system is sometimes also referred to as the Input-Output Description of the system, because it only deals with the inputs and the outputs to the system.
Figure 15 If the system can be represented by a mathematical function h(t, r), where t is the time that the output is observed, and r is the time that the input is applied. We can relate the system function h(t, r) to the input x and the output y through the use of an integral: General System Description
41
System Modeling
Z ∞
h(t, r)x(r)dr
y(t) = −∞
This integral form holds for all linear systems, and every linear system can be described by such an equation. If a system is causal, then there is no output of the system before time r, and we can change the limits of the integration: Z t
y(t) =
h(t, r)x(r)dr 0
6.2.1 Time-Invariant Systems If a system is time-invariant (and causal), we can rewrite the system description equation as follows: Z t
y(t) =
h(t − r)x(r)dr
0
This equation is known as the convolution integral, and we will discuss it more in the next chapter. Every Linear Time-Invariant (LTI) system can be used with the Laplace Transform, a powerful tool that allows us to convert an equation from the time domain into the S-Domain, where many calculations are easier. Time-variant systems cannot be used with the Laplace Transform.
6.3 Internal Description If a system is linear and lumped, it can also be described using a system of equations known as state-space equations. In state space equations, we use the variable x to represent the internal state of the system. We then use u as the system input, and we continue to use y as the system output. We can write the state space equations as such: x0 (t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t) We will discuss the state space equations more when we get to the section on modern controls.
42
Analysis
6.4 Complex Descriptions Systems which are LTI and Lumped can also be described using a combination of the state-space equations, and the Laplace Transform. If we take the Laplace Transform of the state equations that we listed above, we can get a set of functions known as the Transfer Matrix Functions. We will discuss these functions in a later chapter.
6.5 Representations To recap, we will prepare a table with the various system properties, and the available methods for describing the system: {| class="wikitable" |- !Properties !! State-Space Equations !! Laplace Transform !! Transfer Matrix |- |Linear, Time-Variant, Distributed || no || no || no |- |Linear, Time-Variant, Lumped || yes || no || no |- |Linear, Time-Invariant, Distributed || no || yes || no |- |Linear, Time-Invariant, Lumped || yes || yes || yes |} We will discuss all these different types of system representation later in the book.
6.6 Analysis Once a system is modeled using one of the representations listed above, the system needs to be analyzed. We can determine the system metrics and then we can compare those metrics to our specification. If our system meets the specifications we are finished with the design process. However if the system does not meet the specifications (as is typically the case), then suitable controllers and compensators need to be designed and added to the system. Once the controllers and compensators have been designed, the job isn't finished: we need to analyze the new composite system to ensure that the controllers work properly. Also, we need to ensure that the systems are stable: unstable systems can be dangerous.
6.6.1 Frequency Domain For proposals, early stage designs, and quick turn around analyses a frequency domain model is often superior to a time domain model. Frequency domain models take disturbance PSDs (Power Spectral Densities) directly, use transfer functions directly, and produce output or residual PSDs directly. The answer is a steady-state response. Oftentimes the controller is shooting for 0 so the steady-state response is also the residual error that will be the analysis output or metric for report. Table 1: Frequency Domain Model Inputs and Outputs Input Model Output PSD Transfer Function PSD
43
System Modeling Brief Overview of the Math Frequency domain modeling is a matter of determining the impulse response of a system to a random process.
Figure 16
Figure 1: Frequency Domain System
SY Y (ω) = G∗ (ω) G (ω) SXX = |G (ω)| SXX 1 where SXX (ω) is the one-sided input PSD in
magnitude2 Hz
G (ω) is the frequency response function of the system and SY Y (ω) is the one-sided output PSD or auto power spectral density function. The frequency response function, G (ω), is related to the impulse response function (transfer function) by g (τ ) =
1 2π
Z ∞
eiωt H (ω) dω
−∞
Note some texts will state that this is only valid for random processes which are stationary. Other texts suggest stationary and ergodic while still others state weakly stationary processes. Some texts do not distinguish between strictly stationary and weakly stationary. From practice, the rule thumb is if the PSD of the input process is the same from hour to hour and day to day then the input PSD can be used and the above equation is valid. Notes See a full explanation with example at ControlTheoryPro.com2
6.7 Modeling Examples Modeling in Control Systems is oftentimes a matter of judgement. This judgement is developed by creating models and learning from other people's models. ControlTheoryPro.com is a site with a lot of examples. Here are links to a few of them 1 2
44
Sun, Jian-Qiao (2006). Stochastic Dynamics and Control, Volume 4. Amsterdam: Elsevier Science. ISBN 0444522301. http://wikis.controltheorypro.com/index.php?title=Frequency_Domain_Modeling
Manufacture • Hovering Helicopter Example3 • Reaction Torque Cancellation Example4 • List of all examples at ControlTheoryPro.com5
6.8 Manufacture Once the system has been properly designed we can prototype our system and test it. Assuming our analysis was correct and our design is good, the prototype should work as expected. Now we can move on to manufacture and distribute our completed systems.
3 4 5
http://wikis.controltheorypro.com/index.php?title=Helicopter_Hover_Example http://wikis.controltheorypro.com/index.php?title=Reaction_Cancellation_Example http://wikis.controltheorypro.com/index.php?title=Category:Examples
45
7 Transforms 7.1 Transforms There are a number of transforms that we will be discussing throughout this book, and the reader is assumed to have at least a small prior knowledge of them. It is not the intention of this book to teach the topic of transforms to an audience that has had no previous exposure to them. However, we will include a brief refresher here to refamiliarize people who maybe cannot remember the topic perfectly. If you do not know what the Laplace Transform or the Fourier Transform are yet, it is highly recommended that you use this page as a simple guide, and look the information up on other sources. Specifically, Wikipedia1 has lots of information on these subjects.
7.1.1 Transform Basics A transform is a mathematical tool that converts an equation from one variable (or one set of variables) into a new variable (or a new set of variables). To do this, the transform must remove all instances of the first variable, the "Domain Variable", and add a new "Range Variable". Integrals are excellent choices for transforms, because the limits of the definite integral will be substituted into the domain variable, and all instances of that variable will be removed from the equation. An integral transform that converts from a domain variable a to a range variable b will typically be formatted as such: T [f (a)] = F (b) =
Z
f (a)g(a, b)da C
Where the function f(a) is the function being transformed, and g(a,b) is known as the kernel of the transform. Typically, the only difference between the various integral transforms is the kernel.
7.2 Laplace Transform w:Laplace transform2 This operation can be performed using this MATLAB command: laplace
1 2
http://en.wikipedia.org/wiki/ http://en.wikipedia.org/wiki/Laplace%20transform
47
Transforms The Laplace Transform converts an equation from the time-domain into the so-called "S-domain", or the Laplace domain, or even the "Complex domain". These are all different names for the same mathematical space and they all may be used interchangeably in this book and in other texts on the subject. The Transform can only be applied under the following conditions: 1. 2. 3. 4.
The The The The
system system system system
or or or or
signal signal signal signal
in in in in
question question question question
is is is is
analog. Linear. Time-Invariant. causal.
The transform is defined as such: Laplace Transform F (s) = L[f (t)] =
R∞ 0
f (t)e−st dt
Laplace transform results have been tabulated extensively. More information on the Laplace transform, including a transform table can be found in the Appendix3 . If we have a linear differential equation in the time domain: y(t) = ax(t) + bx0 (t) + cx00 (t) With zero initial conditions, we can take the Laplace transform of the equation as such: Y (s) = aX(s) + bsX(s) + cs2 X(s) And separating, we get: Y (s) = X(s)[a + bs + cs2 ]
7.2.1 Inverse Laplace Transform This operation can be performed using this MATLAB command: ilaplace The inverse Laplace Transform is defined as such: Inverse Laplace Transform f (t) = L−1 {F (s)} =
1 R c+i∞ st 2πi c−i∞ e F (s) ds
The inverse transform converts a function from the Laplace domain back into the time domain.
3
48
Chapter 40 on page 255
Laplace Transform
7.2.2 Matrices and Vectors The Laplace Transform can be used on systems of linear equations in an intuitive way. Let's say that we have a system of linear equations: y1 (t) = a1 x1 (t)
y2 (t) = a2 x2 (t) We can arrange these equations into matrix form, as shown: "
#
"
y1 (t) a 0 = 1 y2 (t) 0 a2
#"
#
x1 (t) x2 (t)
And write this symbolically as: y(t) = Ax(t) We can take the Laplace transform of both sides: L[y(t)] = Y(s) = L[Ax(t)] = AL[x(t)] = AX(s) Which is the same as taking the transform of each individual equation in the system of equations.
7.2.3 Example: RL Circuit For more information about electric circuits, see: Circuit Theory4 Here, we are going to show a common example of a first-order system, an RL Circuit. In an inductor, the relationship between the current (i), and the voltage (v) in the time domain is expressed as a derivative: v(t) = L
di(t) dt
Where L is a special quantity called the "Inductance" that is a property of inductors.
4
http://en.wikibooks.org/wiki/Circuit%20Theory
49
Transforms
Figure 17 Circuit diagram for the RL circuit example problem. VL is the voltage over the inductor, and is the quantity we are trying to find.
Let's say that we have a 1st order RL series electric circuit. The resistor has resistance R, the inductor has inductance L, and the voltage source has input voltage Vin . The system output of our circuit is the voltage over the inductor, Vout . In the time domain, we have the following first-order differential equations to describe the circuit: Vout (t) = VL (t) = L di(t) dt Vin (t) = Ri(t) + L di(t) dt However, since the circuit is essentially acting as a voltage divider, we can put the output in terms of the input as follows: Vout (t) =
di(t) dt di(t) Ri(t)+L dt
L
Vin (t)
This is a very complicated equation, and will be difficult to solve unless we employ the Laplace transform: Vout (s) =
Ls R+Ls Vin (s)
We can divide top and bottom by L, and move Vin to the other side: Vout Vin
=
s R +s L
And using a simple table look-up, we can solve this for the time-domain relationship between the circuit input and the circuit output: vout vin
50
=
d ( −Rt L ) u(t) dt e
Laplace Transform
7.2.4 Partial Fraction Expansion For more information about Partial Fraction Expansion, see: Calculus5 Laplace transform pairs are extensively tabulated, but frequently we have transfer functions and other equations that do not have a tabulated inverse transform. If our equation is a fraction, we can often utilize Partial Fraction Expansion (PFE) to create a set of simpler terms that will have readily available inverse transforms. This section is going to give a brief reminder about PFE, for those who have already learned the topic. This refresher will be in the form of several examples of the process, as it relates to the Laplace Transform. People who are unfamiliar with PFE are encouraged to read more about it in Calculus6 .
7.2.5 Example: Second-Order System If we have a given equation in the S-domain: F (s) =
2s+1 s2 +3s+2
We can expand it into several smaller fractions as such: F (s) =
2s+1 (s+1)(s+2)
=
A (s+1)
B + (s+2) =
A(s+2)+B(s+1) (s+1)(s+2)
This looks impossible, because we have a single equation with 3 unknowns (s, A, B), but in reality s can take any arbitrary value, and we can "plug in" values for s to solve for A and B, without needing other equations. For instance, in the above equation, we can multiply through by the denominator, and cancel terms: (2s + 1) = A(s + 2) + B(s + 1) Now, when we set s → -2, the A term disappears, and we are left with B → 3. When we set s → -1, we can solve for A → -1. Putting these values back into our original equation, we have: F (s) =
−1 (s+1)
3 + (s+2)
Remember, since the Laplace transform is a linear operator, the following relationship holds true: L[F (s)] = L
h
−1 (s+1)
i
3 + (s+2) =L
h
−1 s+1
i
+L
h
3 (s+2)
i
Finding the inverse transform of these smaller terms should be an easier process then finding the inverse transform of the whole function. Partial fraction expansion is a useful, and oftentimes necessary tool for finding the inverse of an S-domain equation.
7.2.6 Example: Fourth-Order System If we have a given equation in the S-domain:
5 6
http://en.wikibooks.org/wiki/Calculus http://en.wikibooks.org/wiki/Calculus
51
Transforms F (s) =
79s2 +916s+1000 s(s+10)3
We can expand it into several smaller fractions as such: F (s) =
A s
C D B + (s+10) 3 + (s+10)2 + s+10
F (s) =
A(s+10)3 +Bs+Cs(s+10)+Ds(s+10)2 s(s+10)3
A(s + 10)3 + Bs + Cs(s + 10) + Ds(s + 10)2 = 79s2 + 916s + 1000 Canceling terms wouldn't be enough here, we will open the brackets (separated onto multiple lines): As3 + 30As2 + 300As + 1000A + Bs+ Cs2 + 10Cs + Ds3 + 20Ds2 + 100Ds = 79s2 + 916s + 1000 Let's compare coefficients: A+D=0 30A + C + 20D = 79 300A + B + 10C + 100D = 916 1000A = 1000 And solving gives us: A=1 B = 26 C = 69 D = -1 We know from the Laplace Transform table that the following relation holds: 1 (s+α)n+1
→
tn −αt · u(t) n! e
We can plug in our values for A, B, C, and D into our expansion, and try to convert it into the form above. F (s) =
A s
B C D + (s+10) 3 + (s+10)2 + s+10
1 1 1 F (s) = A 1s + B (s+10) 3 + C (s+10)2 + D s+10 1 1 1 F (s) = 1 1s + 26 (s+10) 3 + 69 (s+10)2 − 1 s+10
f (t) = u(t) + 13t2 e−10t + 69te−10t − e−10t
7.2.7 Example: Complex Roots Given the following transfer function:
52
Laplace Transform F (s) =
7s+26 s2 −80s+1681
=
As+B s2 −80s+1681
When the solution of the denominator is a complex number, we use a complex representation A + iB, like 3+i4 as opposed to the use of a single letter (e.g. D) - which is for real numbers: As + B = 7s + 26 A=7 B = 26 We will need to reform it into two fractions that look like this (without changing its value): e−αt sin(ωt) · u(t) → (s+α)ω2 +ω2 s+α e−αt cos(ωt) · u(t) → (s+α) 2 +ω 2
Let's start with the denominator (for both fractions): The roots of s2 - 80s + 1681 are 40 + j9 and 40 - j9. As+B (s + a)2 + ω 2 = (s − 40)2 + 92 → (s−40) 2 +92
And now the numerators: As+40A−40A+B (s−40)2 +92 As−40A (s−40)2 +92
B+40A + (s−40) 2 +92
(s−40) B+40A 9 A (s−40) 2 +92 + 9 (s−40)2 +92
Inverse Laplace Transform: f (t) = 7e40t cos(9t) + 34e40t sin(9t)
7.2.8 Example: Sixth-Order System Given the following transfer function: F (s) =
90s2 −1110 s(s−3)(s2 −12s+37)
=
A s
B Cs+D + s−3 + s2 −12s+37
We multiply through by the denominators to make the equation rational: A(s − 3)(s2 − 12s + 37) + Bs(s2 − 12s + 37) + (Cs + D)s(s − 3) = 90s2 − 1110 And then we combine terms: As3 − 15As2 + 73As − 111A + Bs3 − 12Bs2 + 37Bs + Cs3 − 3Cs2 + Ds2 − 3Ds = 90s2 − 1110 Comparing coefficients: A+B+C=0 -15A - 12B - 3C + D = 90
53
Transforms 73A + 37B - 3D = 0 -111A = -1110 Now, we can solve for A, B, C and D: A = 10 B = -10 C=0 D = 120 And now for the "fitting": The roots of s2 - 12s + 37 are 6 + j and 6 - j 1 A 1s + B s−3 + C (s−6)s2 +12 + D (s−6)12 +12
No need to fit the fraction of D, because it is complete; no need to bother fitting the fraction of C, because C is equal to zero. 1 10 1s − 10 s−3 + 0 (s−6)s2 +12 + 120 (s−6)12 +12
f (t) = 10u(t) − 10e3t + 120e6t sin(t)
7.2.9 Final Value Theorem The Final Value Theorem allows us to determine the value of the time domain equation, as the time approaches infinity, from the S domain equation. In Control Engineering, the Final Value Theorem is used most frequently to determine the steady-state value of a system.The real part of the poles of the function must be 0, the exponential part of the response will decay towards zero. < 0, the exponential part of the response will rise towards infinity.
From the last two rules, we can see that all poles of the system must have negative real parts, and therefore they must all have the form (s + l) for the system to be stable. We will discuss stability in later chapters.
11.3 What are Poles and Zeros Let's say we have a transfer function defined as a ratio of two polynomials: H(s) =
N (s) D(s)
Where N(s) and D(s) are simple polynomials. Zeros are the roots of N(s) (the numerator of the transfer function) obtained by setting N(s) = 0 and solving for s. The polynomial order of a function is the value of the highest exponent in the polynomial. Poles are the roots of D(s) (the denominator of the transfer function), obtained by setting D(s) = 0 and solving for s. Because of our restriction above, that a transfer function must not have more zeros than poles, we can state that the polynomial order of D(s) must be greater than or equal to the polynomial order of N(s).
11.3.1 Example Consider the transfer function: H(s) =
s+2 s2 +0.25
We define N(s) and D(s) to be the numerator and denominator polynomials, as such: N (s) = s + 2 D(s) = s2 + 0.25 We set N(s) to zero, and solve for s:
88
Effects of Poles and Zeros N (s) = s + 2 = 0 → s = −2 So we have a zero at s → -2. Now, we set D(s) to zero, and solve for s to obtain the poles of the equation: √ √ D(s) = s2 + 0.25 = 0 → s = +i 0.25, −i 0.25 And simplifying this gives us poles at: -i/2 , +i/2. Remember, s is a complex variable, and it can therefore take imaginary and real values.
11.4 Effects of Poles and Zeros As s approaches a zero, the numerator of the transfer function (and therefore the transfer function itself) approaches the value 0. When s approaches a pole, the denominator of the transfer function approaches zero, and the value of the transfer function approaches infinity. An output value of infinity should raise an alarm bell for people who are familiar with BIBO stability. We will discuss this later. As we have seen above, the locations of the poles, and the values of the real and imaginary parts of the pole determine the response of the system. Real parts correspond to exponentials, and imaginary parts correspond to sinusoidal values.
11.5 Second-Order Systems The canonical form for a second order system is as follows: Second-order transfer function
H(s) =
ω2 s2 + 2ζωs + ω 2
Where ζ is called the damping ratio of the function, and ω is called the natural frequency of the system. ζ and ω, if exactly known for a second order system, the time responses can be easily plotted and stability can easily be checked. More information on second order systems can be found here2 .
11.5.1 Damping Ratio The damping ratio of a second-order system, denoted with the Greek letter zeta (ζ), is a real number that defines the damping properties of the system. More damping has the effect of less percent overshoot, and slower settling time. Damping is the inherent ability of the system to oppose the oscillatory nature of the system's transient response. Larger values of damping coefficient or damping factor produces transient responses with lesser oscillatory nature.
2
http://wikis.controltheorypro.com/index.php?title=Second_Order_Systems
89
Poles and Zeros
11.5.2 Natural Frequency The natural frequency is occasionally written with a subscript: ω → ωn We will omit the subscript when it is clear that we are talking about the natural frequency, but we will include the subscript when we are using other values for the variable ω. Also, ω = ωn when ζ = 0.
11.6 Higher-Order Systems
90
12 State-Space Equations 12.1 Time-Domain Approach The "Classical" method of controls (what we have been studying so far) has been based mostly in the transform domain. When we want to control the system in general we use the Laplace transform (Z-Transform for digital systems) to represent the system, and when we want to examine the frequency characteristics of a system, we use the Fourier Transform. The question arises, why do we do this? Let's look at a basic second-order Laplace Transform transfer function: Y (s) 1+s = G(s) = X(s) 1 + 2s + 5s2 And we can decompose this equation in terms of the system inputs and outputs: (1 + 2s + 5s2 )Y (s) = (1 + s)X(s) Now, when we take the inverse Laplace transform of our equation, we can see that:
y(t) + 2
dy(t) d2 y(t) dx(t) +5 = x(t) + dt dt2 dt
The Laplace transform is transforming the fact that we are dealing with second-order differential equation. The Laplace transform moves a system out of the time-domain into the complex frequency domain, to study and manipulate our systems as algebraic polynomials instead of linear ODEs. Given the complexity of differential equations, why would we ever want to work in the time domain? It turns out that to decompose our higher-order differential equations into multiple first-order equations, one can find a new method for easily manipulating the system without having to use integral transforms. The solution to this problem is state variables . By taking our multiple first-order differential equations, and analyzing them in vector form, we can not only do the same things we were doing in the time domain using simple matrix algebra, but now we can easily account for systems with multiple inputs and multiple outputs, without adding much unnecessary complexity. This demonstrates why the "modern" state-space approach to controls has become popular.
91
State-Space Equations
12.2 State-Space w:State space (controls)1 In a state space system, the internal state of the system is explicitly accounted for by an equation known as the state equation. The system output is given in terms of a combination of the current system state, and the current system input, through the output equation. These two equations form a system of equations known collectively as statespace equations. The state-space is the vector space that consists of all the possible internal states of the system. Because the state-space must be finite, a system can only be described by state-space equations if the system is lumped. For a system to be modeled using the state-space method, the system must meet this requirement: 1. The system must be lumped This text mostly considers linear state space systems, where the state and output equations satisfy the superposition principle and the state space is linear. However, the state-space approach is equally valid for nonlinear systems although some specific methods are not applicable to nonlinear systems. State Central to the state-space notation is the idea of a state. A state of a system is the current value of internal elements of the system, that change separately (but not completely unrelated) to the output of the system. In essence, the state of a system is an explicit account of the values of the internal system components. Here are some examples: Consider an electric circuit with both an input and an output terminal. This circuit may contain any number of inductors and capacitors. The state variables may represent the magnetic and electric fields of the inductors and capacitors, respectively. Consider a spring-mass-dashpot system. The state variables may represent the compression of the spring, or the acceleration at the dashpot. Consider a chemical reaction where certain reagents are poured into a mixing container, and the output is the amount of the chemical product produced over time. The state variables may represent the amounts of un-reacted chemicals in the container, or other properties such as the quantity of thermal energy in the container (that can serve to facilitate the reaction).
12.3 State Variables When modeling a system using a state-space equation, we first need to define three vectors: Input variables
1
92
http://en.wikipedia.org/wiki/State%20space%20%28controls%29
Multi-Input, Multi-Output A SISO (Single Input Single Output) system will only have a single input value, but a MIMO system may have multiple inputs. We need to define all the inputs to the system, and we need to arrange them into a vector. Output variables This is the system output value, and in the case of MIMO systems, we may have several. Output variables should be independent of one another, and only dependent on a linear combination of the input vector and the state vector. State Variables The state variables represent values from inside the system, that can change over time. In an electric circuit, for instance, the node voltages or the mesh currents can be state variables. In a mechanical system, the forces applied by springs, gravity, and dashpots can be state variables. We denote the input variables with u, the output variables with y, and the state variables with x. In essence, we have the following relationship: y = f (x, u) Where f(x, u) is our system. Also, the state variables can change with respect to the current state and the system input: x0 = g(x, u) Where x' is the rate of change of the state variables. We will define f(u, x) and g(u, x) in the next chapter.
12.4 Multi-Input, Multi-Output In the Laplace domain, if we want to account for systems with multiple inputs and multiple outputs, we are going to need to rely on the principle of superposition to create a system of simultaneous Laplace equations for each output and each input. For such systems, the classical approach not only doesn't simplify the situation, but because the systems of equations need to be transformed into the frequency domain first, manipulated, and then transformed back into the time domain, they can actually be more difficult to work with. However, the Laplace domain technique can be combined with the State-Space techniques discussed in the next few chapters to bring out the best features of both techniques. We will discuss MIMO systems in the MIMO Systems Chapter2 .
2
Chapter 17 on page 133
93
State-Space Equations
12.5 State-Space Equations In a state-space system representation, we have a system of two equations: an equation for determining the state of the system, and another equation for determining the output of the system. We will use the variable y(t) as the output of the system, x(t) as the state of the system, and u(t) as the input of the system. We use the notation x'(t) (note the prime) for the first derivative of the state vector of the system, as dependent on the current state of the system and the current input. Symbolically, we say that there are transforms g and h, that display this relationship: x0 (t) = g[t0 , t, x(t), x(0), u(t)]
y(t) = h[t, x(t), u(t)] Note: If x'(t) and y(t) are not linear combinations of x(t) and u(t), the system is said to be nonlinear. We will attempt to discuss non-linear systems in a later chapter. The first equation shows that the system state change is dependent on the previous system state, the initial state of the system, the time, and the system inputs. The second equation shows that the system output is dependent on the current system state, the system input, and the current time. If the system state change x'(t) and the system output y(t) are linear combinations of the system state and input vectors, then we can say the systems are linear systems, and we can rewrite them in matrix form: State Equation x0 = A(t)x(t) + B(t)u(t) Output Equation y(t) = C(t)x(t) + D(t)u(t) If the systems themselves are time-invariant, we can re-write this as follows: x0 = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) The State Equation shows the relationship between the system's current state and its input, and the future state of the system. The Output Equation shows the relationship between the system state and its input, and the output. These equations show that in a
94
State-Space Equations given system, the current output is dependent on the current input and the current state. The future state is also dependent on the current state and the current input. It is important to note at this point that the state space equations of a particular system are not unique, and there are an infinite number of ways to represent these equations by manipulating the A, B, C and D matrices using row operations. There are a number of "standard forms" for these matrices, however, that make certain computations easier. Converting between these forms will require knowledge of linear algebra. ;State-Space Basis Theorem:Any system that can be described by a finite number of nth order differential equations or nth order difference equations, or any system that can be approximated by them, can be described using state-space equations. The general solutions to the state-space equations, therefore, are solutions to all such sets of equations.
12.5.1 Matrices: A B C D Our system has the form: x0 (t) = g[t0 , t, x(t), x(0), u(t)]
y(t) = h[t, x(t), u(t)] We've bolded several quantities to try and reinforce the fact that they can be vectors, not just scalar quantities. If these systems are time-invariant, we can simplify them by removing the time variables: x0 (t) = g[x(t), x(0), u(t)]
y(t) = h[x(t), u(t)] Now, if we take the partial derivatives of these functions with respect to the input and the state vector at time t0 , we get our system matrices: A = gx [x(0), x(0), u(0)]
B = gu [x(0), x(0), u(0)]
C = hx [x(0), u(0)]
D = hu [x(0), u(0)]
95
State-Space Equations In our time-invariant state space equations, we write these matrices and their relationships as: x0 (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) We have four constant matrices: A, B, C, and D. We will explain these matrices below: Matrix A Matrix A is the system matrix, and relates how the current state affects the state change x' . If the state change is not dependent on the current state, A will be the zero matrix. The exponential of the state matrix, eAt is called the state transition matrix, and is an important function that we will describe below. Matrix B Matrix B is the control matrix, and determines how the system input affects the state change. If the state change is not dependent on the system input, then B will be the zero matrix. Matrix C Matrix C is the output matrix, and determines the relationship between the system state and the system output. Matrix D Matrix D is the feed-forward matrix, and allows for the system input to affect the system output directly. A basic feedback system like those we have previously considered do not have a feed-forward element, and therefore for most of the systems we have already considered, the D matrix is the zero matrix.
12.5.2 Matrix Dimensions Because we are adding and multiplying multiple matrices and vectors together, we need to be absolutely certain that the matrices have compatible dimensions, or else the equations will be undefined. For integer values p, q, and r, the dimensions of the system matrices and vectors are defined as follows: {| class="wikitable" !Vectors || Matrices |- | • • • • |
96
x : p×1 x0 : p × 1 u : q×1 y : r×1
Obtaining the State-Space Equations • • • •
A : p×p B : p×q C : r×p D : r×q
|} Matrix Dimensions: A: p × p B: p × q C: r × p D: r × q
If the matrix and vector dimensions do not agree with one another, the equations are invalid and the results will be meaningless. Matrices and vectors must have compatible dimensions or they cannot be combined using matrix operations. For the rest of the book, we will be using the small template on the right as a reminder about the matrix dimensions, so that we can keep a constant notation throughout the book.
12.5.3 Notational Shorthand The state equations and the output equations of systems can be expressed in terms of matrices A, B, C, and D. Because the form of these equations is always the same, we can use an ordered quadruplet to denote a system. We can use the shorthand (A, B, C, D) to denote a complete state-space representation. Also, because the state equation is very important for our later analyis, we can write an ordered pair (A, B) to refer to the state equation: (A, B) → x0 = Ax + Bu (
(A, B, C, D) →
x0 = Ax + Bu y = Cx + Du
12.6 Obtaining the State-Space Equations The beauty of state equations, is that they can be used to transparently describe systems that are both continuous and discrete in nature. Some texts will differentiate notation between discrete and continuous cases, but this text will not make such a distinction. Instead we will opt to use the generic coefficient matrices A, B, C and D for both continuous and discrete systems. Occasionally this book may employ the subscript C to denote a continuous-time version of the matrix, and the subscript D to denote the discrete-time version of the same matrix. Other texts may use the letters F, H, and G for continuous systems and Γ, and Θ for use in discrete systems. However, if we keep track of our time-domain system, we don't need to worry about such notations.
97
State-Space Equations
12.6.1 From Differential Equations Let's say that we have a general 3rd order differential equation in terms of input u(t) and output y(t): 2
d3 y(t) dt3
dy(t) + a2 d dty(t) 2 + a1 dt + a0 y(t) = u(t)
We can create the state variable vector x in the following manner: x1 = y(t) x2 =
dy(t) dt
x3 =
d2 y(t) dt2
Which now leaves us with the following 3 first-order equations: x01 = x2 x02 = x3 x03 =
d3 y(t) dt3
Now, we can define the state vector x in terms of the individual x components, and we can create the future state vector as well:
x1 x01 0 0 x = x2 , x = x2 x3 x03 And with that, we can assemble the state-space equations for the system:
0 1 0 0 0 0 1 x(t) + 0 u(t) x = 0 −a0 −a1 −a2 1 h
i
y(t) = 1 0 0 x(t) Granted, this is only a simple example, but the method should become apparent to most readers.
12.6.2 From Transfer Functions The method of obtaining the state-space equations from the Laplace domain transfer functions are very similar to the method of obtaining them from the time-domain differential equations. We call the process of converting a system description from the Laplace domain to the state-space domain realization. We will discuss realization in more detail in a later chapter. In general, let's say that we have a transfer function of the form:
T (s) =
sm + am−1 sm−1 + · · · + a0 sn + bn−1 sn−1 + · · · + b0
We can write our A, B, C, and D matrices as follows:
98
State-Space Representation {|class="wikitable"
0 0 .. .
|- |A = 0
1 0 .. .
··· ··· .. .
0 1 .. .
0 0 −b0 −b1 −b2
0 0 .. .
··· 1 · · · −bn−1
0 h 0 |- |B = . |- |C = a0 . .
i
a1 · · · am−1 |- |D = 0 |}
1
This form of the equations is known as the controllable canonical form of the system matrices, and we will discuss this later. Notice that to perform this method, the denominator and numerator polynomials must be monic, the coefficients of the highest-order term must be 1. If the coefficient of the highest order term is not 1, you must divide your equation by that coefficient to make it 1.
12.7 State-Space Representation As an important note, remember that the state variables x are user-defined and therefore are arbitrary. There are any number of ways to define x for a particular problem, each of which are going to lead to different state space equations. Note: There are an infinite number of equivalent ways to represent a system using statespace equations. Some ways are better than others. Once the state-space equations are obtained, they can be manipulated to take a particular form if needed. Consider the previous continuous-time example. We can rewrite the equation in the form #
"
d d2 y(t) dy(t) + a2 + a1 y(t) + a0 y(t) = u(t) 2 dt dt dt We now define the state variables x1 = y(t) x2 = x3 =
dy(t) dt
d2 y(t) dy(t) + a2 + a1 y(t) 2 dt dt
with first-order derivatives x01 = x02 =
dy(t) = x2 dt
d2 y(t) = −a1 x1 − a2 x2 + x3 dt2
99
State-Space Equations
x03 = −a0 y(t) + u(t) The state-space equations for the system will then be given by
0 0 1 0 0 x = −a1 −a2 1 x(t) + 0 u(t) 1 −a0 0 0 h
i
y(t) = 1 0 0 x(t) x may also be used in any number of variable transformations, as a matter of mathematical convenience. However, the variables y and u correspond to physical signals, and may not be arbitrarily selected, redefined, or transformed as x can be.
12.7.1 Example: Dummy Variables The attitude control of a particular manned aircraft can be given by: θ00 (t) = α + δ Where α is the direction the aircraft is traveling in, θ is the direction the aircraft is facing (the attitude), and δ is the angle of the ailerons (the control input from the pilot). This equation is not in a proper format, so we need to produce some dummy-variables: θ1 = θ θ10 = θ2 θ20 = α + δ This in turn will provide us with our state equation: " #0
θ1 θ2
"
0 1 = 0 0
#" #
"
θ1 0 0 + θ2 1 1
#" #
α δ
As we can see from this equation, even though we have a valid state-equation, the variables θ1 and θ2 don't necessarily correspond to any measurable physical event, but are instead dummy variables constructed by the user to help define the system. Note, however, that the variables α and δ do correspond to physical values, and cannot be changed.
12.8 Discretization If we have a system (A, B, C, D) that is defined in continuous time, we can discretize the system so that an equivalent process can be performed using a digital computer. We can use the definition of the derivative, as such: x(t + T ) − x(t) T →0 T
x0 (t) = lim
100
Note on Notations And substituting this into the state equation with some approximation (and ignoring the limit for now) gives us: x(t + T ) − x(t) = Ax(t) + Bu(t) T →0 T lim
x(t + T ) = x(t) + Ax(t)T + Bu(t)T x(t + T ) = (1 + AT )x(t) + (BT )u(t) We are able to remove that limit because in a discrete system, the time interval between samples is positive and non-negligible. By definition, a discrete system is only defined at certain time points, and not at all time points as the limit would have indicated. In a discrete system, we are interested only in the value of the system at discrete points. If those points are evenly spaced by every T seconds (the sampling time), then the samples of the system occur at t = kT, where k is an integer. Substituting kT for t into our equation above gives us: x(kT + T ) = (1 + AT )x(kT ) + T Bu(kT ) Or, using the square-bracket shorthand that we've developed earlier, we can write: x[k + 1] = (1 + AT )x[k] + T Bu[k] In this form, the state-space system can be implemented quite easily into a digital computer system using software, not complicated analog hardware. We will discuss this relationship and digital systems more specifically in a later chapter. We will write out the discrete-time state-space equations as: x[n + 1] = Ad x[n] + Bd u[n]
y[n] = Cd x[n] + Dd u[n]
12.9 Note on Notations The variable T is a common variable in control systems, especially when talking about the beginning and end points of a continuous-time system, or when discussing the sampling time of a digital system. However, another common use of the letter T is to signify the transpose operation on a matrix. To alleviate this ambiguity, we will denote the transpose of a matrix with a prime: AT → A0
101
State-Space Equations Where A' is the transpose of matrix A. The prime notation is also frequently used to denote the time-derivative. Most of the matrices that we will be talking about are time-invariant; there is no ambiguity because we will never take the time derivative of a time-invariant matrix. However, for a time-variant matrix we will use the following notations to distinguish between the time-derivative and the transpose: A(t)0 the transpose. A0 (t) the time-derivative. Note that certain variables which are time-variant are not written with the (t) postscript, such as the variables x, y, and u. For these variables, the default behavior of the prime is the time-derivative, such as in the state equation. If the transpose needs to be taken of one of these vectors, the (t)' postfix will be added explicitly to correspond to our notation above. For instances where we need to use the Hermitian transpose, we will use the notation: AH This notation is common in other literature, and raises no obvious ambiguities here.
12.10 MATLAB Representation This operation can be performed using this MATLAB command: ss State-space systems can be represented in MATLAB using the 4 system matrices, A, B, C, and D. We can create a system data structure using the ss function: sys = ss(A, B, C, D); Systems created in this way can be manipulated in the same way that the transfer function descriptions (described earlier) can be manipulated. To convert a transfer function to a state-space representation, we can use the tf2ss function: [A, B, C, D] = tf2ss(num, den); And to perform the opposite operation, we can use the ss2tf function: [num, den] = ss2tf(A, B, C, D); he:הרקבה תרות/בצמ ינתשמ3
3
102
http://he.wikibooks.org/wiki/%05%EA%05%D5%05%E8%05%EA%20%05%D4%05%D1%05%E7%05%E8%05% D4%2F%05%DE%05%E9%05%EA%05%E0%05%D9%20%05%DE%05%E6%05%D1
13 Solutions for Linear Systems 13.1 State Equation Solutions The solutions in this chapter are heavily rooted in prior knowledge of Ordinary Differential Equations1 . Readers should have a prior knowledge of that subject before reading this chapter. The state equation is a first-order linear differential equation, or (more precisely) a system of linear differential equations. Because this is a first-order equation, we can use results from Ordinary Differential Equations2 to find a general solution to the equation in terms of the state-variable x. Once the state equation has been solved for x, that solution can be plugged into the output equation. The resulting equation will show the direct relationship between the system input and the system output, without the need to account explicitly for the internal state of the system. The sections in this chapter will discuss the solutions to the state-space equations, starting with the easiest case (Time-invariant, no input), and ending with the most difficult case (Time-variant systems).
13.2 Solving for x(t) With Zero Input Looking again at the state equation: x0 = Ax(t) + Bu(t) We can see that this equation is a first-order differential equation, except that the variables are vectors, and the coefficients are matrices. However, because of the rules of matrix calculus, these distinctions don't matter. We can ignore the input term (for now), and rewrite this equation in the following form: dx(t) = Ax(t) dt And we can separate out the variables as such: dx(t) = Adt x(t)
1 2
http://en.wikibooks.org/wiki/Ordinary%20Differential%20Equations http://en.wikibooks.org/wiki/Ordinary%20Differential%20Equations
103
Solutions for Linear Systems Integrating both sides, and raising both sides to a power of e, we obtain the result: x(t) = eAt+C Where C is a constant. We can assign D = eC to make the equation easier, but we also know that D will then be the initial conditions of the system. This becomes obvious if we plug the value zero into the variable t. The final solution to this equation then is given as: x(t) = eA(t−t0 ) x(t0 ) We call the matrix exponential eAt the state-transition matrix, and calculating it, while difficult at times, is crucial to analyzing and manipulating systems. We will talk more about calculating the matrix exponential below.
13.3 Solving for x(t) With Non-Zero Input If, however, our input is non-zero (as is generally the case with any interesting system), our solution is a little bit more complicated. Notice that now that we have our input term in the equation, we will no longer be able to separate the variables and integrate both sides easily. x0 (t) = Ax(t) + Bu(t) We subtract to get the Ax(t) on the left side, and then we do something curious; we premultiply both sides by the inverse state transition matrix: e−At x0 (t) − e−At Ax(t) = e−At Bu(t) The rationale for this last step may seem fuzzy at best, so we will illustrate the point with an example:
13.3.1 Example Take the derivative of the following with respect to time: e−At x(t) The product rule from differentiation reminds us that if we have two functions multiplied together: f (t)g(t) and we differentiate with respect to t, then the result is: f (t)g 0 (t) + f 0 (t)g(t) If we set our functions accordingly:
104
State-Transition Matrix f (t) = e−At g(t) = x(t)
f 0 (t) = −Ae−At g 0 (t) = x0 (t)
Then the output result is: e−At x0 (t) − e−At Ax(t) If we look at this result, it is the same as from our equation above. Using the result from our example, we can condense the left side of our equation into a derivative: d(e−At x(t)) = e−At Bu(t) dt Now we can integrate both sides, from the initial time (t0 ) to the current time (t), using a dummy variable τ , we will get closer to our result. Finally, if we premultiply by eAt , we get our final result: General State Equation Solution x(t) = eA(t−t0 ) x(t0 ) +
Z t
eA(t−τ ) Bu(τ )dτ
t0
If we plug this solution into the output equation, we get: General Output Equation Solution A(t−t0 )
y(t) = Ce
Z t
x(t0 ) + C
eA(t−τ ) Bu(τ )dτ + Du(t)
t0
This is the general Time-Invariant solution to the state space equations, with non-zero input. These equations are important results, and students who are interested in a further study of control systems would do well to memorize these equations.
13.4 State-Transition Matrix More information about matrix exponentials can be found in: Engineering Analysis3 The state transition matrix, eAt , is an important part of the general state-space solutions for the time-invariant cases listed above. Calculating this matrix exponential function is one of the very first things that should be done when analyzing a new system, and the results of that calculation will tell important information about the system in question. The matrix exponential can be calculated directly by using a Taylor-Series expansion:
3
http://en.wikibooks.org/wiki/Engineering%20Analysis
105
Solutions for Linear Systems
eAt =
∞ X (At)n n=0
n!
More information about diagonal matrices and Jordan-form matrices can be found in: Engineering Analysis4 Also, we can attempt to diagonalize the matrix A into a diagonal matrix or a Jordan Canonical matrix. The exponential of a diagonal matrix is simply the diagonal elements individually raised to that exponential. The exponential of a Jordan canonical matrix is slightly more complicated, but there is a useful pattern that can be exploited to find the solution quickly. Interested readers should read the relevant passages in Engineering Analysis5 . The state transition matrix, and matrix exponentials in general are very important tools in control engineering.
13.4.1 Diagonal Matrices If a matrix is diagonal, the state transition matrix can be calculated by raising each diagonal entry of the matrix raised as a power of e.
13.4.2 Jordan Canonical Form If the A matrix is in the Jordan Canonical form, then the matrix exponential can be generated quickly using the following formula:
1 t 0 1 eJt = eλt .. .. . . 0 0
1 2 2! t
t .. . 0
··· ··· .. . ···
1 n n! t 1 n−1 (n−1)! t
.. . 1
Where λ is the eigenvalue (the value on the diagonal) of the jordan-canonical matrix.
13.4.3 Inverse Laplace Method We can calculate the state-transition matrix (or any matrix exponential function) by taking the following inverse Laplace transform: eAt = L−1 [(sI − A)−1 ]
4 5
106
http://en.wikibooks.org/wiki/Engineering%20Analysis http://en.wikibooks.org/wiki/Engineering%20Analysis
State-Transition Matrix If A is a high-order matrix, this inverse can be difficult to solve. If the A matrix is in the Jordan Canonical form, then the matrix exponential can be generated quickly using the following formula:
1 t 0 1 eJt = eλt .. .. . . 0 0
1 2 2! t
··· ··· .. . ···
t .. . 0
1 n n! t 1 n−1 (n−1)! t
.. . 1
Where λ is the eigenvalue (the value on the diagonal) of the jordan-canonical matrix.
13.4.4 Spectral Decomposition If we know all the eigenvalues of A, we can create our transition matrix T, and our inverse transition matrix T-1 These matrices will be the matrices of the right and left eigenvectors, respectively. If we have both the left and the right eigenvectors, we can calculate the state-transition matrix as: Spectral Decomposition eAt =
n X
eλi t vi wi0
i=1
Note that wi ' is the transpose of the ith left-eigenvector, not the derivative of it. We will discuss the concepts of "eigenvalues", "eigenvectors", and the technique of spectral decomposition in more detail in a later chapter.
13.4.5 Cayley-Hamilton Theorem For more information on the Cayley-Hamilton Theorem, see: Engineering Analysis6 The Cayley-Hamilton Theorem can also be used to find a solution for a matrix exponential. For any eigenvalue of the system matrix A, λ, we can show that the two equations are equivalent: eλt = a0 + a1 λt + a2 λ2 t2 + · · · + an−1 λn−1 tn−1 Once we solve for the coefficients of the equation, a, we can then plug those coefficients into the following equation: eAt = a0 I + a1 At + a2 A2 t2 + · · · + an−1 An−1 tn−1
6
http://en.wikibooks.org/wiki/Engineering%20Analysis
107
Solutions for Linear Systems
13.4.6 Example: Off-Diagonal Matrix Given the following matrix A, find the state-transition matrix: "
0 1 A= −1 0
#
We can find the eigenvalues of this matrix as λ = i, -i. If we plug these values into our eigenvector equation, we get: i −1 v = 0 1 i 1 −i −1 v = 0 1 −i 2
And we can solve for our eigenvectors: " #
1 i
v1 =
"
1 v2 = −i
#
With our eigenvectors, we can solve for our left-eigenvectors: "
1 w1 = −i
#
" #
w2 =
1 i
Now, using spectral decomposition, we can construct the state-transition matrix: " #
eAt
=
eit
"
#
i i 1 h 1 h 1 −i + e−it 1 i −i i
If we remember Euler's Identity, we can decompose the complex exponentials into sinusoids. Performing the vector multiplications, all the imaginary terms cancel out, and we are left with our result: "
eAt
#
cos t sin t = − sin t cos t
The reader is encouraged to perform the multiplications, and attempt to derive this result.
13.4.7 Example: MATLAB Calculation Using the symbolic toolbox in MATLAB, we can write MATLAB code to automatically generate the state-transition matrix for a given input matrix A. Here is an example of MATLAB code that can perform this task:
108
State-Transition Matrix function [phi] = statetrans(A) t = sym('t'); phi = expm(A * t); end Use this MATLAB function to find the state-transition matrix for the following matrices (warning, calculation may take some time): "
2 0 1. A1 = 0 2
#
"
0 1 2. A2 = −1 0 "
#
#
2 1 3. A3 = 0 2 Matrix 1 is a diagonal matrix, Matrix 2 has complex eigenvalues, and Matrix 3 is Jordan canonical form. These three matrices should be representative of some of the common forms of system matrices. The following code snippets are the input commands into MATLAB to produce these matrices, and the output results: Matrix A1 >> A1 = [2 0 ; 0 2]; >> statetrans(A1) ans = [ exp(2*t), 0] [ 0, exp(2*t)] Matrix A2 >> A2 = [0 1 ; -1 0]; >> statetrans(A1) ans = [ cos(t), sin(t)] [ -sin(t), cos(t)] Matrix A3 >> A1 = [2 1 ; 0 2]; >> statetrans(A1) ans = [ exp(2*t), t*exp(2*t)] [ 0, exp(2*t)]
13.4.8 Example: Multiple Methods in MATLAB There are multiple methods in MATLAB to compute the state transtion matrix, from a scalar (time-invariant) matrix A. The following methods are all going to rely on the Symbolic Toolbox to perform the equation manipulations. At the end of each code snippet, the variable eAt contains the state-transition matrix of matrix A. Direct Method t = sym('t'); eAt = expm(A * t); Laplace Transform Method
109
Solutions for Linear Systems s = sym('s'); [n,n] = size(A); in = inv(s*eye(n) - A); eAt = ilaplace(in); Spectral Decomposition t = sym('t'); [n,n] = size(A); [V, e] = eig(A); W = inv(V); sum = [0 0;0 0]; for I = 1:n sum = sum + expm(e(I,I)*t)*V(:,I)*W(I,:); end; eAt = sum; All three of these methods should produce the same answers. The student is encouraged to verify this. he:הרקבה תרות/ןמזב העובק תכרעמ רובע בצמה תאוושמ ןורתפ7
7
110
http://he.wikibooks.org/wiki/%05%EA%05%D5%05%E8%05%EA%20%05%D4%05%D1%05%E7%05%E8%05% D4%2F%05%E4%05%EA%05%E8%05%D5%05%DF%20%05%DE%05%E9%05%D5%05%D5%05%D0%05%EA%20%05%D4% 05%DE%05%E6%05%D1%20%05%E2%05%D1%05%D5%05%E8%20%05%DE%05%E2%05%E8%05%DB%05%EA%20%05% E7%05%D1%05%D5%05%E2%05%D4%20%05%D1%05%D6%05%DE%05%DF
14 Time-Variant System Solutions 14.1 General Time Variant Solution The state-space equations can be solved for time-variant systems, but the solution is significantly more complicated than the time-invariant case. Our time-variant state equation is given as follows: x0 (t) = A(t)x(t) + B(t)u(t) We can say that the general solution to time-variant state-equation is defined as: Time-Variant General Solution Z t
x(t) = φ(t, t0 )x(t0 ) +
φ(t, τ )B(τ )u(τ )dτ t0
Matrix Dimensions: A: p × p B: p × q C: r × p D: r × q
The function ϕ is called the state-transition matrix, because it (like the matrix exponential from the time-invariant case) controls the change for states in the state equation. However, unlike the time-invariant case, we cannot define this as a simple exponential. In fact, ϕ can't be defined in general, because it will actually be a different function for every system. However, the state-transition matrix does follow some basic properties that we can use to determine the state-transition matrix. In a time-variant system, the general solution is obtained when the state-transition matrix is determined. For that reason, the first thing (and the most important thing) that we need to do here is find that matrix. We will discuss the solution to that matrix below.
14.1.1 State Transition Matrix Note: The state transition matrix ϕ is a matrix function of two variables (we will say t and τ ). Once the form of the matrix is solved, we will plug in the initial time, t0 in place of the variable τ . Because of the nature of this matrix, and the properties that it must satisfy,
111
Time-Variant System Solutions this matrix typically is composed of exponential or sinusoidal functions. The exact form of the state-transition matrix is dependant on the system itself, and the form of the system's differential equation. There is no single "template solution" for this matrix. The state transition matrix ϕ is not completely unknown, it must always satisfy the following relationships: ∂φ(t, t0 ) = A(t)φ(t, t0 ) ∂t φ(τ, τ ) = I And ϕ also must have the following properties: {| class="wikitable" |- |1.||φ(t2 , t1 )φ(t1 , t0 ) = φ(t2 , t0 ) |- |2.||φ−1 (t, τ ) = φ(τ, t) |- |3.||φ−1 (t, τ )φ(t, τ ) = I ||4.|| dφ(tdt0 ,t0 ) = A(t) |} If the system is time-invariant, we can define ϕ as: φ(t, t0 ) = eA(t−t0 ) The reader can verify that this solution for a time-invariant system satisfies all the properties listed above. However, in the time-variant case, there are many different functions that may satisfy these requirements, and the solution is dependant on the structure of the system. The state-transition matrix must be determined before analysis on the time-varying solution can continue. We will discuss some of the methods for determining this matrix below.
14.2 Time-Variant, Zero Input As the most basic case, we will consider the case of a system with zero input. If the system has no input, then the state equation is given as: x0 (t) = A(t)x(t) And we are interested in the response of this system in the time interval T = (a, b). The first thing we want to do in this case is find a fundamental matrix of the above equation. The fundamental matrix is related
14.2.1 Fundamental Matrix Here, x is an n × 1 vector, and A is an n × n matrix. Given the equation:
112
Time-Variant, Zero Input
x0 (t) = A(t)x(t) The solutions to this equation form an n-dimensional vector space in the interval T = (a, b). Any set of n linearly-independent solutions {x1 , x2 , ..., xn } to the equation above is called a fundamental set of solutions. Readers who have a background in Linear Algebra1 may recognize that the fundamental set is a basis set for the solution space. Any basis set that spans the entire solution space is a valid fundamental set. A fundamental matrix is formed by creating a matrix out of the n fundamental vectors. We will denote the fundamental matrix with a script capital X: h
X = x1 x2 · · · xn
i
The fundamental matrix will satisfy the state equation: X 0 (t) = A(t)X (t) Also, any matrix that solves this equation can be a fundamental matrix if and only if the determinant of the matrix is non-zero for all time t in the interval T. The determinant must be non-zero, because we are going to use the inverse of the fundamental matrix to solve for the state-transition matrix.
14.2.2 State Transition Matrix Once we have the fundamental matrix of a system, we can use it to find the state transition matrix of the system: φ(t, t0 ) = X (t)X −1 (t0 ) The inverse of the fundamental matrix exists, because we specify in the definition above that it must have a non-zero determinant, and therefore must be non-singular. The reader should note that this is only one possible method for determining the state transition matrix, and we will discuss other methods below.
14.2.3 Example: 2-Dimensional System Given the following fundamental matrix, Find the state-transition matrix.
1
http://en.wikibooks.org/wiki/Linear%20Algebra
113
Time-Variant System Solutions "
e−t 12 et X (t) = 0 e−t
#
the first task is to find the inverse of the fundamental matrix. Because the fundamental matrix is a 2 × 2 matrix, the inverse can be given easily through a common formula: "
X −1 (t)
=
e−t − 12 et 0 e−t
#
e−2t
"
et − 21 e3t = 0 et
#
The state-transition matrix is given by: "
φ(t, t0 ) =
X (t)X −1 (t0 ) "
e−t+t0 φ(t, t0 ) = 0
e−t − 12 et = 0 e−t
#"
1 3t0 2e et0
et0 0
#
#
− e−t+3t0 ) et−t0
1 t+t0 2 (e
14.2.4 Other Methods There are other methods for finding the state transition matrix besides having to find the fundamental matrix. Method 1 If A(t) is triangular (upper or lower triangular), the state transition matrix can be determined by sequentially integrating the individual rows of the state equation. Method 2 If for every τ and t, the state matrix commutes as follows: Z t
A(t)
Z t
A(ζ)dζ =
A(ζ)dζ A(t)
τ
τ
Then the state-transition matrix can be given as: Rt
φ(t, τ ) = e
τ
A(ζ)dζ
The state transition matrix will commute as described above if any of the following conditions are true: 1. A is a constant matrix (time-invariant) 2. A is a diagonal matrix ¯ (t), where A¯ is a constant matrix, and f(t) is a single-valued function (not a 3. If A = Af matrix). If none of the above conditions are true, then you must use method 3. Method 3 If A(t) can be decomposed as the following sum:
114
Time-Variant, Zero Input
A(t) =
n X
Mi fi (t)
i=1
Where Mi is a constant matrix such that Mi Mj = Mj Mi , and fi is a single-valued function. If A(t) can be decomposed in this way, then the state-transition matrix can be given as:
φ(t, τ ) =
Rt n Y Mi f (θ)dθ τ i
e
i=1
It will be left as an exercise for the reader to prove that if A(t) is time-invariant, that the equation in method 2 above will reduce to the state-transition matrix eA(t−τ ) .
14.2.5 Example: Using Method 3 Use method 3, above, to compute the state-transition matrix for the system if the system matrix A is given by: "
t 1 A= −1 t
#
We can decompose this matrix as follows: "
#
"
1 0 0 1 A= t+ 0 1 −1 0
#
Where f1 (t) = t, and f2 (t) = 1. Using the formula described above gives us: Rt
φ(t, τ ) = eM1
τ
Rt
θdθ M2
e
dθ
τ
Solving the two integrations gives us: " 1 2
φ(t, τ ) = e
(t2 − τ 2 ) 0 2 0 (t − τ 2 )
# "
e
0 −t + τ
t−τ 0
#
The first term is a diagonal matrix, and the solution to that matrix function is all the individual elements of the matrix raised as an exponent of e. The second term can be decomposed as: "
e
t−τ 0
0 −t + τ
#
"
=e
0 1 −1 0
# (t−τ )
"
cos(t − τ ) sin(t − τ ) = −sin(t − τ ) cos(t − τ )
#
The final solution is given as: "
φ(t, τ ) =
1
2 −τ 2 )
e 2 (t
0
0 1
2 −τ 2 )
e 2 (t
#"
#
"
1
2
2
1
2
2
e 2 (t −τ ) cos(t − τ ) e 2 (t −τ ) sin(t − τ ) cos(t − τ ) sin(t − τ ) = 1 2 1 2 2 2 −sin(t − τ ) cos(t − τ ) −e 2 (t −τ ) sin(t − τ ) e 2 (t −τ ) cos(t − τ )
115
#
Time-Variant System Solutions
14.3 Time-Variant, Non-zero Input If the input to the system is not zero, it turns out that all the analysis that we performed above still holds. We can still construct the fundamental matrix, and we can still represent the system solution in terms of the state transition matrix ϕ. We can show that the general solution to the state-space equations is actually the solution: Z t
x(t) = φ(t, t0 )x(t0 ) +
φ(t, τ )B(τ )u(τ )dτ t0
116
15 Digital State-Space 15.1 Digital Systems Digital systems, expressed previously as difference equations or Z-Transform transfer functions can also be used with the state-space representation. Also, all the same techniques for dealing with analog systems can be applied to digital systems, with only minor changes.
15.2 Digital Systems For digital systems, we can write similar equations, using discrete data sets: x[k + 1] = Ax[k] + Bu[k] y[k] = Cx[k] + Du[k]
15.2.1 Zero-Order Hold Derivation If we have a continuous-time state equation: x0 (t) = Ax(t) + Bu(t) We can derive the digital version of this equation that we discussed above. We take the Laplace transform of our equation: X(s) = (sI − A)−1 Bu(s) + (sI − A)−1 x(0) Now, taking the inverse Laplace transform gives us our time-domain system, keeping in mind that the inverse Laplace transform of the (sI - A) term is our state-transition matrix, Φ: x(t) = L−1 (X(s)) = Φ(t − t0 )x(0) +
Z t
Φ(t − τ )Bu(τ )dτ
t0
Now, we apply a zero-order hold on our input, to make the system digital. Notice that we set our start time t0 = kT, because we are only interested in the behavior of our system during a single sample period:
117
Digital State-Space
u(t) = u(kT ), kT ≤ t ≤ (k + 1)T Z t
Φ(t, τ )Bdτ u(kT )
x(t) = Φ(t, kT )x(kT ) + kT
We were able to remove u(kT) from the integral because it did not rely on τ . We now define a new function, Γ, as follows: Z t
Γ(t, t0 ) =
Φ(t, τ )Bdτ t0
Inserting this new expression into our equation, and setting t = (k + 1)T gives us: x((k + 1)T ) = Φ((k + 1)T, kT )x(kT ) + Γ((k + 1)T, kT )u(kT ) Now Φ(T) and Γ(T) are constant matrices, and we can give them new names. The d subscript denotes that they are digital versions of the coefficient matrices: Ad = Φ((k + 1)T, kT )
Bd = Γ((k + 1)T, kT ) We can use these values in our state equation, converting to our bracket notation instead: x[k + 1] = Ad x[k] + Bd u[k]
15.3 Relating Continuous and Discrete Systems w:Discretization1 Continuous and discrete systems that perform similarly can be related together through a set of relationships. It should come as no surprise that a discrete system and a continuous system will have different characteristics and different coefficient matrices. If we consider that a discrete system is the same as a continuous system, except that it is sampled with a sampling time T, then the relationships below will hold. The process of converting an analog system for use with digital hardware is called discretization. We've given a basic introduction to discretization already, but we will discuss it in more detail here.
1
118
http://en.wikipedia.org/wiki/Discretization
Relating Continuous and Discrete Systems
15.3.1 Discrete Coefficient Matrices Of primary importance in discretization is the computation of the associated coefficient matrices from the continuous-time counterparts. If we have the continuous system (A, B, C, D), we can use the relationship t = kT to transform the state-space solution into a sampled system: AkT
x(kT ) = e
Z kT
x(0) +
eA(kT −τ ) Bu(τ )dτ
0
AkT
x[k] = e
Z kT
x[0] +
eA(kT −τ ) Bu(τ )dτ
0
Now, if we want to analyze the k+1 term, we can solve the equation again: x[k + 1] = e
A(k+1)T
Z (k+1)T
x[0] +
eA((k+1)T −τ ) Bu(τ )dτ
0
Separating out the variables, and breaking the integral into two parts gives us:
AT AkT
x[k + 1] = e
e
Z kT
x[0] +
e
AT A(kT −τ )
e
Z (k+1)T
Bu(τ )dτ +
eA(kT +T −τ ) Bu(τ )dτ
kT
0
If we substitute in a new variable β = (k + 1)T + τ , and if we see the following relationship: eAkT x[0] = x[k] We get our final result: x[k + 1] = eAT x[k] +
Z T
!
eAα dα Bu[k]
0
Comparing this equation to our regular solution gives us a set of relationships for converting the continuous-time system into a discrete-time system. Here, we will use "d" subscripts to denote the system matrices of a discrete system, and we will use a "c" subscript to denote the system matrices of a continuous system. Matrix Dimensions: A: p × p B: p × q C: r × p D: r × q
{| class="wikitable"
119
Digital State-Space |- |Ad = eAc T |- |Bd =
R T Aτ 0 e dτ Bc |- |Cd = Cc |- |Dd = Dc |}
UNKNOWN TEMPLATE Matlab CMD c2d If the Ac matrix is nonsingular, then we can find its inverse and instead define Bd as: Bd = A−1 c (Ad − I)Bc The differences in the discrete and continuous matrices are due to the fact that the underlying equations that describe our systems are different. Continuous-time systems are represented by linear differential equations, while the digital systems are described by difference equations. High order terms in a difference equation are delayed copies of the signals, while high order terms in the differential equations are derivatives of the analog signal. If we have a complicated analog system, and we would like to implement that system in a digital computer, we can use the above transformations to make our matrices conform to the new paradigm.
15.3.2 Notation Because the coefficent matrices for the discrete systems are computed differently from the continuous-time coefficient matrices, and because the matrices technically represent different things, it is not uncommon in the literature to denote these matrices with different variables. For instance, the following variables are used in place of A and B frequently: Ω = Ad
R = Bd These substitutions would give us a system defined by the ordered quadruple (Ω, R, C, D) for representing our equations. As a matter of notational convenience, we will use the letters A and B to represent these matrices throughout the rest of this book.
15.4 Converting Difference Equations Now, let's say that we have a 3rd order difference equation, that describes a discrete-time system: y[n + 3] + a2 y[n + 2] + a1 y[n + 1] + a0 y[n] = u[n] From here, we can define a set of discrete state variables x in the following manner: x1 [n] = y[n]
120
Solving for x[n] x2 [n] = y[n + 1] x3 [n] = y[n + 2] Which in turn gives us 3 first-order difference equations: x1 [n + 1] = y[n + 1] = x2 [n] x2 [n + 1] = y[n + 2] = x3 [n] x3 [n + 1] = y[n + 3] Again, we say that matrix x is a vertical vector of the 3 state variables we have defined, and we can write our state equation in the same form as if it were a continuous-time system:
0 1 0 0 0 1 x[n] + 0 u[n] x[n + 1] = 0 −a0 −a1 −a2 1 h
i
y[n] = 1 0 0 x[n]
15.5 Solving for x[n] We can find a general time-invariant solution for the discrete time difference equations. Let us start working up a pattern. We know the discrete state equation: x[n + 1] = Ax[n] + Bu[n] Starting from time n = 0, we can start to create a pattern: x[1] = Ax[0] + Bu[0]
x[2] = Ax[1] + Bu[1] = A2 x[0] + ABu[0] + Bu[1]
x[3] = Ax[2] + Bu[2] = A3 x[0] + A2 Bu[0] + ABu[1] + Bu[2] With a little algebraic trickery, we can reduce this pattern to a single equation: General State Equation Solution
x[n] = An x[n0 ] +
n−1 X
An−1−m Bu[m]
m=0
Substituting this result into the output equation gives us: General Output Equation Solution
121
Digital State-Space
y[n] = CAn x[n0 ] +
n−1 X
CAn−1−m Bu[m] + Du[n]
m=0
15.6 Time Variant Solutions If the system is time-variant, we have a general solution that is similar to the continuous-time case: n−1 X
x[n] = φ[n, n0 ]x[n0 ] +
φ[n, m + 1]B[m]u[m]
m=n0
y[n] = C[n]φ[n, n0 ]x[n0 ] + C[n]
n−1 X
φ[n, m + 1]B[m]u[m] + D[n]u[n]
m=n0
Where ϕ, the state transition matrix, is defined in a similar manner to the state-transition matrix in the continuous case. However, some of the properties in the discrete time are different. For instance, the inverse of the state-transition matrix does not need to exist, and in many systems it does not exist.
15.6.1 State Transition Matrix The discrete time state transition matrix is the unique solution of the equation: φ[k + 1, k0 ] = A[k]φ[k, k0 ] Where the following restriction must hold: φ[k0 , k0 ] = I From this definition, an obvious way to calculate this state transition matrix presents itself: φ[k, k0 ] = A[k − 1]A[k − 2]A[k − 3] · · · A[k0 ] Or,
φ[k, k0 ] =
k−k Y0 m=1
122
A[k − m]
MATLAB Calculations
15.7 MATLAB Calculations MATLAB is a computer program, and therefore calculates all systems using digital methods. The MATLAB function lsim is used to simulate a continuous system with a specified input. This function works by calling the c2d, which converts a system (A, B, C, D) into the equivalent discrete system. Once the system model is discretized, the function passes control to the dlsim function, which is used to simulate discrete-time systems with the specified input. Because of this, simulation programs like MATLAB are subjected to round-off errors associated with the discretization process.
123
16 Eigenvalues and Eigenvectors 16.1 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors cannot be calculated from time-variant matrices. If the system is time-variant, the methods described in this chapter will not produce valid results. The eigenvalues and eigenvectors of the system matrix play a key role in determining the response of the system. It is important to note that only square matrices have eigenvalues and eigenvectors associated with them. Non-square matrices cannot be analyzed using the methods below. The word "eigen" is from the German for "characteristic", and so this chapter could also be called "Characteristic values and characteristic vectors". The terms "Eigenvalues" and "Eigenvectors" are most commonly used. Eigenvalues and Eigenvectors have a number of properties that make them valuable tools in analysis, and they also have a number of valuable relationships with the matrix from which they are derived. Computing the eigenvalues and the eigenvectors of the system matrix is one of the most important things that should be done when beginning to analyze a system matrix, second only to calculating the matrix exponential of the system matrix. The eigenvalues and eigenvectors of the system determine the relationship between the individual system state variables (the members of the x vector), the response of the system to inputs, and the stability of the system. Also, the eigenvalues and eigenvectors can be used to calculate the matrix exponential of the system matrix (through spectral decomposition). The remainder of this chapter will discuss eigenvalues and eigenvectors, and the ways that they affect their respective systems.
16.2 Characteristic Equation The characteristic equation of the system matrix A is given as: Matrix Characteristic Equation Av = λv Where λ are scalar values called the eigenvalues, and v are the corresponding eigenvectors. To solve for the eigenvalues of a matrix, we can take the following determinant: |A − λI| = 0 To solve for the eigenvectors, we can then add an additional term, and solve for v:
125
Eigenvalues and Eigenvectors
|A − λI|v = 0 Another value worth finding are the left eigenvectors of a system, defined as w in the modified characteristic equation: Left-Eigenvector Equation wA = λw For more information about eigenvalues, eigenvectors, and left eigenvectors, read the appropriate sections in the following books: • Linear Algebra1 • Engineering Analysis2
16.2.1 Diagonalization Note: The transition matrix T should not be confused with the sampling time of a discrete system. If needed, we will use subscripts to differentiate between the two. If the matrix A has a complete set of distinct eigenvalues, the matrix can be diagonalized. A diagonal matrix is a matrix that only has entries on the diagonal, and all the rest of the entries in the matrix are zero. We can define a transformation matrix, T, that satisfies the diagonalization transformation: A = T DT −1 Which in turn will satisfy the relationship: eAt = T eDt T −1 The right-hand side of the equation may look more complicated, but becauseD is a diagonal matrix here (not to be confused with the feed-forward matrix from the output equation), the calculations are much easier. We can define the transition matrix, and the inverse transition matrix in terms of the eigenvectors and the left eigenvectors: h
T = v1 v2 v3 · · · vn
1 2
126
http://en.wikibooks.org/wiki/Linear%20Algebra http://en.wikibooks.org/wiki/Engineering%20Analysis
i
Exponential Matrix Decomposition
0 w1 w0 2 0 −1 w T = 3 .. .
wn0
We will further discuss the concept of diagonalization later in this chapter.
16.3 Exponential Matrix Decomposition For more information about spectral decomposition, see: Spectral Decomposition3 A matrix exponential can be decomposed into a sum of the eigenvectors, eigenvalues, and left eigenvalues, as follows: eAt =
n X
eλi t vi wi0
i=1
Notice that this equation only holds in this form if the matrix A has a complete set of n distinct eigenvalues. Since w'i is a row vector, and x(0) is a column vector of the initial system states, we can combine those two into a scalar coefficient α: eAt x(t0 ) =
n X
αi eλi t vi
i=1
Since the state transition matrix determines how the system responds to an input, we can see that the system eigenvalues and eigenvectors are a key part of the system response. Let us plug this decomposition into the general solution to the state equation: State Equation Spectral Decomposition
x(t) =
n X i=1
αi eλi t vi +
n Z t X i=1 0
eλi (t−τ ) vi wi0 Bu(τ )dτ
We will talk about this equation in the following sections.
16.3.1 State Relationship As we can see from the above equation, the individual elements of the state vector x(t) cannot take arbitrary values, but they are instead related by weighted sums of multiples of the systems right-eigenvectors.
3
http://en.wikibooks.org/wiki/Engineering%20Analysis%2FSpectral%20Decomposition
127
Eigenvalues and Eigenvectors
16.3.2 Decoupling For people who are familiar with linear algebra, the left-eigenvector of the matrix A must be in the null space of the matrix B to decouple the system. If a system can be designed such that the following relationship holds true: wi0 B = 0 then the system response from that particular eigenvalue will not be affected by the system input u, and we say that the system has been decoupled. Such a thing is difficult to do in practice.
16.3.3 Condition Number With every matrix there is associated a particular number called the condition number of that matrix. The condition number tells a number of things about a matrix, and it is worth calculating. The condition number, k, is defined as: Condition Number k=
i ki k |wi0 vi |
Systems with smaller condition numbers are better, for a number of reasons: 1. Large condition numbers lead to a large transient response of the system 2. Large condition numbers make the system eigenvalues more sensitive to changes in the system. We will discuss the issue of eigenvalue sensitivity more in a later section.
16.3.4 Stability We will talk about stability at length in later chapters, but is a good time to point out a simple fact concerning the eigenvalues of the system. Notice that if the eigenvalues of the system matrix A are positive, or (if they are complex) that they have positive real parts, that the system state (and therefore the system output, scaled by the C matrix) will approach infinity as time t approaches infinity. In essence, if the eigenvalues are positive, the system will not satisfy the condition of BIBO stability, and will therefore become unstable. Another factor that is worth mentioning is that a manufactured system never exactly matches the system model, and there will always been inaccuracies in the specifications of the component parts used, within a certain tolerance. As such, the system matrix will be slightly different from the mathematical model of the system (although good systems will not be severely different), and therefore the eigenvalues and eigenvectors of the system will not be the same values as those derived from the model. These facts give rise to several results:
128
Non-Unique Eigenvalues 1. Systems with high condition numbers may have eigenvalues that differ by a large amount from those derived from the mathematical model. This means that the system response of the physical system may be very different from the intended response of the model. 2. Systems with high condition numbers may become unstable simply as a result of inaccuracies in the component parts used in the manufacturing process. For those reasons, the system eigenvalues and the condition number of the system matrix are highly important variables to consider when analyzing and designing a system. We will discuss the topic of stability in more detail in later chapters.
16.4 Non-Unique Eigenvalues The decomposition above only works if the matrix A has a full set of n distinct eigenvalues (and corresponding eigenvectors). If A does not have n distinct eigenvectors, then a set of generalized eigenvectors need to be determined. The generalized eigenvectors will produce a similar matrix that is in Jordan canonical form, not the diagonal form we were using earlier.
16.4.1 Generalized Eigenvectors Generalized eigenvectors can be generated using the following equation: Generalized Eigenvector Generating Equation (A − λI)vn+1 = vn if d is the number of times that a given eigenvalue is repeated, and p is the number of unique eigenvectors derived from those eigenvalues, then there will be q = d - p generalized eigenvectors. Generalized eigenvectors are developed by plugging in the regular eigenvectors into the equation above (vn ). Some regular eigenvectors might not produce any non-trivial generalized eigenvectors. Generalized eigenvectors may also be plugged into the equation above to produce additional generalized eigenvectors. It is important to note that the generalized eigenvectors form an ordered series, and they must be kept in order during analysis or the results will not be correct.
16.4.2 Example: One Repeated Set We have a 5 × 5 matrix A with eigenvalues λ = 1, 1, 1, 2, 2. For λ = 1, there is 1 distinct eigenvector a. For λ = 2 there is 1 distinct eigenvector b. From a, we generate the generalized eigenvector c, and from c we can generate vector d. From the eigevector b, we generate the generalized eigevector e. In order our eigenvectors are listed as: [a c d b e] Notice how c and d are listed in order after the eigenvector that they are generated from, a. Also, we could reorder this as:
129
Eigenvalues and Eigenvectors [b e a c d] because the generalized eigenvectors are listed in order after the regular eigenvector that they are generated from. Regular eigenvectors can be listed in any order.
16.4.3 Example: Two Repeated Sets We have a 4 × 4 matrix A with eigenvalues λ = 1, 1, 1, 2. For λ = 1 we have two eigevectors, a and b. For λ = 2 we have an eigenvector c. We need to generate a fourth eigenvector, d. The only eigenvalue that needs another eigenvector is λ = 1, however there are already two eigevectors associated with that eigenvalue, and only one of them will generate a non-trivial generalized eigenvector. To figure out which one works, we need to plug both vectors into the generating equation:
(A − λI) λ=1 d = a
(A − λI) λ=1 d = b If a generates the correct vector d, we will order our eigenvectors as: [a d b c] but if b generates the correct vector, we can order it as: [a b d c]
16.4.4 Jordan Canonical Form For more information about Jordan Canonical Form, see: Matrix Forms4 If a matrix has a complete set of distinct eigenvectors, the transition matrix T can be defined as the matrix of those eigenvectors, and the resultant transformed matrix will be a diagonal matrix. However, if the eigenvectors are not unique, and there are a number of generalized eigenvectors associated with the matrix, the transition matrix T will consist of the ordered set of the regular eigenvectors and generalized eigenvectors. The regular eigenvectors that did not produce any generalized eigenvectors (if any) should be first in the order, followed by the eigenvectors that did produce generalized eigenvectors, and the generalized eigenvectors that they produced (in appropriate sequence). Once the T matrix has been produced, the matrix can be transformed by it and it's inverse: A = T −1 JT The J matrix will be a Jordan block matrix. The format of the Jordan block matrix will be as follows:
4
130
http://en.wikibooks.org/wiki/Engineering%20Analysis%2FMatrix%20Forms
Equivalence Transformations
D 0 0 J1 J = .. .. . . 0 0
··· ··· .. .
0 0 .. .
· · · Jn
Where D is the diagonal block produced by the regular eigenvectors that are not associated with generalized eigenvectors (if any). The Jn blocks are standard Jordan blocks with a size corresponding to the number of eigenvectors/generalized eigenvectors in each sequence. In each Jn block, the eigenvalue associated with the regular eigenvector of the sequence is on the main diagonal, and there are 1's in the sub-diagonal.
16.4.5 System Response
16.5 Equivalence Transformations If we have a non-singular n × n matrix P, we can define a transformed vector "x bar" as: x ¯ = Px We can transform the entire state-space equation set as follows: ¯x(t) + Bu(t) ¯ x ¯0 (t) = A¯
¯ y¯(t) = C¯ x ¯(t) + Du(t) Where: {| class="wikitable" ¯ = P B |- |C¯ = CP −1 |- |D ¯ = D |} |- |A¯ = P AP −1 |- |B We call the matrix P the equivalence transformation between the two sets of equations. It is important to note that the eigenvalues of the matrix A (which are of primary importance to the system) do not change under the equivalence transformation. The eigenvectors of A, and the eigenvectors of A¯ are related by the matrix P.
16.5.1 Lyapunov Transformations The transformation matrix P is called a Lyapunov Transformation if the following conditions hold: • P(t) is nonsingular. • P(t) and P'(t) are continuous • P(t) and the inverse transformation matrix P-1 (t) are finite for all t.
131
Eigenvalues and Eigenvectors If a system is time-variant, it can frequently be useful to use a Lyapunov transformation to convert the system to an equivalent system with a constant A matrix. This is not always possible in general, however it is possible if the A(t) matrix is periodic.
16.5.2 System Diagonalization If the A matrix is time-invariant, we can construct the matrix V from the eigenvectors of A. The V matrix can be used to transform the A matrix to a diagonal matrix. Our new system becomes: V x0 (t) = V AV −1 V x(t) + V Bu(t)
y(t) = CV −1 V x(t) + Du(t) Since our system matrix is now diagonal (or Jordan canonical), the calculation of the state-transition matrix is simplified: eV AV
−1
=Λ
Where Λ is a diagonal matrix.
16.5.3 MATLAB Transformations The MATLAB function ss2ss can be used to apply an equivalence transformation to a system. If we have a set of matrices A, B, C and D, we can create equivalent matrices as such: [Ap, Bp, Cp, Dp] = ss2ss(A, B, C, D, p); Where p is the equivalence transformation matrix.
132
17 MIMO Systems 17.1 Multi-Input, Multi-Output Systems with more than one input and/or more than one output are known as Multi-Input Multi-Output systems, or they are frequently known by the abbreviation MIMO. This is in contrast to systems that have only a single input and a single output (SISO), like we have been discussing previously.
17.2 State-Space Representation See the Formatting Section1 in the introduction if the notation in this page is confusing. MIMO systems that are lumped and linear can be described easily with state-space equations. To represent multiple inputs we expand the input u(t) into a vector U(t) with the desired number of inputs. Likewise, to represent a system with multiple outputs, we expand y(t) into Y(t), which is a vector of all the outputs. For this method to work, the outputs must be linearly dependant on the input vector and the state vector. X 0 (t) = AX(t) + BU (t)
Y (t) = CX(t) + DU (t)
17.2.1 Example: Two Inputs and Two Outputs Let's say that we have two outputs, y1 and y2 , and two inputs, u1 and u2 . These are related in our system through the following system of differential equations: y100 + a1 y10 + a0 (y1 + y2 ) = u1 (t) y20 + a2 (y2 − y1 ) = u2 (t) now, we can assign our state variables as such, and produce our first-order differential equations: x1 = y1 x4 = y2 x01 = y10 = x2 1
Chapter 2.11 on page 13
133
MIMO Systems x02 = −a1 x2 − a0 (x1 + x4 ) + u1 (t) x04 = −a2 (x4 − x1 ) + u2 (t) And finally we can assemble our state space equations:
0 1 −a −a 1 x0 = 0 0 0 a2 0 "
#
"
0 0 0 0 −a0 1 x+ 0 0 0 0 0 −a2
0 " # 0 u1 0 u2 1
#
1 0 0 0 y1 = x(t) 0 0 0 1 y2
17.3 Transfer Function Matrix If the system is LTI and Lumped, we can take the Laplace Transform of the state-space equations, as follows: L[X 0 (t)] = L[AX(t)] + L[BU (t)]
L[Y (t)] = L[CX(t)] + L[DU (t)] Which gives us the result: sX(s) − X(0) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s) Where X(0) is the initial conditions of the system state vector in the time domain. If the system is relaxed, we can ignore this term, but for completeness we will continue the derivation with it. We can separate out the variables in the state equation as follows: sX(s) − AX(s) = X(0) + BU(s) Then factor out an X(s): X(s)[sI − A] = X(0) + BU(s) And then we can multiply both sides by the inverse of [sI - A] to give us our state equation: X(s) = [sI − A]−1 X(0) + [sI − A]−1 BU(s)
134
Transfer Function Matrix Now, if we plug in this value for X(s) into our output equation, above, we get a more complicated equation: Y(s) = C([sI − A]−1 X(0) + [sI − A]−1 BU(s)) + DU(s) And we can distribute the matrix C to give us our answer: Y(s) = C[sI − A]−1 X(0) + C[sI − A]−1 BU(s) + DU(s) Now, if the system is relaxed, and therefore X(0) is 0, the first term of this equation becomes 0. In this case, we can factor out a U(s) from the remaining two terms: Y(s) = (C[sI − A]−1 B + D)U(s) We can make the following substitution to obtain the Transfer Function Matrix, or more simply, the Transfer Matrix, H(s): Transfer Matrix C[sI − A]−1 B + D = H(s) And rewrite our output equation in terms of the transfer matrix as follows: Transfer Matrix Description Y(s) = H(s)U(s) If Y(s) and X(s) are 1 × 1 vectors (a SISO system), then we have our external description: Y (s) = H(s)X(s) Now, since X(s) = X(s), and Y(s) = Y(s), then H(s) must be equal to H(s). These are simply two different ways to describe the same exact equation, the same exact system.
17.3.1 Dimensions If our system has q inputs, and r outputs, our transfer function matrix will be an r × q matrix.
135
MIMO Systems
17.3.2 Relation to Transfer Function For SISO systems, the Transfer Function matrix will reduce to the transfer function as would be obtained by taking the Laplace transform of the system response equation. For MIMO systems, with n inputs and m outputs, the transfer function matrix will contain n × m transfer functions, where each entry is the transfer function relationship between each individual input, and each individual output. Through this derivation of the transfer function matrix, we have shown the equivalency between the Laplace methods and the State-Space method for representing systems. Also, we have shown how the Laplace method can be generalized to account for MIMO systems. Through the rest of this book, we will use the Laplace and State Space methods interchangeably, opting to use one or the other where appropriate.
17.3.3 Zero-State and Zero-Input If we have our complete system response equation from above: Y(s) = C[sI − A]−1 x(0) + (C[sI − A]−1 B + D)U(s) We can separate this into two separate parts: • C[sI − A]−1 X(0) The Zero-Input Response. • (C[sI − A]−1 B + D)U(s) The Zero-State Response. These are named because if there is no input to the system (zero-input), then the output is the response of the system to the initial system state. If there is no state to the system, then the output is the response of the system to the system input. The complete response is the sum of the system with no input, and the input with no state.
17.4 Discrete MIMO Systems In the discrete case, we end up with similar equations, except that the X(0) initial conditions term is preceeded by an additional z variable: X(z) = [zI − A]−1 zX(0) + [zI − A]−1 BU(z)
Y(z) = C[zI − A]−1 zX(0) + C[zI − A]−1 BU(z) + DU(z) If X(0) is zero, that term drops out, and we can derive a Transfer Function Matrix in the Z domain as well: Y(z) = (C[zI − A]−1 B + D)U(z)
136
Discrete MIMO Systems Transfer Matrix C[zI − A]−1 B + D = H(z) Transfer Matrix Description Y(z) = H(z)U(z)
17.4.1 Example: Pulse Response For digital systems, it is frequently a good idea to write the pulse response equation, from the state-space equations: x[k + 1] = Ax[k] + Bu[k] y[k] = Cx[k] + Du[k] We can combine these two equations into a single difference equation using the coefficient matrices A, B, C, and D. To do this, we find the ratio of the system output vector, Y[n], to the system input vector, U[n]: Y (z) U (z)
= H(z) = C(zI − A)−1 B + D
So the system response to a digital system can be derived from the pulse response equation by: Y (z) = H(z)U (z) And we can set U(z) to a step input through the following Z transform: u(t) ⇔ U (z) =
z z−1
Plugging this into our pulse response we get our step response: Y (z) = (C(zI − A)−1 B + D) Y(z) = H(z)
z z−1
z z−1
137
18 System Realization 18.1 Realization Realization is the process of taking a mathematical model of a system (either in the Laplace domain or the State-Space domain), and creating a physical system. Some systems are not realizable. An important point to keep in mind is that the Laplace domain representation, and the state-space representations are equivalent, and both representations describe the same physical systems. We want, therefore, a way to convert between the two representations, because each one is well suited for particular methods of analysis. The state-space representation, for instance, is preferable when it comes time to move the system design from the drawing board to a constructed physical device. For that reason, we call the process of converting a system from the Laplace representation to the state-space representation "realization".
18.2 Realization Conditions Note: Discrete systems G(z) are also realizable if these conditions are satisfied. • A transfer function G(s) is realizable if and only if the system can be described by a finite-dimensional state-space equation. • (A B C D), an ordered set of the four system matrices, is called a realization of the system G(s). If the system can be expressed as such an ordered quadruple, the system is realizable. • A system G is realizable if and only if the transfer matrix G(s) is a proper rational matrix. In other words, every entry in the matrix G(s) (only 1 for SISO systems) is a rational polynomial, and if the degree of the denominator is higher or equal to the degree of the numerator. We've already covered the method for realizing a SISO system, the remainder of this chapter will talk about the general method of realizing a MIMO system.
18.3 Realizing the Transfer Matrix We can decompose a transfer matrix G(s) into a strictly proper transfer matrix:
139
System Realization
G(s) = G(∞) + Gsp (s) Where Gsp (s) is a strictly proper transfer matrix. Also, we can use this to find the value of our D matrix: D = G(∞) We can define d(s) to be the lowest common denominator polynomial of all the entries in G(s): Remember, q is the number of inputs, p is the number of internal system states, and r is the number of outputs. d(s) = sr + a1 sr−1 + · · · + ar−1 s + ar Then we can define Gsp as: Gsp (s) =
1 N (s) d(s)
Where N (s) = N1 sr−1 + · · · + Nr−1 s + Nr And the Ni are p × q constant matrices. If we remember our method for converting a transfer function to a state-space equation, we can follow the same general method, except that the new matrix A will be a block matrix, where each block is the size of the transfer matrix:
−a1 Ip −a2 Ip I 0 p 0 I p A= .. .. . . 0 0
· · · −ar−1 Ip −ar Ip ··· 0 0 ··· 0 0 .. .. .. . . . ··· Ip 0
Ip
0 0 B= .. .
0 h
i
C = Ip 0 0 · · · 0
140
19 Gain 19.1 What is Gain? Gain is a proportional value that shows the relationship between the magnitude of the input to the magnitude of the output signal at steady state. Many systems contain a method by which the gain can be altered, providing more or less "power" to the system. However, increasing gain or decreasing gain beyond a particular safety zone can cause the system to become unstable. Consider the given second-order system: T (s) =
1 s2 + 2s + 1
We can include an arbitrary gain term, K in this system that will represent an amplification, or a power increase: T (s) = K
1 s2 + 2s + 1
In a state-space system, the gain term k can be inserted as follows: x0 (t) = Ax(t) + kBu(t)
y(t) = Cx(t) + kDu(t) The gain term can also be inserted into other places in the system, and in those cases the equations will be slightly different.
Figure 31
141
Gain
19.1.1 Example: Gain Here are some good examples of arbitrary gain values being used in physical systems: Volume Knob On your stereo there is a volume knob that controls the gain of your amplifier circuit. Higher levels of volume (turning the volume "up") corresponds to higher amplification of the sound signal. Gas Pedal The gas pedal in your car is an example of gain. Pressing harder on the gas pedal causes the engine to receive more gas, and causes the engine to output higher RPMs. Brightness Buttons Most computer monitors come with brightness buttons that control how bright the screen image is. More brightness causes more power to be outputed to the screen.
19.2 Responses to Gain As the gain to a system increases, generally the rise-time decreases, the percent overshoot increases, and the settling time increases. However, these relationships are not always the same. A critically damped system, for example, may decrease in rise time while not experiencing any effects of percent overshoot or settling time.
19.3 Gain and Stability If the gain increases to a high enough extent, some systems can become unstable. We will examine this effect in the chapter on Root Locus.
19.3.1 Conditional Stability Systems that are stable for some gain values, and unstable for other values are called conditionally stable systems. The stability is conditional upon the value of the gain, and oftentimes the threshold where the system becomes unstable is important to find.
142
20 Block Diagrams When designing or analyzing a system, often it is useful to model the system graphically. Block Diagrams are a useful and simple method for analyzing a system graphically. A "block" looks on paper exactly how it sounds:
20.1 Systems in Series When two or more systems are in series, they can be combined into a single representative system, with a transfer function that is the product of the individual systems.
Figure 32 If we have two systems, f(t) and g(t), we can put them in series with one another so that the output of system f(t) is the input to system g(t). Now, we can analyze them depending on whether we are using our classical or modern methods. If we define the output of the first system as h(t), we can define h(t) as: h(t) = x(t) ∗ f (t) Now, we can define the system output y(t) in terms of h(t) as: y(t) = h(t) ∗ g(t) We can expand h(t): y(t) = [x(t) ∗ f (t)] ∗ g(t) But, since convolution is associative, we can re-write this as: y(t) = x(t) ∗ [f (t) ∗ g(t)]
143
Block Diagrams Our system can be simplified therefore as such:
Figure 33
20.1.1 Series Transfer Functions If two or more systems are in series with one another, the total transfer function of the series is the product of all the individual system transfer functions.
Figure 34
In the time domain we know that: y(t) = x(t) ∗ [f (t) ∗ g(t)] But, in the frequency domain we know that convolution becomes multiplication, so we can re-write this as: Y (s) = X(s)[F (s)G(s)] We can represent our system in the frequency domain as:
Figure 35
144
Systems in Series
20.1.2 Series State Space If we have two systems in series (say system F and system G), where the output of F is the input to system G, we can write out the state-space equations for each individual system. System 1: x0F = AF xF + BF u
yF = CF xF + DF u System 2: x0G = AG xG + BG yF
yG = CG xG + DG yF And we can write substitute these equations together form the complete response of system H, that has input u, and output yG : Series state equation "
#
"
#"
#
"
#
#
"
#"
#
"
#
x0G AG B G C F = x0F 0 AF
xG B D + G F u xF BF
Series output equation "
yG C DG CF = G yF 0 CF
xG D D + G F u xF DF
145
Block Diagrams
20.2 Systems in Parallel
Figure 36
Blocks may not be placed in parallel without the use of an adder. Blocks connected by an adder as shown above have a total transfer function of: Y (s) = X(s)[F (s) + G(s)] Since the Laplace transform is linear, we can easily transfer this to the time domain by converting the multiplication to convolution: y(t) = x(t) ∗ [f (t) + g(t)]
Figure 37
20.3 State Space Model The state-space equations, with non-zero A, B, C, and D matrices conceptually model the following system:
146
State Space Model
Figure 38
In this image, the strange-looking block in the center is either an integrator or an ideal delay, and can be represented in the transfer domain as: 1 s
or
1 z
Depending on the time characteristics of the system. If we only consider continuous-time systems, we can replace the funny block in the center with an integrator:
Figure 39
20.3.1 In the Laplace Domain The state space model of the above system, if A, B, C, and D are transfer functions A(s), B(s), C(s) and D(s) of the individual subsystems, and if U(s) and Y(s) represent a single input and output, can be written as follows:
147
Block Diagrams
Y (s) 1 C(s) + D(s) = B(s) U (s) s − A(s)
We will explain how we got this result, and how we deal with feedforward and feedback loop structures in the next chapter.
20.4 Adders and Multipliers Some systems may have dedicated summation or multiplication devices, that automatically add or multiply the transfer functions of multiple systems together
20.5 Simplifying Block Diagrams Block diagrams can be systematically simplified. Transformation
Equation
1
Cascaded Blocks
Y = (P1 P2 ) X
2
Combining Blocks in Parallel
Y = P1 X ± P2 X
3
Removing a Block from a Forward Loop
Y = P1 X ± P2 X
4
Eliminating a Feedback Loop
Y = P1 (X ∓ P2 Y )
5
Removing a Block from a Feedback Loop
Y = P1 (X ∓ P2 Y )
6
7
148
Rearranging Summing Junctions
Moving a Summing Juction in front of a Block
Z = W ±X ±Y
Z = PX ±Y
Block Diagram
Equivalent Block Diagram
External Sites Transformation
Equation
8
Moving a Summing Juction beyond a Block
Z = P (X ± Y )
9
Moving a Takeoff Point in front of a Block
Y = PX
10
Moving a Takeoff Point beyond a Block
Y = PX
11
Moving a Takeoff Point in front of a Summing Junction
Z = W ±X
12
Moving a Takeoff Point beyond a Summing Junction
Z = X ±Y
Block Diagram
Equivalent Block Diagram
20.6 External Sites SISO Block Diagram with transfer functions on ControlTheoryPro.com1
1
http://wikis.controltheorypro.com/index.php?title=Block_Diagram_Quick_Reference
149
21 Feedback Loops 21.1 Feedback A feedback loop is a common and powerful tool when designing a control system. Feedback loops take the system output into consideration, which enables the system to adjust its performance to meet a desired output response. When talking about control systems it is important to keep in mind that engineers typically are given existing systems such as actuators, sensors, motors, and other devices with set parameters, and are asked to adjust the performance of those systems. In many cases, it may not be possible to open the system (the "plant") and adjust it from the inside: modifications need to be made external to the system to force the system response to act as desired. This is performed by adding controllers, compensators, and feedback structures to the system.
21.2 Basic Feedback Structure
Figure 63
framed
w:Feedback1 This is a basic feedback structure. Here, we are using the output value of the system to help us prepare the next output value. In this way, we can create systems that correct errors. Here we see a feedback loop with a value of one. We call this a unity feedback. Here is a list of some relevant vocabulary, that will be used in the following sections: Plant The term "Plant" is a carry-over term from chemical engineering to refer to the main system process. The plant is the preexisting system that does not (without the aid of a controller
1
http://en.wikipedia.org/wiki/Feedback
151
Feedback Loops or a compensator) meet the given specifications. Plants are usually given "as is", and are not changeable. In the picture above, the plant is denoted with a P. Controller A controller, or a "compensator" is an additional system that is added to the plant to control the operation of the plant. The system can have multiple compensators, and they can appear anywhere in the system: Before the pick-off node, after the summer, before or after the plant, and in the feedback loop. In the picture above, our compensator is denoted with a C. Some texts, or texts in other disciplines may refer to a "summer" as an adder. Summer A summer is a symbol on a system diagram, (denoted above with parenthesis) that conceptually adds two or more input signals, and produces a single sum output signal. Pick-off node A pickoff node is simply a fancy term for a split in a wire. Forward Path The forward path in the feedback loop is the path after the summer, that travels through the plant and towards the system output. Reverse Path The reverse path is the path after the pick-off node, that loops back to the beginning of the system. This is also known as the "feedback path". Unity feedback When the multiplicative value of the feedback path is 1.
21.3 Negative vs Positive Feedback It turns out that negative feedback is almost always the most useful type of feedback. When we subtract the value of the output from the value of the input (our desired value), we get a value called the error signal. The error signal shows us how far off our output is from our desired input. Positive feedback has the property that signals tend to reinforce themselves, and grow larger. In a positive feedback system, noise from the system is added back to the input, and that in turn produces more noise. As an example of a positive feedback system, consider an audio amplification system with a speaker and a microphone. Placing the microphone near the speaker creates a positive feedback loop, and the result is a sound that grows louder and louder. Because the majority of noise in an electrical system is high-frequency, the sound output of the system becomes high-pitched.
152
Negative vs Positive Feedback
21.3.1 Example: State-Space Equation In the previous chapter, we showed you this picture:
Figure 64
Now, we will derive the I/O relationship into the state-space equations. If we examine the inner-most feedback loop, we can see that the forward path has an integrator system, 1s , and the feedback loop has the matrix value A. If we take the transfer function only of this loop, we get: Tinner (s) =
1 s 1− 1s A
=
1 s−A
Pre-multiplying by the factor B, and post-multiplying by C, we get the transfer function of the entire lower-half of the loop: Tlower (s) = B
1 s−A
C
We can see that the upper path (D) and the lower-path Tlower are added together to produce the final result: Ttotal (s) = B
1 s−A
C +D
Now, for an alternate method, we can assume that x' is the value of the inner-feedback loop, right before the integrator. This makes sense, since the integral of x' should be x (which we see from the diagram that it is. Solving for x', with an input of u, we get: x0 = Ax + Bu This is because the value coming from the feedback branch is equal to the value x times the feedback loop matrix A, and the value coming from the left of the sumer is the input u times the matrix B. If we keep things in terms of x and u, we can see that the system output is the sum of u times the feed-forward value D, and the value of x times the value C: y = Cx + Du These last two equations are precisely the state-space equations of our system.
153
Feedback Loops
21.4 Feedback Loop Transfer Function We can solve for the output of the system by using a series of equations: E(s) = X(s) − Y (s) Y (s) = G(s)E(s) and when we solve for Y(s) we get: Feedback Transfer Function Y (s) = X(s)
Gp(s) 1 + Gp(s)
The reader is encouraged to use the above equations to derive the result by themselves. The function E(s) is known as the error signal. The error signal is the difference between the system output (Y(s)), and the system input (X(s)). Notice that the error signal is now the direct input to the system G(s). X(s) is now called the reference input. The purpose of the negative feedback loop is to make the system output equal to the system input, by identifying large differences between X(s) and Y(s) and correcting for them.
21.4.1 Example: Elevator Here is a simple example of reference inputs and feedback systems: There is an elevator in a certain building with 5 floors. Pressing button "1" will take you to the first floor, and pressing button "5" will take you to the fifth floor, etc. For reasons of simplicity, only one button can be pressed at a time. Pressing a particular button is the reference input of the system. Pressing "1" gives the system a reference input of 1, pressing "2" gives the system a reference input of 2, etc. The elevator system then, tries to make the output (the physical floor location of the elevator) match the reference input (the button pressed in the elevator). The error signal, e(t), represents the difference between the reference input x(t), and the physical location of the elevator at time t, y(t). Let's say that the elevator is on the first floor, and the button "5" is pressed at time t0 . The reference input then becomes a step function: x(t) = 5u(t − t0 ) Where we are measuring in units of "floors". At time t0 , the error signal is: e(t0 ) = x(t0 ) − y(t0 ) = 5 − 1 = 4 Which means that the elevator needs to travel upwards 4 more floors. At time t1 , when the elevator is at the second floor, the error signal is:
154
Feedback Loop Transfer Function e(t1 ) = x(t1 ) − y(t1 ) = 5 − 2 = 3 Which means the elevator has 3 more floors to go. Finally, at time t4 , when the elevator reaches the top, the error signal is: e(t4 ) = x(t4 ) − y(t4 ) = 5 − 5 = 0 And when the error signal is zero, the elevator stops moving. In essence, we can define three cases: • e(t) is positive: In this case, the elevator goes up one floor, and checks again. • e(t) is zero: The elevator stops. • e(t) is negative: The elevator goes down one floor, and checks again.
21.4.2 State-Space Feedback Loops In the state-space representation, the plant is typically defined by the state-space equations: x0 (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) The plant is considered to be pre-existing, and the matrices A, B, C, and D are considered to be internal to the plant (and therefore unchangeable). Also, in a typical system, the state variables are either fictional (in the sense of dummy-variables), or are not measurable. For these reasons, we need to add external components, such as a gain element, or a feedback element to the plant to enhance performance. Consider the addition of a gain matrix K installed at the input of the plant, and a negative feedback element F that is multiplied by the system output y, and is added to the input signal of the plant. There are two cases: 1. The feedback element F is subtracted from the input before multiplication of the K gain matrix. 2. The feedback element F is subtracted from the input after multiplication of the K gain matrix. In case 1, the feedback element F is added to the input before the multiplicative gain is applied to the input. If v is the input to the entire system, then we can define u as: u(t) = F v(t) − F Ky(t) In case 2, the feeback element F is subtracted from the input after the multiplicative gain is applied to the input. If v is the input to the entire system, then we can define u as: u(t) = F v(t) − Ky(t)
155
Feedback Loops
21.5 Open Loop vs Closed Loop
Figure 65
Let's say that we have the generalized system shown above. The top part, Gp(s) represents all the systems and all the controllers on the forward path. The bottom part, Gb(s) represents all the feedback processing elements of the system. The letter "K" in the beginning of the system is called the Gain. We will talk about the gain more in later chapters. We can define the Closed-Loop Transfer Function as follows: Closed-Loop Transfer Function Hcl (s) =
KGp(s) 1 + Gp(s)Gb(s)
If we "open" the loop, and break the feedback node, we can define the Open-Loop Transfer Function, as: Open-Loop Transfer Function Hol (s) = Gp(s)Gb(s) We can redefine the closed-loop transfer function in terms of this open-loop transfer function: Hcl (s) =
KGp(s) 1 + Hol (s)
These results are important, and they will be used without further explanation or derivation throughout the rest of the book.
21.6 Placement of a Controller There are a number of different places where we could place an additional controller. {| class="wikitable"
156
Second-Order Systems |- |
Figure 66
|- | 1. 2. 3. 4. 5.
In front of the system, before the feedback loop. Inside the feedback loop, in the forward path, before the plant. In the forward path, after the plant. In the feedback loop, in the reverse path. After the feedback loop.
|} Each location has certain benefits and problems, and hopefully we will get a chance to talk about all of them.
21.7 Second-Order Systems 21.7.1 Damping Ratio The damping ratio is defined by way of the sign zeta. The damping ratio gives us an idea about the nature of the transient response detailing the amount of overshoot and oscillation that the system will undergo. This is completely regardless time scaling. If zeta is: zero, the system is undamped; zeta < 1, the system is underdamped; zeta = 1, the system is critically damped; zeta > 1, the system is overdamped; Zeta is used in conjunction with the natural frequency to determine system properties. To find the zeta value you must first find the natural response!
21.7.2 Natural Frequency
21.8 System Sensitivity
157
22 Signal Flow Diagrams BWarningThis page needs some pictures! if you have images of signal-flow graphs that you would be willing to upload/donate, it would be appreciated.
22.1 Signal Flow Diagrams Signal Flow Diagrams are another method for visually representing a system. Signal Flow Diagrams are especially useful, because they allow for particular methods of analysis, such as Mason's Gain Formula. Signal flow diagrams typically use curved lines to represent wires and systems, instead of using lines at right-angles, and boxes, respectively. Every curved line is considered to have a multiplier value, which can be a constant gain value, or an entire transfer function. Signals travel from one end of a line to the other, and lines that are placed in series with one another have their total multiplier values multiplied together (just like in block diagrams). Signal flow diagrams help us to identify structures called "loops" in a system, which can be analyzed individually to determine the complete response of the system.
159
Signal Flow Diagrams
Figure 67
160
An example of a signal flow diagram.
Mason's Gain Formula
Figure 68 Angular position servo and signal flow graph. θC = desired angle command, θL = actual load angle, KP = position loop gain, VωC = velocity command, VωM = motor velocity sense voltage, KV = velocity loop gain, VIC = current command, VIM = current sense voltage, KC = current loop gain, VA = power amplifier output voltage, LM = motor inductance, VM = voltage across motor inductance, IM = motor current, RM = motor resistance, RS = current sense resistance, KM = motor torque constant (Nm/amp) , T = torque, M = momment of inertia of all rotating components α = angular acceleration, ω = angular velocity, β = mechanical damping, GM = motor back EMF constant, GT = tachometer conversion gain constant,. There is one forward path (shown in a different color) and six feedback loops. The drive shaft assumed to be stiff enough to not treat as a spring. Constants are shown in black and variables in purple.
22.2 Mason's Gain Formula Mason's rule is a rule for determining the gain of a system. Mason's rule can be used with block diagrams, but it is most commonly (and most easily) used with signal flow diagrams.
22.2.1 Forward Paths A forward path is a path in the signal flow diagram that connects the input to the output without touching any single node or path more than once. A single system can have multiple forward paths.
161
Signal Flow Diagrams
22.2.2 Loops A loop is a structure in a signal flow diagram that leads back to itself. A loop does not contain the beginning and ending points, and the end of the loop is the same node as the beginning of a loop. Loops are said to touch if they share a node or a line in common. The Loop gain is the total gain of the loop, as you travel from one point, around the loop, back to the starting point.
22.2.3 Delta Values The Delta value of a system, denoted with a Greek ∆ is computed as follows: ∆ = 1 − A + B − C + D − E + F...... + ∞ Where: • • • • •
A is the sum of all individual loop gains B is the sum of the products of all the pairs of non-touching loops C is the sum of the products of all the sets of 3 non-touching loops D is the sum of the products of all the sets of 4 non-touching loops et cetera.
If the given system has no pairs of loops that do not touch, for instance, B and all additional letters after B will be zero.
22.2.4 Mason's Rule w:Mason's rule1 If we have computed our delta values (above), we can then use Mason's Gain Rule to find the complete gain of the system: Mason's Rule
M=
N yout X Mk ∆ = yin ∆ k=1
k
Where M is the total gain of the system, represented as the ratio of the output gain (yout ) to the input gain (yin ) of the system. Mk is the gain of the kth forward path, and ∆k is the loop gain of the kth loop.
1
162
http://en.wikipedia.org/wiki/Mason%27s%20rule
23 Bode Plots 23.1 Bode Plots A Bode Plot is a useful tool that shows the gain and phase response of a given LTI system for different frequencies. Bode Plots are generally used with the Fourier Transform of a given system.
Figure 69 An example of a Bode magnitude and phase plot set. The Magnitude plot is typically on the top, and the Phase plot is typically on the bottom of the set.
The frequency of the bode plots are plotted against a logarithmic frequency axis. Every tickmark on the frequency axis represents a power of 10 times the previous value. For instance, on a standard Bode plot, the values of the markers go from (0.1, 1, 10, 100, 1000, ...) Because each tickmark is a power of 10, they are referred to as a decade. Notice that the "length" of a decade increases as you move to the right on the graph.
163
Bode Plots The bode Magnitude plot measures the system Input/Output ratio in special units called decibels. The Bode phase plot measures the phase shift in degrees (typically, but radians are also used).
23.1.1 Decibels A Decibel is a ratio between two numbers on a logarithmic scale. A Decibel is not itself a number, and cannot be treated as such in normal calculations. To express a ratio between two numbers (A and B) as a decibel we apply the following formula: A dB = 20 log B
Where dB is the decibel result. Or, if we just want to take the decibels of a single number C, we could just as easily write: dB = 20 log(C)
23.1.2 Frequency Response Notations If we have a system transfer function T(s), we can separate it into a numerator polynomial N(s) and a denominator polynomial D(s). We can write this as follows: T (s) =
N (s) D(s)
To get the magnitude gain plot, we must first transition the transfer function into the frequency response by using the change of variables: s = jω From here, we can say that our frequency response is a composite of two parts, a real part R and an imaginary part X: T (jω) = R(ω) + jX(ω) We will use these forms below.
23.1.3 Straight-Line Approximations The Bode magnitude and phase plots can be quickly and easily approximated by using a series of straight lines. These approximate graphs can be generated by following a few short, simple rules (listed below). Once the straight-line graph is determined, the actual Bode plot is a smooth curve that follows the straight lines, and travels through the breakpoints.
164
Bode Gain Plots
23.1.4 Break Points If the frequency response is in pole-zero form: |jω + zn | |jω + pm | m
Q
T (jω) = Q n
We say that the values for all zn and pm are called break points of the Bode plot. These are the values where the Bode plots experience the largest change in direction. Break points are sometimes also called "break frequencies", "cutoff points", or "corner points".
23.2 Bode Gain Plots Bode Gain Plots, or Bode Magnitude Plots display the ratio of the system gain at each input frequency.
23.2.1 Bode Gain Calculations The magnitude of the transfer function T is defined as: |T (jω)| =
p
R2 + X 2
However, it is frequently difficult to transition a function that is in "numerator/denominator" form to "real+imaginary" form. Luckily, our decibel calculation comes in handy. Let's say we have a frequency response defined as a fraction with numerator and denominator polynomials defined as: Q |jω + zn | T (jω) = Q n
m |jω + pm |
If we convert both sides to decibels, the logarithms from the decibel calculations convert multiplication of the arguments into additions, and the divisions into subtractions: Gain =
X n
20 log(jω + zn ) −
X
20 log(jω + pm )
m
And calculating out the gain of each term and adding them together will give the gain of the system at that frequency.
165
Bode Plots
23.2.2 Bode Gain Approximations The slope of a straight line on a Bode magnitude plot is measured in units of dB/Decade, because the units on the vertical axis are dB, and the units on the horizontal axis are decades. The value ω = 0 is infinitely far to the left of the bode plot (because a logarithmic scale never reaches zero), so finding the value of the gain at ω = 0 essentially sets that value to be the gain for the Bode plot from all the way on the left of the graph up till the first break point. The value of the slope of the line at ω = 0 is 0dB/Decade. From each pole break point, the slope of the line decreases by 20dB/Decade. The line is straight until it reaches the next break point. From each zero break point the slope of the line increases by 20dB/Decade. Double, triple, or higher amounts of repeat poles and zeros affect the gain by multiplicative amounts. Here are some examples: • 2 poles: -40dB/Decade • 10 poles: -200dB/Decade • 5 zeros: +100dB/Decade
23.3 Bode Phase Plots Bode phase plots are plots of the phase shift to an input waveform dependent on the frequency characteristics of the system input. Again, the Laplace transform does not account for the phase shift characteristics of the system, but the Fourier Transform can. The phase of a complex function, in "real+imaginary" form is given as: ∠T (jω) = tan
−1
X R
23.4 Bode Procedure Given a frequency response in pole-zero form: |jω + zn | |jω + pm | m
Q
T (jω) = A Q n
Where A is a non-zero constant (can be negative or positive). Here are the steps involved in sketching the approximate Bode magnitude plots: Bode Magnitude Plots Step 1 Factor the transfer function into pole-zero form. Step 2
166
Examples Find the frequency response from the Transfer function. Step 3 Use logarithms to separate the frequency response into a sum of decibel terms Step 4 Use ω = 0 to find the starting magnitude. Step 5 The locations of every pole and every zero are called break points. At a zero breakpoint, the slope of the line increases by 20dB/Decade. At a pole, the slope of the line decreases by 20dB/Decade. Step 6 At a zero breakpoint, the value of the actual graph differs from the value of the straight-line graph by 3dB. A zero is +3dB over the straight line, and a pole is -3dB below the straight line. Step 7 Sketch the actual bode plot as a smooth-curve that follows the straight lines of the previous point, and travels through the breakpoints. Here are the steps to drawing the Bode phase plots: Bode Phase Plots Step 1 If A is positive, start your graph (with zero slope) at 0 degrees. If A is negative, start your graph with zero slope at 180 degrees (or -180 degrees, they are the same thing). Step 2 For every zero, slope the line up at 45 degrees per decade when ω = the break frequency). Multiple zeros means the slope is steeper.
zn 10
(1 decade before
pm 10
(1 decade before
Step 3 For every pole, slope the line down at 45 degrees per decade when ω = the break frequency). Multiple poles means the slope is steeper. Step 4 Flatten the slope again when the phase has changed by 90 degrees (for a zero) or -90 degrees (for a pole) (or larger values, for multiple poles or multiple zeros.
23.5 Examples 23.5.1 Example: Constant Gain Draw the bode plot of an amplifier system, with a constant gain increase of 6dB.
167
Bode Plots Because the gain value is constant, and is not dependent on the frequency, we know that the value of the magnitude graph is constant at all places on the graph. There are no break points, so the slope of the graph never changes. We can draw the graph as a straight, horizontal line at 6dB:
Figure 70
23.5.2 Example: Integrator Draw the bode plot of a perfect integrator system given by the transfer function: T (s) =
2 s
First, we find the frequency response of the system, by a change of variables: T (jω) =
2 jω
Then we convert our magnitude into logarithms: Gain = 20 log(2) − 20 log(jω) Notice that the location of the break point for the pole is located at ω → 0, which is all the way to the left of the graph. Also, we notice that inserting 0 in for ω gives us an undefined value (which approaches negative infinity, as the limit). We know, because there is a single pole at zero, that the graph to the right of zero (which is everywhere) has a
168
Examples slope of -20dB/Decade. We can determine from our magnitude calculation by plugging in ω → 1 that the second term drops out, and the magnitude at that point is 6dB. We now have the slope of the line, and a point that it intersects, and we can draw the graph:
Figure 71
23.5.3 Example: Differentiator T (jω) = 2jω
169
Bode Plots
Figure 72
23.5.4 Example: 1st Order, Low-pass Filter (1 Break Point) T (jω) =
170
2 s+1
Further Reading
Figure 73
23.6 Further Reading • http://roboticproject.net/Article_ControlSystemLaser1.html • [[Circuit Theory/Bode Plots • Bode Plots on ControlTheoryPro.com1
1
http://wikis.controltheorypro.com/index.php?title=Bode_Plot
171
24 Nichols Charts 24.1 Nichols Charts This page will talk about the use of Nichols charts to analyze frequency-domain characteristics of control systems. w:Nichols plot1
1
http://en.wikipedia.org/wiki/Nichols%20plot
173
25 Stability 25.1 Stability When a system becomes unstable, the output of the system approaches infinity (or negative infinity), which often poses a security problem for people in the immediate vicinity. Also, systems which become unstable often incur a certain amount of physical damage, which can become costly. This chapter will talk about system stability, what it is, and why it matters. The chapters in this section are heavily mathematical, and many require a background in linear differential equations. Readers without a strong mathematical background might want to review the necessary chapters in the Calculus1 and Ordinary Differential Equations2 books (or equivalent) before reading this material. Negativeness of any coefficient of a characteristic polynomial indicates that the system is either unstable or at most marginally stable. If any coefficient is zero/negative then we can say that the system is unstable.
25.2 BIBO Stability A system is defined to be BIBO Stable if every bounded input to the system results in a bounded output over the time interval [t0 , ∞). This must hold for all initial times to . So long as we don't input infinity to our system, we won't get infinity output. A system is defined to be uniformly BIBO Stable if there exists a positive constant k that is independent of t0 such that for all t0 the following conditions: (t)k ≤ 1 t ≥ t0 implies that (t)k ≤ k There are a number of different types of stability, and keywords that are used with the topic of stability. Some of the important words that we are going to be discussing in this chapter, and the next few chapters are: BIBO Stable, Marginally Stable, Conditionally Stable,
1 2
http://en.wikibooks.org/wiki/Calculus http://en.wikibooks.org/wiki/Ordinary%20Differential%20Equations
175
Stability Uniformly Stable, Asymptoticly Stable, and Unstable. All of these words mean slightly different things.
25.3 Determining BIBO Stability We can prove mathematically that a system f is BIBO stable if an arbitrary input x is bounded by two finite but large arbitrary constants M and -M: −M < x ≤ M We apply the input x, and the arbitrary boundaries M and -M to the system to produce three outputs: yx = f (x)
yM = f (M )
y−M = f (−M ) Now, all three outputs should be finite for all possible values of M and x, and they should satisfy the following relationship: y−M ≤ yx ≤ yM If this condition is satisfied, then the system is BIBO stable. For a SISO linear time-invariant (LTI) system is BIBO stable if and only if g(t) is absolutely integrable from [0, ] or from:
∞
Z ∞
|g(t)| dt ≤ M < ∞
0
25.3.1 Example Consider the system: h(t) =
2 t
We can apply our test, selecting an arbitrarily large finite constant M, and an arbitrary input x such that -M < x < M. As M approaches infinity (but does not reach infinity), we can show that: 2 y−M = limM →∞ −M = 0−
And:
176
Poles and Stability 2 yM = limM →∞ M = 0+
So now, we can write out our inequality: y−M ≤ yx ≤ yM 0− ≤ x < 0+ And this inequality should be satisfied for all possible values of x. However, we can see that when x is zero, we have the following: yx = limx→0 x2 = ∞ Which means that x is between -M and M, but the value yx is not between y-M and yM . Therefore, this system is not stable.
25.4 Poles and Stability When the poles of the closed-loop transfer function of a given system are located in the right-half of the S-plane (RHP), the system becomes unstable. When the poles of the system are located in the left-half plane (LHP), the system is shown to be stable. A number of tests deal with this particular facet of stability: The Routh-Hurwitz Criteria, the Root-Locus, and the Nyquist Stability Criteria all test whether there are poles of the transfer function in the RHP. We will learn about all these tests in the upcoming chapters. If the system is a multivariable, or a MIMO system, then the system is stable if and only if every pole of every transfer function in the transfer function matrix has a negative real part. For these systems, it is possible to use the Routh-Hurwitz, Root Locus, and Nyquist methods described later, but these methods must be performed once for each individual transfer function in the transfer function matrix.
25.5 Poles and Eigenvalues Note: Every pole of G(s) is an eigenvalue of the system matrix A. However, not every eigenvalue of A is a pole of G(s). The poles of the transfer function, and the eigenvalues of the system matrix A are related. In fact, we can say that the eigenvalues of the system matrix A are the poles of the transfer function of the system. In this way, if we have the eigenvalues of a system in the state-space domain, we can use the Routh-Hurwitz, and Root Locus methods as if we had our system represented by a transfer function instead. On a related note, eigenvalues and all methods and mathematical techniques that use eigenvalues to determine system stability only work with time-invariant systems. In systems which are time-variant, the methods using eigenvalues to determine system stability fail.
177
Stability
25.6 Transfer Functions Revisited We are going to have a brief refesher here about transfer functions, because several of the later chapters will use transfer functions for analyzing system stability. Let us remember our generalized feedback-loop transfer function, with a gain element of K, a forward path Gp(s), and a feedback of Gb(s). We write the transfer function for this system as: Hcl (s) =
KGp(s) 1 + Hol (s)
Where Hcl is the closed-loop transfer function, and Hol is the open-loop transfer function. Again, we define the open-loop transfer function as the product of the forward path and the feedback elements, as such: Hol (s) = KGp(s)Gb(s) Now, we can define F(s) to be the characteristic equation. F(s) is simply the denominator of the closed-loop transfer function, and can be defined as such: Characteristic Equation F (s) = 1 + Hol = D(s) We can say conclusively that the roots of the characteristic equation are the poles of the transfer function. Now, we know a few simple facts: 1. The locations of the poles of the closed-loop transfer function determine if the system is stable or not 2. The zeros of the characteristic equation are the poles of the closed-loop transfer function. 3. The characteristic equation is always a simpler equation than the closed-loop transfer function. These functions combined show us that we can focus our attention on the characteristic equation, and find the roots of that equation.
25.7 State-Space and Stability As we have discussed earlier, the system is stable if the eigenvalues of the system matrix A have negative real parts. However, there are other stability issues that we can analyze, such as whether a system is uniformly stable, asymptotically stable, or otherwise. We will discuss all these topics in a later chapter.
178
Marginal Stablity
25.8 Marginal Stablity When the poles of the system in the complex S-Domain exist on the complex frequency axis (the vertical axis), or when the eigenvalues of the system matrix are imaginary (no real part), the system exhibits oscillatory characteristics, and is said to be marginally stable. A marginally stable system may become unstable under certain circumstances, and may be perfectly stable under other circumstances. It is impossible to tell by inspection whether a marginally stable system will become unstable or not. We will discuss marginal stability more in the following chapters.
179
26 Introduction to Digital Controls 26.1 Discrete-Time Stability The stability analysis of a discrete-time or digital system is similar to the analysis for a continuous time system. However, there are enough differences that it warrants a separate chapter.
26.2 Input-Output Stability 26.2.1 Uniform Stability An LTI causal system is uniformly BIBO stable if there exists a positive constant L such that the following conditions: x[n0 ] = 0 [n]k ≤ k k≥0 imply that [n]k ≤ L
26.2.2 Impulse Response Matrix We can define the impulse response matrix of a discrete-time system as: Impulse Response Matrix (
G[n] =
CAk−1 B 0
if k > 0 if k ≤ 0
Or, in the general time-varying case:
181
Introduction to Digital Controls
(
G[n] =
Cφ[n, n0 ]B 0
if k > 0 if k ≤ 0
A digital system is BIBO stable if and only if there exists a positive constant L such that for all non-negative k: k X
[n]k ≤ L
n=0
26.3 Stability of Transfer Function A MIMO discrete-time system is BIBO stable if and only if every pole of every transfer function in the transfer function matrix has a magnitude less than 1. All poles of all transfer functions must exist inside the unit circle on the Z plane.
26.4 Lyapunov Stability There is a discrete version of the Lyapunov stability theorem that applies to digital systems. Given the discrete Lyapunov equation: Digital Lypapunov Equation AT M A − M = −N We can use this version of the Lyapunov equation to define a condition for stability in discrete-time systems: Lyapunov Stability Theorem (Digital Systems) A digital system with the system matrix A is asymptotically stable if and only if there exists a unique matrix M that satisfies the Lyapunov Equation for every positive definite matrix N.
26.5 Poles and Eigenvalues Every pole of G(z) is an eigenvalue of the system matrix A. Not every eigenvalue of A is a pole of G(z). Like the poles of the transfer function, all the eigenvalues of the system matrix must have magnitudes less than 1. Mathematically: q
Re(z)2 + Im(z)2 ≤ 1
If the magnitude of the eigenvalues of the system matrix A, or the poles of the transfer functions are greater than 1, the system is unstable.
182
Finite Wordlengths
26.6 Finite Wordlengths Digital computer systems have an inherent problem because implementable computer systems have finite wordlengths to deal with. Some of the issues are: 1. Real numbers can only be represented with a finite precision. Typically, a computer system can only accurately represent a number to a finite number of decimal points. 2. Because of the fact above, computer systems with feedback can compound errors with each program iteration. Small errors in one step of an algorithm can lead to large errors later in the program. 3. Integer numbers in computer systems have finite lengths. Because of this, integer numbers will either roll-over, or saturate, depending on the design of the computer system. Both situations can create inaccurate results.
183
27 Routh-Hurwitz Criterion 27.1 Stability Criteria The Routh-Hurwitz stability criterion provides a simple algorithm to decide whether or not the zeros of a polynomial are all in the left half of the complex plane (such a polynomial is called at times "Hurwitz"). A Hurwitz polynomial is a key requirement for a linear continuous-time time invariant to be stable (all bounded inputs produce bounded outputs). Necessary stability conditions Conditions that must hold for a polynomial to be Hurwitz. If any of them fails - the polynomial is not stable. However, they may all hold without implying stability. Sufficient stability conditions Conditions that if met imply that the polynomial is stable. However, a polynomial may be stable without implying some or any of them. The Routh criteria provides condition that are both necessary and sufficient for a polynomial to be Hurwitz.
27.2 Routh-Hurwitz Criteria The Routh-Hurwitz criteria is comprised of three separate tests that must be satisfied. If any single test fails, the system is not stable and further tests need not be performed. For this reason, the tests are arranged in order from the easiest to determine to the hardest. The Routh Hurwitz test is performed on the denominator of the transfer function, the characteristic equation. For instance, in a closed-loop transfer function with G(s) in the forward path, and H(s) in the feedback loop, we have: T (s) =
G(s) 1 + G(s)H(s)
If we simplify this equation, we will have an equation with a numerator N(s), and a denominator D(s): T (s) =
N (s) D(s)
The Routh-Hurwitz criteria will focus on the denominator polynomial D(s).
185
Routh-Hurwitz Criterion
27.2.1 Routh-Hurwitz Tests Here are the three tests of the Routh-Hurwitz Criteria. For convenience, we will use N as the order of the polynomial (the value of the highest exponent of s in D(s)). The equation D(s) can be represented generally as follows: D(s) = a0 + a1 s + a2 s2 + · · · + aN sN Rule 1 All the coefficients ai must be present (non-zero) Rule 2 All the coefficients ai must be positive (equivalently all of them must be negative, with no sign change) Rule 3 If Rule 1 and Rule 2 are both satisfied, then form a Routh array from the coefficients ai . There is one pole in the right-hand s-plane for every sign change of the members in the first column of the Routh array (any sign changes, therefore, mean the system is unstable). We will explain the Routh array below.
27.2.2 The Routh Array The Routh array is formed by taking all the coefficients ai of D(s), and staggering them in array form. The final columns for each row should contain zeros:
sN aN aN −2 · · · 0 N −1 aN −1 aN −3 · · · 0 s Therefore, if N is odd, the top row will be all the odd coefficients. If N is even, the top row will be all the even coefficients. We can fill in the remainder of the Routh Array as follows: sN aN aN −2 N s −1 aN −1 aN −3 bN −1 bN −3 cN −1 cN −3 0 s ···
· · · 0 · · · 0 ··· · · ·
Now, we can define all our b, c, and other coefficients, until we reach row s0 . To fill them in, we use the following formulae:
−1 aN aN −2 bN −1 = aN −1 aN −1 aN −3 And
186
Routh-Hurwitz Criteria
−1 aN aN −4 bN −3 = aN −1 aN −1 aN −5 For each row that we are computing, we call the left-most element in the row directly above it the pivot element. For instance, in row b, the pivot element is aN-1 , and in row c, the pivot element is bN-1 and so on and so forth until we reach the bottom of the array. To obtain any element, we negate the determinant of the following matrix, and divide by the pivot element: k l
m n
Where: • • • •
k is the left-most element two rows above the current row. l is the pivot element. m is the element two rows up, and one column to the right of the current element. n is the element one row up, and one column to the right of the current element.
In terms of k l m n, our equation is: (lm) − (kn) l
v=
27.2.3 Example: Calculating CN-3 To calculate the value CN-3 , we must determine the values for k l m and n: • • • •
k is the left-most element two rows up: aN-1 l the pivot element, is the left-most element one row up: bN-1 m is the element from one-column to the right, and up two rows: aN-5 n is the element one column right, and one row up: bN-5 Plugging this into our equation gives us the formula for CN-3 :
−1 aN −1 aN −5 aN −1 bN −5 − bN −1 aN −5 = bN −1 bN −1 bN −5 −bN −1
27.2.4 Example: Stable Third Order System We are given a system with the following characteristic equation: D(s) = s3 + 2s2 + 4s + 3 Using the first two requirements, we see that all the coefficients are non-zero, and all of the coefficients are positive. We will proceed then to construct the Routh-Array:
187
Routh-Hurwitz Criterion
s3 1 4 3 s2 2 1 s bN −1 bN −3 s0 cN −1 cN −3
0 0 0 0
And we can calculate out all the coefficients: bN −1 =
(2)(4)−(1)(3) 2
=
bN −3 =
(2)(0)−(0)(1) 2
=0
cN −1 = cN −3 =
(3)( 52 )−(2)(0) 5 2
(2)(0)−( 52 )(0) 5 2
5 2
=3 =0
And filling these values into our Routh Array, we can determine whether the system is stable:
s3 1 s2 2 s1 52 s0 3
4 3 0 0
0 0 0 0
From this array, we can clearly see that all of the signs of the first column are positive, there are no sign changes, and therefore there are no poles of the characteristic equation in the RHP.
27.2.5 Special Case: Row of All Zeros If, while calculating our Routh-Hurwitz, we obtain a row of all zeros, we do not stop, but can actually learn more information about our system. If we obtain a row of all zeros, we can replace the zeros with a value ε, that we define as being an infinitely small positive number. We can use the value of epsilon in our equations, and when we are done constructing the Routh Array, we can take the limit as epsilon approaches 0 to determine the final format of our Routh array. If we have a row of all zeros, the row directly above it is known as the Auxiliary Polynomial, and can be very helpful. The roots of the auxiliary polynomial give us the precise locations of complex conjugate roots that lie on the jω axis. However, one important point to notice is that if there are repeated roots on the jω axis, the system is actually unstable. Therefore, we must use the auxiliary polynomial to determine whether the roots are repeated or not.
27.2.6 Special Case: Zero in the First Column In this special case, there is a zero in the first column of the Routh Array, but the other elements of that row are non-zero. Like the above case, we can replace the zero with a small variable epsilon (ε) and use that variable to continue our calculations. After we have constructed the entire array, we can take the limit as epsilon approaches zero to get our final values.
188
28 Jury's Test 28.1 Routh-Hurwitz in Digital Systems Because of the differences in the Z and S domains, the Routh-Hurwitz criteria can not be used directly with digital systems. This is because digital systems and continuous-time systems have different regions of stability. However, there are some methods that we can use to analyze the stability of digital systems. Our first option (and arguably not a very good option) is to convert the digital system into a continuous-time representation using the bilinear transform. The bilinear transform converts an equation in the Z domain into an equation in the W domain, that has properties similar to the S domain. Another possibility is to use Jury's Stability Test. Jury's test is a procedure similar to the RH test, except it has been modified to analyze digital systems in the Z domain directly.
28.1.1 Bilinear Transform One common, but time-consuming, method of analyzing the stability of a digital system in the z-domain is to use the bilinear transform to convert the transfer function from the z-domain to the w-domain. The w-domain is similar to the s-domain in the following ways: • Poles in the right-half plane are unstable • Poles in the left-half plane are stable • Poles on the imaginary axis are partially stable The w-domain is warped with respect to the s domain, however, and except for the relative position of poles to the imaginary axis, they are not in the same places as they would be in the s-domain. Remember, however, that the Routh-Hurwitz criterion can tell us whether a pole is unstable or not, and nothing else. Therefore, it doesn't matter where exactly the pole is, so long as it is in the correct half-plane. Since we know that stable poles are in the left-half of the w-plane and the s-plane, and that unstable poles are on the right-hand side of both planes, we can use the Routh-Hurwitz test on functions in the w domain exactly like we can use it on functions in the s-domain.
28.1.2 Other Mappings There are other methods for mapping an equation in the Z domain into an equation in the S domain, or a similar domain. We will discuss these different methods in the Appendix1 .
1
Chapter 39 on page 251
189
Jury's Test
28.2 Jury's Test Jury's test is a test that is similar to the Routh-Hurwitz criterion, except that it can be used to analyze the stability of an LTI digital system in the Z domain. To use Jury's test to determine if a digital system is stable, we must check our z-domain characteristic equation against a number of specific rules and requirements. If the function fails any requirement, it is not stable. If the function passes all the requirements, it is stable. Jury's test is a necessary and sufficient test for stability in digital systems. Again, we call D(z) the characteristic polynomial of the system. It is the denominator polynomial of the Z-domain transfer function. Jury's test will focus exclusively on the Characteristic polynomial. To perform Jury's test, we must perform a number of smaller tests on the system. If the system fails any test, it is unstable.
28.2.1 Jury Tests Given a characteristic equation in the form: D(z) = a0 + a1 z + a2 z 2 + · · · + aN z N The following tests determine whether this system has any poles outside the unit circle (the instability region). These tests will use the value N as being the degree of the characteristic polynomial. The system must pass all of these tests to be considered stable. If the system fails any test, you may stop immediately: you do not need to try any further tests. Rule 1 If z is 1, the system output must be positive: D(1) > 0 Rule 2 If z is -1, then the following relationship must hold: (−1)N D(−1) > 0 Rule 3 The absolute value of the constant term (a0 ) must be less than the value of the highest coefficient (aN ): |a0 | < aN If Rule 1 Rule 2 and Rule 3 are satisified, construct the Jury Array (discussed below). Rule 4
190
Jury's Test Once the Jury Array has been formed, all the following relationships must be satisifed until the end of the array: |b0 | > |bN −1 | |c0 | > |cN −2 | |d0 | > |dN −3 | And so on until the last row of the array. If all these conditions are satisifed, the system is stable. While you are constructing the Jury Array, you can be making the tests of Rule 4. If the Array fails Rule 4 at any point, you can stop calculating the array: your system is unstable. We will discuss the construction of the Jury Array below.
28.2.2 The Jury Array The Jury Array is constructed by first writing out a row of coefficients, and then writing out another row with the same coefficients in reverse order. For instance, if your polynomial is a third order system, we can write the First two lines of the Jury Array as follows: z0 a0 aN
z1 z2 z3 . . . zN a1 a2 a3 . . . aN . . . a3 a2 a1 a0
Now, once we have the first row of our coefficients written out, we add another row of coefficients (we will use b for this row, and c for the next row, as per our previous convention), and we will calculate the values of the lower rows from the values of the upper rows. Each new row that we add will have one fewer coefficient then the row before it: 1) 2) 3) 4) .. . 2N − 3)
a0 aN b0 bN −1 .. .
a1 ... b1 ... .. .
a2 a3 . . . aN a 3 a2 a1 a0 b2 . . . bN −1 b2 b1 b0 .. .
v0
v1
v2
Note: The last file is the (2N-3) file, and always has 3 elements. This test doesn't have sense if N=1, but in this case you know the pole! Once we get to a row with 2 members, we can stop constructing the array. To calculate the values of the odd-number rows, we can use the following formulae. The even number rows are equal to the previous row in reverse order. We will use k as an arbitrary subscript value. These formulae are reusable for all elements in the array:
191
Jury's Test
a bk = 0 aN
aN −k ak
b ck = 0 bN −1
bN −1−k bk
c dk = 0 cN −2
cN −2−k ck
This pattern can be carried on to all lower rows of the array, if needed.
28.2.3 Example: Calculating e5 Give the equation for member e5 of the jury array (assuming the original polynomial is sufficiently large to require an e5 member). Going off the pattern we set above, we can have this equation for a member e: d ek = 0 dN −R
dN −R−k dk
Where we are using R as the subtractive element from the above equations. Since row c had R → 1, and row d had R → 2, we can follow the pattern and for row e set R → 3. Plugging this value of R into our equation above gives us: d ek = 0 dN −3
dN −3−k dk
And since we want e5 we know that k is 5, so we can substitute that into the equation: d e5 = 0 dN −3
dN −8 dN −3−5 d0 = d5 d5 dN −3
When we take the determinant, we get the following equation: e5 = d0 d5 − dN −8 dN −3
28.3 Further Reading We will discuss the bilinear transform, and other methods to convert between the Laplace domain and the Z domain in the appendix: • Z Transform Mappings2
2
192
Chapter 39 on page 251
29 Root Locus 29.1 The Problem Consider a system like a radio. The radio has a "volume" knob, that controls the amount of gain of the system. High volume means more power going to the speakers, low volume means less power to the speakers. As the volume value increases, the poles of the transfer function of the radio change, and they might potentially become unstable. We would like to find out if the radio becomes unstable, and if so, we would like to find out what values of the volume cause it to become unstable. Our current methods would require us to plug in each new value for the volume (gain, "K"), and solve the open-loop transfer function for the roots. This process can be a long one. Luckily, there is a method called the root-locus method, that allows us to graph the locations of all the poles of the system for all values of gain, K.
29.2 Root-Locus As we change gain, we notice that the system poles and zeros actually move around in the S-plane1 . This fact can make life particularly difficult, when we need to solve higher-order equations repeatedly, for each new gain value. The solution to this problem is a technique known as Root-Locus graphs. Root-Locus allows you to graph the locations of the poles and zeros for every value of gain, by following several simple rules. As we know that a fan switch also can control the speed of the fan. Let's say we have a closed-loop transfer function for a particular system: N (s) KG(s) = D(s) 1 + KG(s)H(s) Where N is the numerator polynomial and D is the denominator polynomial of the transfer functions, respectively. Now, we know that to find the poles of the equation, we must set the denominator to 0, and solve the characteristic equation. In other words, the locations of the poles of a specific equation must satisfy the following relationship: D(s) = 1 + KG(s)H(s) = 0 from this same equation, we can manipulate the equation as such:
1
http://en.wikibooks.org/wiki/S-plane
193
Root Locus
1 + KG(s)H(s) = 0 KG(s)H(s) = −1 And finally by converting to polar coordinates: ∠KG(s)H(s) = 180◦ Now we have 2 equations that govern the locations of the poles of a system for all gain values: The Magnitude Equation 1 + KG(s)H(s) = 0 The Angle Equation ∠KG(s)H(s) = 180◦
29.2.1 Digital Systems The same basic method can be used for considering digital systems in the Z-domain: KG(z) N (z) = D(z) 1 + KGH(z) Where N is the numerator polynomial in z, D is the denominator polynomial in z, and GH(z) is the open-loop transfer function of the system, in the Z domain. The denominator D(z), by the definition of the characteristic equation is equal to: D(z) = 1 + KGH(z) = 0 We can manipulate this as follows: 1 + KGH(z) = 0
KGH(z) = −1 We can now convert this to polar coordinates, and take the angle of the polynomial: ∠KGH(z) = 180◦
194
The Root-Locus Procedure We are now left with two important equations: The Magnitude Equation 1 + KGH(z) = 0 The Angle Equation ∠KGH(z) = 180◦ If you will compare the two, the Z-domain equations are nearly identical to the S-domain equations, and act exactly the same. For the remainder of the chapter, we will only consider the S-domain equations, with the understanding that digital systems operate in nearly the same manner.
29.3 The Root-Locus Procedure Note: In this section, the rules for the S-Plane and the Z-plane are the same, so we won't refer to the differences between them. In the transform domain (see note at right), when the gain is small, the poles start at the poles of the open-loop transfer function. When gain becomes infinity, the poles move to overlap the zeros of the system. This means that on a root-locus graph, all the poles move towards a zero. Only one pole may move towards one zero, and this means that there must be the same number of poles as zeros. If there are fewer zeros than poles in the transfer function, there are a number of implicit zeros located at infinity, that the poles will approach. First thing, we need to convert the magnitude equation into a slightly more convenient form: KG(s)H(s) + 1 = 0 → G(s)H(s) =
−1 K
Note: We generally use capital letters for functions in the frequency domain, but a(s) and b(s) are unimportant enough to be lower-case. Now, we can assume that G(s)H(s) is a fraction of some sort, with a numerator and a denominator that are both polynomials. We can express this equation using arbitrary functions a(s) and b(s), as such: a(s) −1 = b(s) K
195
Root Locus We will refer to these functions a(s) and b(s) later in the procedure. We can start drawing the root-locus by first placing the roots of b(s) on the graph with an 'X'. Next, we place the roots of a(s) on the graph, and mark them with an 'O'. poles are marked on the graph with an 'X' and zeros are marked with an 'O' by common convention. These letters have no particular meaning Next, we examine the real-axis. starting from the right-hand side of the graph and traveling to the left, we draw a root-locus line on the real-axis at every point to the left of an odd number of poles or zeros on the real-axis. This may sound tricky at first, but it becomes easier with practice. double poles or double zeros count as two. Now, a root-locus line starts at every pole. Therefore, any place that two poles appear to be connected by a root locus line on the real-axis, the two poles actually move towards each other, and then they "break away", and move off the axis. The point where the poles break off the axis is called the breakaway point. From here, the root locus lines travel towards the nearest zero. It is important to note that the s-plane is symmetrical about the real axis, so whatever is drawn on the top-half of the S-plane, must be drawn in mirror-image on the bottom-half plane. Once a pole breaks away from the real axis, they can either travel out towards infinity (to meet an implicit zero), or they can travel to meet an explicit zero, or they can re-join the real-axis to meet a zero that is located on the real-axis. If a pole is traveling towards infinity, it always follows an asymptote. The number of asymptotes is equal to the number of implicit zeros at infinity.
29.4 Root Locus Rules Here is the complete set of rules for drawing the root-locus graph. We will use p and z to denote the number of poles and the number of zeros of the open-loop transfer function, respectively. We will use Pi and Zi to denote the location of the ith pole and the ith zero, respectively. Likewise, we will use ψ i and ρi to denote the angle from a given point to the ith pole and zero, respectively. All angles are given in radians (π denotes π radians). There are 11 rules that, if followed correctly, will allow you to create a correct root-locus graph. Rule 1 There is one branch of the root-locus for every root of b(s). Rule 2 The roots of b(s) are the poles of the open-loop transfer function. Mark the roots of b(s) on the graph with an X. Rule 3
196
Root Locus Rules The roots of a(s) are the zeros of the open-loop transfer function. Mark the roots of a(s) on the graph with an O. There should be a number of O's less than or equal to the number of X's. There is a number of zeros p - z located at infinity. These zeros at infinity are called "implicit zeros". All branches of the root-locus will move from a pole to a zero (some branches, therefore, may travel towards infinity). Rule 4 A point on the real axis is a part of the root-locus if it is to the left of an odd number of poles and zeros. Rule 5 The gain at any point on the root locus can be determined by the inverse of the absolute value of the magnitude equation. b(s) a(s) = |K|
Rule 6 The root-locus diagram is symmetric about the real-axis. All complex roots are conjugates. Rule 7 Two roots that meet on the real-axis will break away from the axis at certain break-away points. If we set s → σ (no imaginary part), we can use the following equation: K =−
b(σ) a(σ)
And differentiate to find the local maximum: dK d b(σ) = dσ dσ a(σ) Rule 8 The breakaway lines of the root locus are separated by angles of of poles intersecting at the breakaway point.
π α,
where α is the number
Rule 9 The breakaway root-loci follow asymptotes that intersect the real axis at angles ϕω given by: φω =
π + 2N π , p−z
N = 0, 1, ...p − z − 1
The origin of these asymptotes, OA, is given as the sum of the pole locations, minus the sum of the zero locations, divided by the difference between the number of poles and zeros:
197
Root Locus
P
OA =
p Pi −
P
z Zi
p−z
The OA point should lie on the real axis. Rule 10 The branches of the root locus cross the imaginary axis at points where the angle equation value is π (i.e., 180o ). Rule 11 The angles that the root locus branch makes with a complex-conjugate pole or zero is determined by analyzing the angle equation at a point infinitessimally close to the pole or zero. The angle of departure, ϕd is given by the following equation: X
ψi +
p
X
ρi + φd = π
z
The angle of arrival, ϕa , is given by: X
ρi +
z
X
ψi + φa = π
p
We will explain these rules in the rest of the chapter.
29.5 Root Locus Equations Here are the two major equations: Root Locus Equations {| class="wikitable" ! S-Domain Equations !! Z-Domain Equations |- |1 + KG(s)H(s) = 0 |1 + KGH(z) = 0 ||∠KG(s)H(s) = 180o |∠KGH(z) = 180o |} Note that the sum of the angles of all the poles and zeros must equal to 180.
29.5.1 Number of Asymptotes If the number of explicit zeros of the system is denoted by Z (uppercase z), and the number of poles of the system is given by P, then the number of asymptotes (Na ) is given by: Number of Asymptotes Na = P − Z
198
Root Locus and Stability The angles of the asymptotes are given by: Angle of Asymptotes φk = (2k + 1)
π P −Z
for values of k = [0, 1, ...Na − 1]. The angles for the asymptotes are measured from the positive real-axis
29.5.2 Asymptote Intersection Point The asymptotes intersect the real axis at the point: Origin of Asymptotes − Z P −Z
P
σ0 = P
P
P
Where P is the sum of all the locations of the poles, and of the explicit zeros.
P
Z
is the sum of all the locations
29.5.3 Breakaway Points The breakaway points are located at the roots of the following equation: Breakaway Point Locations dG(s)H(s) ds
= 0 or
dGH(z) dz
=0
Once you solve for z, the real roots give you the breakaway/reentry points. Complex roots correspond to a lack of breakaway/reentry. The breakaway point equation can be difficult to solve, so many times the actual location is approximated.
29.6 Root Locus and Stability The root locus procedure should produce a graph of where the poles of the system are for all values of gain K. When any or all of the roots of D are in the unstable region, the system is unstable. When any of the roots are in the marginally stable region, the system is marginally stable (oscillatory). When all of the roots of D are in the stable region, then the system is stable. It is important to note that a system that is stable for gain K1 may become unstable for a different gain K2 . Some systems may have poles that cross over from stable to unstable multiple times, giving multiple gain values for which the system is unstable. Here is a quick refresher:
199
Root Locus {|class="wikitable" ! Region ! colspan=2 | S-Domain ! colspan=2 | Z-Domain |- ! Stable Region | Left-Hand S Plane || σ < 0|| Inside the Unit Circle || |z| < 1 |- ! Marginally Stable Region | The vertical axis || σ = 0 || The Unit Circle || |z| = 1 |- ! Unstable Region | Right-Hand S Plane || σ > 0 || Outside the Unit Circle, || |z| > 1 |}
29.7 Examples 29.7.1 Example 1: First-Order System Find the root-locus of the open-loop system: T (s) =
1 1+2s
If we look at the characteristic equation, we can quickly solve for the single pole of the system: D(s) = 1 + 2s = 0 s = − 12 We plot that point on our root-locus graph, and everything on the real axis to the left of that single point is on the root locus (from the rules, above). Therefore, the root locus of our system looks like this:
Figure 74 From this image, we can see that for all values of gain this system is stable.
200
Examples
29.7.2 Example 2: Third Order System We are given a system with three real poles, shown by the transfer function: T (s) =
1 (s+1)(s+2)(s+3)
Is this system stable? To answer this question, we can plot the root-locus. First, we draw the poles on the graph at locations -1, -2, and -3. The real-axis between the first and second poles is on the root-locus, as well as the real axis to the left of the third pole. We know also that there is going to be breakaway from the real axis at some point. The origin of asymptotes is located at: OA =
−1+−2+−3 3
= −2,
and the angle of the asymptotes is given by: φ=
180(2k+1) f ork 3
= 0, 1, 2
We know that the breakaway occurs between the first and second poles, so we will estimate the exact breakaway point. Drawing the root-locus gives us the graph below.
201
Root Locus
Figure 75
We can see that for low values of gain the system is stable, but for higher values of gain, the system becomes unstable.
29.7.3 Example: Complex-Conjugate Zeros Find the root-locus graph for the following system transfer function: 2
+4.5s+5.625 T (s) = K s s(s+1)(s+2)
202
Examples If we look at the denominator, we have poles at the origin, -1, and -2. Following Rule 4, we know that the real-axis between the first two poles, and the real axis after the third pole are all on the root-locus. We also know that there is going to be a breakaway point between the first two poles, so that they can approach the complex conjugate zeros. If we use the quadratic equation on the numerator, we can find that the zeros are located at: s = (−2.25 + j0.75), (−2.25 − j0.75) If we draw our graph, we get the following:
Figure 76
We can see from this graph that the system is stable for all values of K.
29.7.4 Example: Root-Locus Using MATLAB/Octave Use MATLAB, Octave, or another piece of mathematical simulation software to produce the root-locus graph for the following system: T (s) = K (s+3)(ss+2 2 +2s+2) First, we must multiply through in the denominator:
203
Root Locus D(s) = s3 + 5s2 + 8s + 6 Now, we can generate the coefficient vectors from the numerator and denominator: num = [0 0 1 2]; den = [1 5 8 6]; Next, we can feed these vectors into the rlocus command: rlocus(num, den); Note:In Octave, we need to create a system structure first, by typing: sys = tf(num, den); rlocus(sys); Either way, we generate the following graph:
Figure 77
204
30 Nyquist Criterion 30.1 Nyquist Stability Criteria The Nyquist Stability Criteria is a test for system stability, just like the Routh-Hurwitz1 test, or the Root-Locus2 Methodology. However, the Nyquist Criteria can also give us additional information about a system. Routh-Hurwitz and Root-Locus can tell us where the poles of the system are for particular values of gain. By altering the gain of the system, we can determine if any of the poles move into the RHP, and therefore become unstable. The Nyquist Criteria, however, can tell us things about the frequency characteristics of the system. For instance, some systems with constant gain might be stable for low-frequency inputs, but become unstable for high-frequency inputs. Here is an example of a system responding differently to different frequency input values: Consider an ordinary glass of water. If the water is exposed to ordinary sunlight, it is unlikely to heat up too much. However, if the water is exposed to microwave radiation (from inside your microwave oven, for instance), the water will quickly heat up to a boil. Also, the Nyquist Criteria can tell us things about the phase of the input signals, the time-shift of the system, and other important information.
30.2 Contours A contour is a complicated mathematical construct, but luckily we only need to worry ourselves with a few points about them. We will denote contours with the Greek letter Γ (gamma). Contours are lines, drawn on a graph, that follow certain rules: 1. 2. 3. 4.
The contour must close (it must form a complete loop) The contour may not cross directly through a pole of the system. Contours must have a direction (clockwise or counterclockwise, generally). A contour is called "simple" if it has no self-intersections. We only consider simple contours here.
Once we have such a contour, we can develop some important theorems about them, and finally use these theorems to derive the Nyquist stability criterion.
1 2
Chapter 27 on page 185 Chapter 29 on page 193
205
Nyquist Criterion
30.3 Argument Principle w:Argument principle3 Here is the argument principle, which we will use to derive the stability criterion. Do not worry if you do not understand all the terminology, we will walk through it: The Argument Principle If we have a contour, Γ, drawn in one plane (say the complex laplace plane, for instance), we can map that contour into another plane, the F(s) plane, by transforming the contour with the function F(s). The resultant contour, ΓF (s) will circle the origin point of the F(s) plane N times, where N is equal to the difference between Z and P (the number of zeros and poles of the function F(s), respectively). When we have our contour, Γ, we transform it into ΓF (s) by plugging every point of the contour into the function F(s), and taking the resultant value to be a point on the transformed contour.
30.3.1 Example: First Order System Let's say, for instance, that Γ is a unit square contour in the complex s plane. The vertices of the square are located at points I,J,K,L, as follows: I = 1 + j1 J = 1 − j1 K = −1 − j1 L = −1 + j1 we must also specify the direction of our contour, and we will say (arbitrarily) that it is a clockwise contour (travels from I to J to K to L). We will also define our transform function, F(s), to be the following: F (s) = 2s + 1 We can factor the denominator of F(s), and we can show that there is one zero at s → -0.5, and no poles. Plotting this root on the same graph as our contour, we see clearly that it lies within the contour. Since s is a complex variable, defined with real and imaginary parts as: s = σ + jω We know that F(s) must also be complex. We will say, for reasons of simplicity, that the axes in the F(s) plane are u and v, and are related as such: F (s) = u + jv = 2(σ + jω) + 1 From this relationship, we can define u and v in terms of σ and ω:
3
206
http://en.wikipedia.org/wiki/Argument%20principle
Argument Principle u = 2σ + 1 v = 2ω Now, to transform Γ, we will plug every point of the contour into F(s), and the resultant values will be the points of ΓF (s) . We will solve for complex values u and v, and we will start with the vertices, because they are the simplest examples: u + jv = F (I) = 3 + j2 u + jv = F (J) = 3 − j2 u + jv = F (K) = −1 + j2 u + jv = F (L) = −1 − j2 We can take the lines in between the vertices as a function of s, and plug the entire function into the transform. Luckily, because we are using straight lines, we can simplify very much: • • • •
Line from I to J: σ = 1, u = 3, v = ω Line from J to K: ω = −1, u = 2σ + 1, v = −1 Line from K to L: σ = −1, u = −1, v = ω Line from L to I: ω = 1, u = 2σ + 1, v = 1 And when we graph these functions, from vertex to vertex, we see that the resultant contour in the F(s) plane is a square, but not centered at the origin, and larger in size. Notice how the contour encircles the origin of the F(s) plane one time. This will be important later on.
30.3.2 Example:Second-Order System Let's say that we have a slightly more complicated mapping function: F (s) =
s+0.5 2s2 +2s+1
We can see clearly that F(s) has a zero at s → -0.5, and a complex conjugate set of poles at s → -0.5 + j0.5 and s → -0.5 - j0.5. We will use the same unit square contour, Γ, from above: I = 1 + j1 J = 1 − j1 K = −1 − j1 L = −1 + j1 We can see clearly that the poles and the zero of F(s) lie within Γ. Setting F(s) to u + jv and solving, we get the following relationships: u + jv = F (σ + jω) =
(σ+0.5)+j(ω) (2σ 2 −2ω 2 +2σ+1)+j(2σω+ω)
This is a little difficult now, because we need to simplify this whole expression, and separate it out into real and imaginary parts. There are two methods to doing this, neither of which is short or easy enough to demonstrate here to entirety:
207
Nyquist Criterion 1. We convert the numerator and denominator polynomials into a polar representation in terms of r and θ, then perform the division, and then convert back into rectangular format. 2. We plug each segment of our contour into this equation, and simplify numerically.
30.4 The Nyquist Contour The Nyquist contour, the contour that makes the entire nyquist criterion work, must encircle the entire unstable region of the complex plane. For analog systems, this is the right half of the complex s plane. For digital systems, this is the entire plane outside the unit circle. Remember that if a pole to the closed-loop transfer function (or equivalently a zero of the characteristic equation) lies in the unstable region of the complex plane, the system is an unstable system. Analog Systems The Nyquist contour for analog systems is an infinite semi-circle that encircles the entire right-half of the s plane. The semicircle travels up the imaginary axis from negative infinity to positive infinity. From positive infinity, the contour breaks away from the imaginary axis, in the clock-wise direction, and forms a giant semicircle. Digital Systems The Nyquist contour in digital systems is a counter-clockwise encirclement of the unit circle.
30.5 Nyquist Criteria w:Nyquist stability criterion4 Let us first introduce the most important equation when dealing with the Nyquist criterion: N = Z −P Where: • N is the number of encirclements of the (-1, 0) point. • Z is the number of zeros of the characteristic equation. • P is the number of poles of the open-loop characteristic equation. With this equation stated, we can now state the Nyquist Stability Criterion: Nyquist Stability Criterion A feedback control system is stable, if and only if the contour ΓF (s) in the F(s) plane does not encircle the (-1, 0) point when P is 0.
4
208
http://en.wikipedia.org/wiki/Nyquist%20stability%20criterion
Nyquist ↔ Bode A feedback control system is stable, if and only if the contour ΓF (s) in the F(s) plane encircles the (-1, 0) point a number of times equal to the number of poles of F(s) enclosed by Γ. w:Nyquist plot5 In other words, if P is zero then N must equal zero. Otherwise, N must equal P. Essentially, we are saying that Z must always equal zero, because Z is the number of zeros of the characteristic equation (and therefore the number of poles of the closed-loop transfer function) that are in the right-half of the s plane. Keep in mind that we don't necessarily know the locations of all the zeros of the characteristic equation. So if we find, using the nyquist criterion, that the number of poles is not equal to N, then we know that there must be a zero in the right-half plane, and that therefore the system is unstable.
30.6 Nyquist ↔ Bode A careful inspection of the Nyquist plot will reveal a surprising relationship to the Bode plots of the system. If we use the Bode phase plot as the angle θ, and the Bode magnitude plot as the distance r, then it becomes apparent that the Nyquist plot of a system is simply the polar representation of the Bode plots. To obtain the Nyquist plot from the Bode plots, we take the phase angle and the magnitude value at each frequency ω. We convert the magnitude value from decibels back into gain ratios. Then, we plot the ordered pairs (r, θ) on a polar graph.
30.7 Nyquist in the Z Domain The Nyquist Criteria can be utilized in the digital domain in a similar manner as it is used with analog systems. The primary difference in using the criteria is that the shape of the Nyquist contour must change to encompass the unstable region of the Z plane. Therefore, instead of an infinitesimal semi-circle, the Nyquist contour for digital systems is a counterclockwise unit circle. By changing the shape of the contour, the same N = Z - P equation holds true, and the resulting Nyquist graph will typically look identical to one from an analog system, and can be interpreted in the same way.
5
http://en.wikipedia.org/wiki/Nyquist%20plot
209
31 State-Space Stability 31.1 State-Space Stability If a system is represented in the state-space domain, it doesn't make sense to convert that system to a transfer function representation (or even a transfer matrix representation) in an attempt to use any of the previous stability methods. Luckily, there are other analysis methods that can be used with the state-space representation to determine if a system is stable or not. First, let us first introduce the notion of unstability: Unstable A system is said to be unstable if the system response approaches infinity as time approaches infinity. If our system is G(t), then, we can say a system is unstable if: lim (t)k = ∞
t→∞
Also, a key concept when we are talking about stability of systems is the concept of an equilibrium point: Equilibrium Point Given a system f such that: x0 (t) = f (x(t)) A particular state xe is called an equilibrium point if f (xe ) = 0 for all time t in the interval [t0 , ∞), where t0 is the starting time of the system. An equilibrium point is also known as a "stationary point", a "critical point", a "singular point", or a "rest state" in other books or literature. The definitions below typically require that the equilibrium point be zero. If we have an equilibrium point xe = a, then we can use the following change of variables to make the equilibrium point zero: x ¯ = xe − a = 0 We will also see below that a system's stability is defined in terms of an equilibrium point. Related to the concept of an equilibrium point is the notion of a zero point: Zero State A state xz is a zero state if xz = 0. A zero state may or may not be an equilibrium point.
211
State-Space Stability
31.1.1 Stability Definitions The equilibrium x = 0 of the system is stable if and only if the solutions of the zero-input state equation are bounded. Equivalently, x = 0 is a stable equilibrium if and only if for every initial time t0 , there exists an associated finite constant k(t0 ) such that: supt≥t0 kφ(t, t0 )k = k(t0 ) < ∞ Where sup is the supremum, or "maximum" value of the equation. The maximum value of this equation must never exceed the arbitrary finite constant k (and therefore it may not be infinite at any point). Uniform Stability The system is defined to be uniformly stable if it is stable for all initial values of t0 : supt≥0 [supt≥t0 kφ(t, t0 )k] = k0 < ∞ Uniform stability is a more general, and more powerful form of stability then was previously provided. Asymptotic Stability A system is defined to be asymptotically stable if: lim kφ(t, t0 )k = 0
t→∞
A time-invariant system is asymptotically stable if all the eigenvalues of the system matrix A have negative real parts. If a system is asymptotically stable, it is also BIBO stable. However the inverse is not true: A system that is BIBO stable might not be asymptotically stable. Uniform Asymptotic Stability A system is defined to be uniformly asymptotically stable if the system is asymptotically stable for all values of t0 . Exponential Stability A system is defined to be exponentially stable if the system response decays exponentially towards zero as time approaches infinity. For linear systems, uniform asymptotic stability is the same as exponential stability. This is not the case with non-linear systems.
31.1.2 Marginal Stability Here we will discuss some rules concerning systems that are marginally stable. Because we are discussing eigenvalues and eigenvectors, these theorems only apply to time-invariant systems.
212
Eigenvalues and Poles 1. A time-invariant system is marginally stable if and only if all the eigenvalues of the system matrix A are zero or have negative real parts, and those with zero real parts are simple roots of the minimal polynomial of A. 2. The equilibrium x = 0 of the state equation is uniformly stable if all eigenvalues of A have non-positive real parts, and there is a complete set of distinct eigenvectors associated with the eigenvalues with zero real parts. 3. The equilibrium x = 0 of the state equation is exponentially stable if and only if all eigenvalues of the system matrix A have negative real parts.
31.2 Eigenvalues and Poles An LTI system is stable (asymptotically stable, see above) if all the eigenvalues of A have negative real parts. Consider the following state equation: x0 = Ax(t) + Bu(t) We can take the Laplace Transform of both sides of this equation, using initial conditions of x0 = 0: sX(s) = AX(s) + BU (s) Subtract AX(s) from both sides: sX(s) − AX(s) = BU (s)
(sI − A)X(s) = BU (s) Assuming (sI - A) is nonsingular, we can multiply both sides by the inverse: X(s) = (sI − A)−1 BU (s) Now, if we remember our formula for finding the matrix inverse from the adjoint matrix: A−1 =
adj(A) |A|
We can use that definition here: X(s) =
adj(sI − A)BU (s) |(sI − A)|
Let's look at the denominator (which we will now call D(s)) more closely. To be stable, the following condition must be true:
213
State-Space Stability
D(s) = |(sI − A)| = 0 And if we substitute λ for s, we see that this is actually the characteristic equation of matrix A! This means that the values for s that satisfy the equation (the poles of our transfer function) are precisely the eigenvalues of matrix A. In the S domain, it is required that all the poles of the system be located in the left-half plane, and therefore all the eigenvalues of A must have negative real parts.
31.3 Impulse Response Matrix We can define the Impulse response matrix, G(t, τ ) in order to define further tests for stability: Impulse Response Matrix (
G(t, τ ) =
C(τ )φ(t, τ )B(τ ) 0
if t ≥ τ if t < τ
The system is uniformly stable if and only if there exists a finite positive constant L such that for all time t and all initial conditions t0 with t ≥ t0 the following integral is satisfied: Z t
(t, τ )τ ≤ L
0
In other words, the above integral must have a finite value, or the system is not uniformly stable. In the time-invariant case, the impulse response matrix reduces to: (
G(t) =
CeAt B 0
if t ≥ 0 if t < 0
In a time-invariant system, we can use the impulse response matrix to determine if the system is uniformly BIBO stable by taking a similar integral: Z ∞
(t) ≤ L
0
Where L is a finite constant.
31.4 Positive Definiteness These terms are important, and will be used in further discussions on this topic. • f(x) is positive definite if f(x) > 0 for all x.
214
Lyapunov Stability • f(x) is positive semi-definite if f (x) ≥ 0 for all x, and f(x) = 0 only if x = 0. • f(x) is negative definite if f(x) < 0 for all x. • f(x) is negative semi-definite if f (x) ≤ 0 for all x, and f(x) = 0 only if x = 0. A matrix X is positive definite if all its principle minors are positive. Also, a matrix X is positive definite if all its eigenvalues have positive real parts. These two methods may be used interchangeably. Positive definiteness is a very important concept. So much so that the Lyapunov stability test depends on it. The other categorizations are not as important, but are included here for completeness.
31.5 Lyapunov Stability 31.5.1 Lyapunov's Equation For linear systems, we can use the Lyapunov Equation, below, to determine if a system is stable. We will state the Lyapunov Equation first, and then state the Lyapunov Stability Theorem. Lyapunov Equation M A + AT M = −N Where A is the system matrix, and M and N are p × p square matrices. Lyapunov Stability Theorem An LTI system x0 = Ax is stable if there exists a matrix M that satisfies the Lyapunov Equation where N is an arbitrary positive definite matrix, and M is a unique positive definite matrix. Notice that for the Lyapunov Equation to be satisfied, the matrices must be compatible sizes. In fact, matrices A, M, and N must all be square matrices of equal size. Alternatively, we can write: Lyapunov Stability Theorem (alternate) If all the eigenvalues of the system matrix A have negative real parts, then the Lyapunov Equation has a unique solution M for every positive definite matrix N, and the solution can be calculated by: Z ∞
M=
T
eA t N eAt dt
0
If the matrix M can be calculated in this manner, the system is asymptotically stable.
215
32 Controllability and Observability 32.1 System Interaction In the world of control engineering, there are a slew of systems available that need to be controlled. The task of a control engineer is to design controller and compensator units to interact with these pre-existing systems. However, some systems simply cannot be controlled (or, more often, cannot be controlled in specific ways). The concept of controllability refers to the ability of a controller to arbitrarily alter the functionality of the system plant. The state-variable of a system, x, represents the internal workings of the system that can be separate from the regular input-output relationship of the system. This also needs to be measured, or observed. The term observability describes whether the internal state variables of the system can be externally measured.
32.2 Controllability We will start off with the definitions of the term controllability, and the related term reachability Controllability A system with internal state vector x is called controllable if and only if the system states can be changed by changing the system input. Reachability A particular state x1 is called reachable if there exists an input that transfers the state of the system from the initial state x0 to x1 in some finite time interval [t0 , t). We can also write out the definition of reachability more precisely: A state x1 is called reachable at time t1 if for some finite initial time t0 there exists an input u(t) that transfers the state x(t) from the origin at t0 to x1 . A system is reachable at time t1 if every state x1 in the state-space is reachable at time t1 . Similarly, we can more precisely define the concept of controllability: A state x0 is controllable at time t0 if for some finite time t1 there exists an input u(t) that transfers the state x(t) from x0 to the origin at time t1 . A system is called controllable at time t0 if every state x0 in the state-space is controllable.
217
Controllability and Observability
32.2.1 Controllability Matrix For LTI systems, a system is reachable if and only if its controllability matrix, ζ, has a full row rank of p, where p is the dimension of the matrix A, and p × q is the dimension of matrix B. Controllability Matrix h
i
ζ = B AB A2 B · · · Ap−1 B ∈ Rp×pq A system is controllable or "Controllable to the origin" when any state x1 can be driven to the zero state x = 0 in a finite number of steps. A system is controllable when the rank of the system matrix A is p, and the rank of the controllability matrix is equal to: Rank(ζ) = Rank(A−1 ζ) = p If the second equation is not satisfied, the system is not . MATLAB allows one to easily create the controllability matrix with the ctrb command. To create the controllabilty matrix ζ simply type zeta=ctrb(A,B) where A and B are mentioned above. Then in order to determine if the system is controllable or not one can use the rank command to determine if it has full rank. If Rank(A) < p Then controllability does not imply reachability. • Reachability always implies controllability. • Controllability only implies reachability when the state transition matrix is nonsingular.
32.2.2 Determining Reachability There are four methods that can be used to determine if a system is reachable or not: 1. If the p rows of φ(t, τ )B(t) are linearly independent over the field of complex numbers. That is, if the rank of the product of those two matrices is equal to p for all values of t and τ 2. If the rank of the controllability matrix is the same as the rank of the system matrix A. 3. If the rank of rank[λI − A, B] = p for all eigenvalues λ of the matrix A. 4. If the rank of the reachability gramian (described below) is equal to the rank of the system matrix A.
218
Controllability Each one of these conditions is both necessary and sufficient. If any one test fails, all the tests will fail, and the system is not reachable. If any test is positive, then all the tests will be positive, and the system is reachable.
32.2.3 Gramians Gramians are complicated mathematical functions that can be used to determine specific things about a system. For instance, we can use gramians to determine whether a system is controllable or reachable. Gramians, because they are more complicated than other methods, are typically only used when other methods of analyzing a system fail (or are too difficult). All the gramians presented on this page are all matrices with dimension p × p (the same size as the system matrix A). All the gramians presented here will be described using the general case of Linear time-variant systems. To change these into LTI (time-invariant equations), the following substitutions can be used: φ(t, τ ) → eA(t−τ ) 0
φ0 (t, τ ) → eA (t−τ ) Where we are using the notation X' to denote the transpose of a matrix X (as opposed to the traditional notation XT ).
32.2.4 Reachability Gramian We can define the reachability gramian as the following integral: Reachability Gramian Z t1
Wr (t0 , t1 ) =
φ(t1 , τ )B(τ )B 0 (τ )φ0 (t1 , τ )dτ
t0
The system is reachable if the rank of the reachability gramian is the same as the rank of the system matrix: rank(Wr ) = p
32.2.5 Controllability Gramian We can define the controllability gramian of a system (A, B) as: Controllability Gramian Z t1
Wc (t0 , t1 ) =
φ(t0 , τ )B(τ )B 0 (τ )φ0 (t0 , τ )dτ
t0
219
Controllability and Observability The system is controllable if the rank of the controllability gramian is the same as the rank of the system matrix: rank(Wc ) = p If the system is time-invariant, there are two important points to be made. First, the reachability gramian and the controllability gramian reduce to be the same equation. Therefore, for LTI systems, if we have found one gramian, then we automatically know both gramians. Second, the controllability gramian can also be found as the solution to the following Lyapunov equation: AWc + Wc A0 = −BB 0 Many software packages, notably MATLAB, have functions to solve the Lyapunov equation. By using this last relation, we can also solve for the controllability gramian using these existing functions.
32.3 Observability The state-variables of a system might not be able to be measured for any of the following reasons: 1. The location of the particular state variable might not be physically accessible (a capacitor or a spring, for instance). 2. There are no appropriate instruments to measure the state variable, or the statevariable might be measured in units for which there does not exist any measurement device. 3. The state-variable is a derived "dummy" variable that has no physical meaning. If things cannot be directly observed, for any of the reasons above, it can be necessary to calculate or estimate the values of the internal state variables, using only the input/output relation of the system, and the output history of the system from the starting time. In other words, we must ask whether or not it is possible to determine what the inside of the system (the internal system states) is like, by only observing the outside performance of the system (input and output)? We can provide the following formal definition of mathematical observability: Observability A system with an initial state, x(t0 ) is observable if and only if the value of the initial state can be determined from the system output y(t) that has been observed through the time interval t0 < t < tf . If the initial state cannot be so determined, the system is unobservable. Complete Observability A system is said to be completely observable if all the possible initial states of the system can be observed. Systems that fail this criteria are said to be unobservable.
220
Observability Detectability A system is Detectable if all states that cannot be observed decay to zero asymptotically. Constructability A system is constructable if the present state of the system can be determined from the present and past outputs and inputs to the system. If a system is observable, then it is also constructable. The relationship does not work the other way around. A system state xi is unobservable at a given time ti if the zero-input response of the system is zero for all time t. If a system is observable, then the only state that produces a zero output for all time is the zero state. We can use this concept to define the term state-observability. State-Observability A system is completely state-observable at time t0 or the pair (A, C) is observable at t0 if the only state that is unobservable at t0 is the zero state x = 0.
32.3.1 Constructability A state x is unconstructable at a time t1 if for every finite time t < t1 the zero input response of the system is zero for all time t. A system is completely state constructable at time t1 if the only state x that is unconstructable at t0 is x = 0. If a system is observable at an initial time t0 , then it is constructable at some time t > t0 , if it is constructable at t1 .
32.3.2 Observability Matrix The observability of the system is dependant only on the system states and the system output, so we can simplify our state equations to remove the input terms: Matrix Dimensions: A: p × p B: p × q C: r × p D: r × q
x0 (t) = Ax(t)
y(t) = Cx(t)
221
Controllability and Observability Therefore, we can show that the observability of the system is dependant only on the coefficient matrices A and C. We can show precisely how to determine whether a system is observable, using only these two matrices. If we have the observability matrix Q: Observability Matrix Q=
C CA CA2 .. .
CAp−1
we can show that the system is observable if and only if the Q matrix has a rank of p. Notice that the Q matrix has the dimensions pr × p. MATLAB allows one to easily create the observability matrix with the obsv command. To create the observabilty matrix Q simply type Q=obsv(A,C) where A and C are mentioned above. Then in order to determine if the system is observable or not one can use the rank command to determine if it has full rank.
32.3.3 Observability Gramian We can define an observability gramian as: Observability Gramian Z t1
Wo (t0 , t1 ) =
φ0 (τ, t0 )C 0 (τ )C(τ )φ(τ, t0 )dτ
t0
A system is completely state observable at time t0 < t < t1 if and only if the rank of the observability gramian is equal to the size p of the system matrix A. If the system (A, B, C, D) is time-invariant, we can construct the observability gramian as the solution to the Lyapunov equation: A0 Wo + Wo A = −C 0 C
32.3.4 Constructability Gramian We can define a constructability gramian as: Constructability Gramian Z t1
Wcn (t0 , t1 ) = t0
222
φ0 (τ, t1 )C 0 (τ )C(τ )φ(τ, t1 )dτ
Duality Principle A system is completely state observable at an initial time t0 if and only if there exists a finite t1 such that: rank(W0 ) = rank(Wcn ) = p Notice that the constructability and observability gramians are very similar, and typically they can both be calculated at the same time, only substituting in different values into the state-transition matrix.
32.4 Duality Principle The concepts of controllability and observability are very similar. In fact, there is a concrete relationship between the two. We can say that a system (A, B) is controllable if and only if the system (A', C, B', D) is observable. This fact can be proven by plugging A' in for A, and B' in for C into the observability Gramian. The resulting equation will exactly mirror the formula for the controllability gramian, implying that the two results are the same.
223
33 System Specifications 33.1 System Specification There are a number of different specifications that might need to be met by a new system design. In this chapter we will talk about some of the specifications that systems use, and some of the ways that engineers analyze and quantify systems.
33.2 Steady-State Accuracy 33.3 Sensitivity The sensitivity of a system is a parameter that is specified in terms of a given output and a given input. The sensitivity measures how much change is caused in the output by small changes to the reference input. Sensitive systems have very large changes in output in response to small changes in the input. The sensitivity of system H to input X is denoted as: X SH (s)
33.4 Disturbance Rejection All physically-realized systems have to deal with a certain amount of noise and disturbance. The ability of a system to ignore the noise is known as the disturbance rejection of the system.
33.5 Control Effort The control effort is the amount of energy or power necessary for the controller to perform its duty.
225
34 Controllers and Compensators 34.1 Controllers There are a number of different standard types of control systems that have been studied extensively. These controllers, specifically the P, PD, PI, and PID controllers are very common in the production of physical systems, but as we will see they each carry several drawbacks.
34.2 Proportional Controllers
Figure 78
A Proportional controller block diagram
Proportional controllers are simply gain values. These are essentially multiplicative coefficients, usually denoted with a K. A P controller can only force the system poles to a spot on the system's root locus. A P controller cannot be used for arbitrary pole placement. We refer to this kind of controller by a number of different names: proportional controller, gain, and zeroth-order controller.
227
Controllers and Compensators
34.3 Derivative Controllers
Figure 79
A Proportional-Derivative controller block diagram
In the Laplace domain, we can show the derivative of a signal using the following notation: D(s) = L f 0 (t) = sF (s) − f (0)
Since most systems that we are considering have zero initial condition, this simplifies to: D(s) = L f 0 (t) = sF (s)
The derivative controllers are implemented to account for future values, by taking the derivative, and controlling based on where the signal is going to be in the future. Derivative controllers should be used with care, because even small amount of high-frequency noise can cause very large derivatives, which appear like amplified noise. Also, derivative controllers are difficult to implement perfectly in hardware or software, so frequently solutions involving only integral controllers or proportional controllers are preferred over using derivative controllers. Notice that derivative controllers are not proper systems, in that the order of the numerator of the system is greater than the order of the denominator of the system. This quality of being a non-proper system also makes certain mathematical analysis of these systems difficult.
34.3.1 Z-Domain Derivatives We won't derive this equation here, but suffice it to say that the following equation in the Z-domain performs the same function as the Laplace-domain derivative: D(z) = Where T is the sampling time of the signal.
228
z −1 Tz
Integral Controllers
34.4 Integral Controllers
Figure 80
A Proportional-Integral Controller block diagram
To implemenent an Integral in a Laplace domain transfer function, we use the following: Z t
L 0
1 f (t) dt = F (s) s
Integral controllers of this type add up the area under the curve for past time. In this manner, a PI controller (and eventually a PID) can take account of the past performance of the controller, and correct based on past errors.
34.4.1 Z-Domain Integral The integral controller can be implemented in the Z domain using the following equation: D(z) =
z +1 z −1
229
Controllers and Compensators
34.5 PID Controllers
Figure 81
A block diagram of a PID controller
PID controllers are combinations of the proportional, derivative, and integral controllers. Because of this, PID controllers have large amounts of flexibility. We will see below that there are definite limites on PID control.
34.5.1 PID Transfer Function The transfer function for a standard PID controller is an addition of the Proportional, the Integral, and the Differential controller transfer functions (hence the name, PID). Also, we give each term a gain constant, to control the weight that each factor has on the final output: PID D(s) = Kp +
Ki + Kd s s
Notice that we can write the transfer function of a PID controller in a slightly different way:
230
PID Controllers
D(s) =
A0 + A1 s B0 + B1 s
This form of the equation will be especially useful to us when we look at polynomial design.
34.5.2 PID Signal flow diagram
Figure 82
Signal flow diagram for a PID controller
34.5.3 PID Tuning The process of selecting the various coefficient values to make a PID controller perform correctly is called PID Tuning. There are a number of different methods for determining these values:1 1) Direct Synthesis (DS) method 2) Internal Model Control (IMC) method
1
Seborg, Dale E.; Edgar, Thomas F.; Mellichamp, Duncan A. (2003). Process Dynamics and Control, Second Edition. John Wiley & Sons,Inc. ISBN 0471000779
231
Controllers and Compensators 3) Controller tuning relations 4) Frequency response techniques 5) Computer simulation 6) On-line tuning after the control system is installed 7)Trial and error Notes:
34.5.4 Digital PID In the Z domain, the PID controller has the following transfer function: Digital PID T z +1 z −1 D(z) = Kp + Ki + Kd 2 z −1 Tz
And we can convert this into a canonical equation by manipulating the above equation to obtain:
D(z) =
a0 + a1 z −1 + a2 z −2 1 + b1 z −1 + b2 z −2
Where: a0 = Kp + a1 = −Kp +
Ki T Kd + 2 T
Ki T −2Kd + 2 T
a2 =
Kd T
b1 = −1 b2 = 0 Once we have the Z-domain transfer function of the PID controller, we can convert it into the digital time domain: y[n] = x[n]a0 + x[n − 1]a1 + x[n − 2]a2 − y[n − 1]b1 − y[n − 2]b2
232
Bang-Bang Controllers And finally, from this difference equation, we can create a digital filter structure to implement the PID. For more information about digital filter structures, see Digital Signal Processing2
34.6 Bang-Bang Controllers Despite the low-brow sounding name of the Bang-Bang controller, it is a very useful tool that is only really available using digital methods. A better name perhaps for a bang-bang controller is an on/off controller, where a digital system makes decisions based on target and threshold values, and decides whether to turn the controller on and off. Bang-bang controllers are a non-linear style of control that this book might consider in more detail in future chapters. Consider the example of a household furnace. The oil in a furnace burns at a specific temperature -- it can't burn hotter or cooler. To control the temperature in your house then, the thermostat control unit decides when to turn the furnace on, and when to turn the furnace off. This on/off control scheme is a bang-bang controller.
34.7 Compensation There are a number of different compensation units that can be employed to help fix certain system metrics that are outside of a proper operating range. Most commonly, the phase characteristics are in need of compensation, especially if the magnitude response is to remain constant.
34.8 Phase Compensation Occasionally, it is necessary to alter the phase characteristics of a given system, without altering the magnitude characteristics. To do this, we need to alter the frequency response in such a way that the phase response is altered, but the magnitude response is not altered. To do this, we implement a special variety of controllers known as phase compensators. They are called compensators because they help to improve the phase response of the system. There are two general types of compensators: Lead Compensators, and Lag Compensators. If we combine the two types, we can get a special Lead-Lag Compensator system. When designing and implementing a phase compensator, it is important to analyze the effects on the gain and phase margins of the system, to ensure that compensation doesn't cause the system to become unstable. phase lead compensation:- 1 it is same as addition of zero to open loop TF since from pole zero point of view zero is nearer to origin than pole hence effect of zero dominant.
2
http://en.wikibooks.org/wiki/Digital%20Signal%20Processing
233
Controllers and Compensators
34.9 Phase Lead The transfer function for a lead-compensator is as follows: Lead Compensator Tlead (s) =
s−z s−p
To make the compensator work correctly, the following property must be satisfied: |z| < |p| And both the pole and zero location should be close to the origin, in the LHP. Because there is only one pole and one zero, they both should be located on the real axis. Phase lead compensators help to shift the poles of the transfer function to the left, which is beneficial for stability purposes.
34.10 Phase Lag The transfer function for a lag compensator is the same as the lead-compensator, and is as follows: Lag Compensator Tlag (s) =
s−z s−p
However, in the lag compensator, the location of the pole and zero should be swapped: |p| < |z| Both the pole and the zero should be close to the origin, on the real axis. The Phase lag compensator helps to improve the steady-state error of the system. The poles of the lag compensator should be very close together to help prevent the poles of the system from shifting right, and therefore reducing system stability.
34.11 Phase Lead-Lag w:Lead-lag compensator3 The transfer function of a lead-lag compensator is simply a multiplication of the lead and lag compensator transfer functions, and is given as: Lead-Lag Compensator 3
234
http://en.wikipedia.org/wiki/Lead-lag%20compensator
External Sites
Tlead−lag (s) =
(s − z1 )(s − z2 ) . (s − p1 )(s − p2 )
Where typically the following relationship must hold true: |p1 | > |z1 | > |z2 | > |p2 |
34.12 External Sites • Standard Controller Forms on ControlTheoryPro.com4 • PID Control on ControlTheoryPro.com5 • PI Control on ControlTheoryPro.com6
4 5 6
http://wikis.controltheorypro.com/index.php?title=Standard_Controller_Forms http://wikis.controltheorypro.com/index.php?title=PID_Control http://wikis.controltheorypro.com/index.php?title=PI_Control
235
35 Nonlinear Systems 35.1 Nonlinear General Solution w:Non-linear control1 A nonlinear system, in general, can be defined as follows: x0 (t) = f (t, t0 , x, x0 )
x(t0 ) = x0 Where f is a nonlinear function of the time, the system state, and the initial conditions. If the initial conditions are known, we can simplify this as: x0 (t) = f (t, x) The general solution of this equation (or the most general form of a solution that we can state without knowing the form of f) is given by: Z t
x(t) = x0 +
f (τ, x)dτ t0
and we can prove that this is the general solution to the above equation because when we differentiate both sides we get the general solution.
35.1.1 Iteration Method The general solution to a nonlinear system can be found through a method of infinite iteration. We will define xn as being an iterative family of indexed variables. We can define them recursively as such: Z t
xn (t) = x0 +
f (τ, xn−1 (τ ))dτ t0
x1 (t) = x0 We can show that the following relationship is true: 1
http://en.wikipedia.org/wiki/Non-linear%20control
237
Nonlinear Systems
x(t) = lim xn (t) n→∞
The xn series of equations will converge on the solution to the equation as n approaches infinity.
35.1.2 Types of Nonlinearities Nonlinearities can be of two types: 1. Intentional non-linearity: The non-linear elements that are added into a system. Eg: Relay 2. Incidental non-linearity: The non-linear behavior that is already present in the system. Eg: Saturation
35.2 Linearization Nonlinear systems are difficult to analyze, and for that reason one of the best methods for analyzing those systems is to find a linear approximation to the system. Frequently, such approximations are only good for certain operating ranges, and are not valid beyond certain bounds. The process of finding a suitable linear approximation to a nonlinear system is known as linearization.
Figure 83
This image shows a linear approximation (dashed line) to a non-linear system response (solid line). This linear approximation, like most, is accurate within a certain range, but becomes
238
Linearization more inaccurate outside that range. Notice how the curve and the linear approximation diverge towards the right of the graph.
239
36 Common Nonlinearities There are some nonlinearities that happen so frequently in physical systems that they are called "Common nonlinearities". These common nonlinearities include Hysteresis, Backlash, and Dead-zone.
36.1 Hysteresis Continuing with the example of a household thermostat, let's say that your thermostat is set at 70 degrees (Fahrenheit). The furnace turns on, and the house heats up to 70 degrees, and then the thermostat dutifully turns the furnace off again. However, there is still a large amount of residual heat left in the ducts, and the hot air from the vents on the ground may not all have risen up to the level of the thermostat. This means that after the furnace turns off, the house may continue to get hotter, maybe even to uncomfortable levels. So the furnace turns off, the house heats up to 80 degrees, and then the air conditioner turns on. The temperature of the house cools down to 70 degrees again, and the A/C turns back off. However, the house continues to cool down, and then it gets too cold, and the furnace needs to turn back on. As we can see from this example, a bang-bang controller, if poorly designed, can cause big problems, and it can waste lots of energy. To avoid this, we implement the idea of Hysteresis, which is a set of threshold values that allow for overflow outputs. Implementing hysteresis, our furnace now turns off when we get to 65 degrees, and the house slowly warms up to 75 degrees, and doesnt turn on the A/C unit. This is a far preferable solution.
36.2 Backlash Eg: Mechanical gear.
36.3 Dead-Zone A dead-zone is a kind of non linearity in which the system doesn't respond to the given input until the input reaches a particular level.
241
Common Nonlinearities
36.4 Inverse Nonlinearities 36.4.1 Inverse Hysteresis 36.4.2 Inverse Backlash 36.4.3 Inverse Dead-Zone
242
37 Noise Driven Systems The topics in this chapter will rely heavily on topics from a calculus-based background in probability theory. There currently are no wikibooks available that contain this information. The reader should be familiar with the following concepts: Gaussian Random Variables, Mean, Expectation Operation.
37.1 Noise-Driven Systems Systems frequently have to deal with not only the control input u, but also a random noise input v. In some disciplines, such as in a study of electrical communication systems, the noise and the data signal can be added together into a composite input r = u + v. However, in studying control systems, we can not combine these inputs together, for a variety of different reasons: 1. The control input works to stabilize the system, and the noise input works to destabilize the system. 2. The two inputs are independent random variables. 3. The two inputs may act on the system in completely different ways. As we will show in the next example, it is frequently a good idea to consider the noise and the control inputs separately: Example: Consider a moving automobile. The control signals for the automobile consist of acceleration (gas pedal) and deceleration (brake pedal) inputs acting on the wheels of the vehicle, and working to create forward motion. The noise inputs to the system can consist of wind pushing against the vertical faces of the automobile, rough pavement (or even dirt) under the tires, bugs and debris hitting the front windshield, etc. As we can see, the control inputs act on the wheels of the vehicle, while the noise inputs can act on multiple sides of the vehicle, in different ways.
37.2 Probability Refresher We are going to have a brief refesher here for calculus-based probability, specifically focusing on the topics that we will use in the rest of this chapter.
37.2.1 Expectation The expectation operatior, E, is used to find the expected, or mean value of a given random variable. The expectation operator is defined as:
243
Noise Driven Systems
Z ∞
E[x] = −∞
xfx (x)dx
If we have two variables that are independent of one another, the expectation of their product is zero.
37.2.2 Covariance The covariance matrix, Q, is the expectation of a random vector times it's transpose: E[x(t)x0 (t)] = Q(t) If we take the value of the x transpose at a different point in time, we can calculate out the covariance as: E[x(t)x0 (s)] = Q(t)δ(t − s) Where δ is the impulse function.
37.3 Noise-Driven System Description We can define the state equation to a system incorporating a noise vector v: x0 (t) = A(t)x(t) + H(t)u(t) + B(t)v(t) For generality, we will discuss the case of a time-variant system. Time-invariant system results will then be a simplification of the time-variant case. Also, we will assume that v is a gaussian random variable. We do this because physical systems frequently approximate gaussian processes, and because there is a large body of mathematical tools that we can use to work with these processes. We will assume our gaussian process has zero-mean.
37.4 Mean System Response We would like to find out how our system will respond to the new noisy input. Every system iteration will have a different response that varies with the noise input, but the average of all these iterations should converge to a single value. For the system with zero control input, we have: x0 (t) = A(t)x(t) + B(t)v(t) For which we know our general solution is given as:
244
System Covariance
Z t
φ(t, τ )B(τ )v(τ )dτ
x(t) = φ(t, t0 )x0 + t0
If we take the expected value of this function, it should give us the expected value of the output of the system. In other words, we would like to determine what the expected output of our system is going to be by adding a new, noise input. Z t
E[x(t)] = E[φ(t, t0 )x0 ] + E[
φ(t, τ )B(τ )v(τ )dτ ] t0
In the second term of this equation, neither &\phi; nor B are random variables, and therefore they can come outside of the expectaion operation. Since v is zero-mean, the expectation of it is zero. Therefore, the second term is zero. In the first equation, $phi; is not a random variable, but x0 does create a dependancy on the output of x(t), and we need to take the expectation of it. This means that: E[x(t)] = φ(t, t0 )E[x0 ] In other words, the expected output of the system is, on average, the value that the output would be if there were no noise. Notice that if our noise vector v was not zero-mean, and if it was not gaussian, this result would not hold.
37.5 System Covariance We are now going to analyze the covariance of the system with a noisy input. We multiply our system solution by its transpose, and take the expectation: (this equation is long and might break onto multiple lines)
E[x(t)x0 (t)] = E[φ(t, t0 )x0 +
Z t
φ(τ, t0 )B(τ )v(τ )dτ ] t0
Z t
E[(φ(t, t0 )x0 +
φ(τ, t0 )B(τ )v(τ )dτ )0 ]
t0
If we multiply this out term by term, and cancel out the expectations that have a zero-value, we get the following result: E[x(t)x0 (t)] = φ(t, t0 )E[x0 x00 ]φ0 (t, t0 ) = P We call this result P, and we can find the first derivative of P by using the chain-rule: P 0 (t) = A(t)φ(t, t0 )P0 φ(t, t0 ) + φ(t, t0 )P0 φ0 (t, t0 )A0 (t) Where
245
Noise Driven Systems
P0 = E[x0 x00 ] We can reduce this to: P 0 (t) = A(t)P (t) + P (t)A0 (t) + B(t)Q(t)B 0 (t) In other words, we can analyze the system without needing to calculate the state-transition matrix. This is a good thing, because it can often be very difficult to calculate the statetransition matrix.
37.6 Alternate Analysis Let us look again at our general solution: Z t
x(t) = φ(t, t0 )x(t0 ) +
φ(t, τ )B(τ )v(τ )dτ t0
We can run into a problem because in a gaussian distribution, especially systems with high variance (especially systems with infinite variance), the value of v can momentarily become undefined (approach infinity), which will cause the value of x to likewise become undefined at certain points. This is unacceptable, and makes further analysis of this problem difficult. Let us look again at our original equation, with zero control input: x0 (t) = A(t)x(t) + B(t)v(t) We can multiply both sides by dt, and get the following result: dx = A(t)x(t)dt + B(t)v(t)dt This new term, dw, is a random process known as a Weiner Process, which the result of transforming a gaussian process in this manner. We can define a new differential, dw(t), which is an infinitesimal function of time as: dw(t) = v(t)dt Now, we can integrate both sides of this equation: Z t
x(t) = x(t0 ) + t0
246
Z t
A(τ )x(τ )dτ +
B(τ )dw(τ ) t0
Alternate Analysis w:Ito Calculus1 However, this leads us to an unusual place, and one for which we are (probably) not prepared to continue further: in the third term on the left-hand side, we are attempting to integrate with respect to a function, not a variable. In this instance, the standard Riemann integrals that we are all familiar with cannot solve this equation. There are advanced techniques known as Ito Calculus however that can solve this equation, but these methods are currently outside the scope of this book.
1
http://en.wikipedia.org/wiki/Ito%20Calculus
247
38 Appendix: Physical Models 38.1 Physical Models This page will serve as a refresher for various different engineering disciplines on how physical devices are modeled. Models will be displayed in both time-domain and Laplace-domain input/output characteristics. The only information that is going to be displayed here will be the ones that are contributed by knowledgeable contributors.
38.2 Electrical Systems For more information about electric circuits and circuit elements, see the following books: Circuit Theory1 Electronics2 {|class="wikitable" !Component || Time-Domain || Laplace || Fourier |- !Resistor | R || R || R |- !Capacitor | 1 1 di i = C dv dt || G(s) = sC || G(jω) = jωC |- !Inductor | v = L dt || G(s) = sL || G(jω) = jωL |}
38.3 Mechanical Systems 38.4 Civil/Construction Systems 38.5 Chemical Systems Category:Control Systems3
1 2 3
http://en.wikibooks.org/wiki/Circuit%20Theory http://en.wikibooks.org/wiki/Electronics http://en.wikibooks.org/wiki/Category%3AControl%20Systems
249
39 Appendix: Z Transform Mappings 39.1 Z Transform Mappings There are a number of different mappings that can be used to convert a system from the complex Laplace domain into the Z-Domain. None of these mappings are perfect, and every mapping requires a specific starting condition, and focuses on a specific aspect to reproduce faithfully. One such mapping that has already been discussed is the bilinear transform, which, along with prewarping, can faithfully map the various regions in the s-plane into the corresponding regions in the z-plane. We will discuss some other potential mappings in this chapter, and we will discuss the pros and cons of each.
39.2 Bilinear Transform The Bilinear transform converts from the Z-domain to the complex W domain. The W domain is not the same as the Laplace domain, although there are some similarities. Here are some of the similiarities between the Laplace domain and the W domain: 1. Stable poles are in the Left-Half Plane 2. Unstable poles are in the right-half plane 3. Marginally stable poles are on the vertical, imaginary axis With that said, the bilinear transform can be defined as follows: Bilinear Transform w=
2 z −1 T z +1
Inverse Bilinear Transform z=
(T /2) + w (T /2) − w
Graphically, we can show that the bilinear transform operates as follows:
251
Appendix: Z Transform Mappings
Figure 84
39.2.1 Prewarping The W domain is not the same as the Laplace domain, but if we employ the process of prewarping before we take the bilinear transform, we can make our results match more closely to the desired Laplace Domain representation. Using prewarping, we can show the effect of the bilinear transform graphically:
252
Matched Z-Transform
Figure 85
The shape of the graph before and after prewarping is the same as it is without prewarping. However, the destination domain is the S-domain, not the W-domain.
39.3 Matched Z-Transform If we have a function in the laplace domain that has been decomposed using partial fraction expansion, we generally have an equation in the form: Y (s) =
A B C + + + ... s + α1 s + α2 s + α3
And once we are in this form, we can make a direct conversion between the s and z planes using the following mapping: Matched Z Transform s + α = 1 − z −1 e−αT Pro A good direct mapping in terms of s and a single coefficient Con requires the Laplace-domain function be decomposed using partial fraction expansion.
253
Appendix: Z Transform Mappings
39.4 Simpson's Rule Simpson's Rule
s=
3 z2 − 1 T z 2 + 4z 1 + 1
CON Essentially multiplies the order of the transfer function by a factor of 2. This makes things difficult when you are trying to physically implement the system.
39.5 (w, v) Transform Given the following system: Y (s) = G(s, z, z α )X(s) Then: w=
2 z −1 T z +1
v(α) = 1 − α(1 − z −1 ) +
α(α − 1) (1 − z −1 )2 z
And: (w, v) Transform x(0) Y (z) = G(w, z, v(α)) X(z) − 1 + z −1
Pro Directly maps a function in terms of z and s, into a function in terms of only z. Con Requires a function that is already in terms of s, z and α.
39.6 Z-Forms Category:Control Systems1
1
254
http://en.wikibooks.org/wiki/Category%3AControl%20Systems
40 Appendix: Transforms 40.1 Laplace Transform w:Laplace Transform1 When we talk about the Laplace transform, we are actually talking about the version of the Laplace transform known as the unilinear Laplace Transform. The other version, the Bilinear Laplace Transform (not related to the Bilinear Transform, below) is not used in this book. The Laplace Transform is defined as: Laplace Transform F (s) = L[f (t)] =
Z ∞
f (t)e−st dt
0
And the Inverse Laplace Transform is defined as: Inverse Laplace Transform f (t) = L−1 {F (s)} =
1 2πi
Z c+i∞
ef t F (s) ds
c−i∞
40.1.1 Table of Laplace Transforms This is a table of common laplace transforms.
1 2 3 4 5 6 7 8 9 1
Time Domain x(t) = L−1 {X(s)} 1 R σ+j∞ st 2πj σ−j∞ X(s)e ds δ(t) δ(t − a) u(t) u(t − a) tu(t) tn u(t) √1 u(t) πt eat u(t)
Laplace Domain X(s) = L {x(t)} R∞ −st dt −∞ x(t)e 1 e−as 1 s e−as s 1 s2 n! sn+1 1 √ s 1 s−a
http://en.wikipedia.org/wiki/Laplace%20Transform
255
Appendix: Transforms
10 11 12 13 14 15 16 17 18
Time Domain x(t) = L−1 {X(s)} tn eat u(t) cos(ωt)u(t) sin(ωt)u(t) cosh(ωt)u(t) sinh(ωt)u(t) eat cos(ωt)u(t) eat sin(ωt)u(t) 1 (sin ωt − ωt cos ωt) 2ω 3 t 2ω sin ωt
19
1 2ω (sin ωt + ωt cos ωt)
Laplace Domain X(s) = L {x(t)} n! (s−a)n+1 s s2 +ω 2 ω s2 +ω 2 s s2 −ω 2 ω s2 −ω 2 s−a (s−a)2 +ω 2 ω (s−a)2 +ω 2 1 (s2 +ω 2 )2 s (s2 +ω 2 )2 s2 (s2 +ω 2 )2
40.1.2 Properties of the Laplace Transform This is a table of the most important properties of the laplace transform. Property Linearity Differentiation
Frequency Division Frequency Integration Time Integration Scaling Initial value theorem Final value theorem Frequency Shifts Time Shifts Convolution Theorem
Definition L {af (t) + bg(t)} = aF (s) + bG(s) L{f 0 } = sL{f } − f (0− ) 00 2 − 0 − L{f n }= o s L{f } − sf (0 ) − f (0 ) L f (n) = sn L{f } − sn−1 f (0− ) − · · · − f (n−1) (0− ) L{tf (t)} = −F 0 (s) n (n) L{tnn f (t)} o =R(−1) F (s) L f (t) = s∞ F (σ) dσ t nR
o
L 0t f (τ ) dτ = L {u(t) ∗ f (t)} = 1s F (s) L {f (at)} = a1 F as f (0+ ) = lims→∞ sF (s) f (∞) = lims→0 sF (s) L eat f (t) = F (s − a) L−1 {F (s − a)} = eat f (t) L {f (t − a)u(t − a)} = e−as F (s) L−1 {e−as F (s)} = f (t − a)u(t − a) L{f (t) ∗ g(t)} = F (s)G(s)
Where: f (t) = L−1 {F (s)}
g(t) = L−1 {G(s)}
256
Fourier Transform
s = σ + jω
40.1.3 Convergence of the Laplace Integral 40.1.4 Properties of the Laplace Transform
40.2 Fourier Transform w:Fourier Transform2 The Fourier Transform is used to break a time-domain signal into its frequency domain components. The Fourier Transform is very closely related to the Laplace Transform, and is only used in place of the Laplace transform when the system is being analyzed in a frequency context. The Fourier Transform is defined as: Fourier Transform F (jω) = F[f (t)] =
Z ∞
f (t)e−jωt dt
0
And the Inverse Fourier Transform is defined as: Inverse Fourier Transform f (t) = F −1 {F (jω)} =
1 2π
Z ∞
F (jω)e−jωt dω
−∞
40.2.1 Table of Fourier Transforms This is a table of common fourier transforms.
1 2 3 4 5 6 7 8 9
2
Time Domain x(t) = F −1 {X(ω)} R∞ X(jω) = −∞ x(t)e−jωt dt 1 −0.5 + u(t) δ(t) δ(t − c) u(t) e−bt u(t) (b > 0) cos ω0 t cos(ω0 t + θ)
Frequency Domain X(ω) = F {x(t)} 1 R∞ jωt dω x(t) = 2π −∞ X(jω)e 2πδ(ω) 1 jω
1 e−jωc 1 πδ(ω) + jω 1 jω+b
π [δ(ω + ω0 ) + δ(ω − ω0 )] h i −jθ π e δ(ω + ω0 ) + ejθ δ(ω − ω0 )
http://en.wikipedia.org/wiki/Fourier%20Transform
257
Appendix: Transforms
10 11 12 13 14 15 16 Notes:
Time Domain x(t) = F −1 {X(ω)} sin ω0 t sin(ω0 t + θ) rect τt τt τsinc 2π 1 − 2|t| pτ (t) τ τ 2 τt 2 sinc 4π e−a|t| , 0
sinc(x) = sin(x)/x pτ (t) is the rectangular pulse function of width τ u(t) is the Heavyside step function δ(t) is the Dirac delta function
40.2.2 Table of Fourier Transform Properties This is a table of common properties of the fourier transform. Signal
2
Fourier transform unitary, ordinary frequency g(t) R≡ G(ω)R ≡ G(f ) ≡ R∞ ∞ ∞ 1 iωt −iωt √1 √ G(ω)e dω 2π −∞ g(t)e dt −∞ g(t)e−i2πf t dt 2π −∞ a · g(t) + b · h(t) a · G(ω) + b · a·G(f )+b·H(f ) H(ω) g(t − a) e−iaω G(ω) e−i2πaf G(f )
3
eiat g(t)
G(ω − a)
a G f − 2π
4
g(at)
1 ω |a| G a
1 |a| G
1
258
Fourier transform unitary, angular frequency
f a
Remarks
Linearity Shift in time domain Shift in frequency domain, dual of 2 If |a| is large, then g(at) is concentrated around0 and 1 ω |a| G a spreads out and flattens
Z-Transform Signal
5
G(t)
g(−ω)
Fourier transform unitary, ordinary frequency g(−f )
6
dn g(t) dtn
(iω)n G(ω)
(i2πf )n G(f )
7
tn g(t)
G(ω) in d dω n
8
(g ∗ h)(t)
9
g(t)h(t)
(G∗H)(ω) √ 2π
(G ∗ H)(f )
For a purely real even function g(t) For a purely real odd function g(t)
G(ω) is a purely real even function G(ω) is a purely imaginary odd function
G(f ) is a purely real even function G(f ) is a purely imaginary odd function
10
11
Fourier transform unitary, angular frequency
n
√
2πG(ω)H(ω)
i 2π
n
dn G(f ) df n
G(f )H(f )
Remarks
Duality property of the Fourier transform. Results from swapping "dummy" variables of t and ω . Generalized derivative property of the Fourier transform This is the dual to 6 g ∗ h denotes the convolution of g and h — this rule is the convolution theorem This is the dual of 8
40.2.3 Convergence of the Fourier Integral 40.2.4 Properties of the Fourier Transform
40.3 Z-Transform w:Z-transform3 The Z-transform is used primarily to convert discrete data sets into a continuous representation. The Z-transform is notationally very similar to the star transform, except that the 3
http://en.wikipedia.org/wiki/Z-transform
259
Appendix: Transforms Z transform does not take explicit account for the sampling period. The Z transform has a number of uses in the field of digital signal processing, and the study of discrete signals in general, and is useful because Z-transform results are extensively tabulated, whereas star-transform results are not. The Z Transform is defined as: Z Transform
X(z) = Z[x[n]] =
∞ X
x[n]z −n
i=−∞
40.3.1 Inverse Z Transform The inverse Z Transform is a highly complex transformation, and might be inaccessible to students without enough background in calculus. However, students who are familiar with such integrals are encouraged to perform some inverse Z transform calculations, to verify that the formula produces the tabulated results. Inverse Z Transform 1 x[n] = 2πj
I
X(z)z n−1 dz
C
40.3.2 Z-Transform Tables Here: • u[n] = 1 for n >= 0, u[n] = 0 for n < 0 • δ[n] = 1 for n = 0, δ[n] = 0 otherwise
260
1 2 3 4 5
Signal, x[n] δ[n] δ[n − n0 ] u[n] −u[−n − 1] nu[n]
6
−nu[−n − 1]
7
n2 u[n]
8
−n2 u[−n − 1]
9
n3 u[n]
10 11 12 13
−n3 u[−n − 1] an u[n] −an u[−n − 1] nan u[n]
Z-transform, X(z) 1 z −n0 1 1−z −1 1 1−z −1 z −1 (1−z −1 )2 z −1 (1−z −1 )2 z −1 (1+z −1 ) (1−z −1 )3 z −1 (1+z −1 ) (1−z −1 )3 z −1 (1+4z −1 +z −2 ) (1−z −1 )4 z −1 (1+4z −1 +z −2 ) (1−z −1 )4 1 1−az −1 1 1−az −1 az −1 (1−az −1 )2
ROC all z z 6= 0 |z| > 1 |z| < 1 |z| > 1 |z| < 1 |z| > 1 |z| < 1 |z| > 1 |z| < 1 |z| > |a| |z| < |a| |z| > |a|
Modified Z-Transform
14
Signal, x[n] −nan u[−n − 1]
15
n2 an u[n]
16
−n2 an u[−n − 1]
17
cos(ω0 n)u[n]
18
sin(ω0 n)u[n]
19
an cos(ω
20
an sin(ω0 n)u[n]
0 n)u[n]
Z-transform, X(z)
ROC |z| < |a|
az −1 (1−az −1 )2 az −1 (1+az −1 ) (1−az −1 )3 az −1 (1+az −1 ) (1−az −1 )3 1−z −1 cos(ω0 ) 1−2z −1 cos(ω0 )+z −2 z −1 sin(ω0 ) 1−2z −1 cos(ω0 )+z −2 1−az −1 cos(ω0 ) 1−2az −1 cos(ω0 )+a2 z −2 az −1 sin(ω0 ) 1−2az −1 cos(ω0 )+a2 z −2
|z| > |a| |z| < |a| |z| > 1 |z| > 1 |z| > |a| |z| > |a|
4
40.4 Modified Z-Transform w:Advanced Z Transform5 The Modified Z-Transform is similar to the Z-transform, except that the modified version allows for the system to be subjected to any arbitrary delay, by design. The Modified Z-Transform is very useful when talking about digital systems for which the processing time of the system is not negligible. For instance, a slow computer system can be modeled as being an instantaneous system with an output delay. The modified Z transform is based off the delayed Z transform: Modified Z Transform n
o
X(z, m) = X(z, ∆)|∆→1−m = Z X(s)e−∆T s |∆→1−m
40.5 Star Transform w:Star Transform6 The Star Transform is a discrete transform that has similarities between the Z transform and the Laplace Transform. In fact, the Star Transform can be said to be nearly analogous to the Z transform, except that the Star transform explicitly accounts for the sampling time of the sampler. The Star Transform is defined as: Star Transform
4 5 6
http://en.wikibooks.org/wiki/Category%3A http://en.wikipedia.org/wiki/Advanced%20Z%20Transform http://en.wikipedia.org/wiki/Star%20Transform
261
Appendix: Transforms
F ∗ (s) = L∗ [f (t)] =
∞ X
f (iT )e−siT
i=0
Star transform pairs can be obtained by plugging z = esT into the Z-transform pairs, above.
40.6 Bilinear Transform The bilinear transform is used to convert an equation in the Z domain into the arbitrary W domain, with the following properties: 1. roots inside the unit circle in the Z-domain will be mapped to roots on the left-half of the W plane. 2. roots outside the unit circle in the Z-domain will be mapped to roots on the right-half of the W plane 3. roots on the unit circle in the Z-domain will be mapped onto the vertical axis in the W domain. The bilinear transform can therefore be used to convert a Z-domain equation into a form that can be analyzed using the Routh-Hurwitz criteria. However, it is important to note that the W-domain is not the same as the complex Laplace S-domain. To make the output of the bilinear transform equal to the S-domain, the signal must be prewarped, to account for the non-linear nature of the bilinear transform. The Bilinear transform can also be used to convert an S-domain system into the Z domain. Again, the input system must be prewarped prior to applying the bilinear transform, or else the results will not be correct. The Bilinear transform is governed by the following variable transformations: Bilinear Transform z=
(T /2) + w , (T /2) − w
w=
2 z −1 T z +1
Where T is the sampling time of the discrete signal. Frequencies in the w domain are related to frequencies in the s domain through the following relationship: ωs T 2 ωw = tan T 2
This relationship is called the frequency warping characteristic of the bilinear transform. To counter-act the effects of frequency warping, we can pre-warp the Z-domain equation using the inverse warping characteristic. If the equation is prewarped before it is transformed, the resulting poles of the system will line up more faithfully with those in the s-domain. Bilinear Frequency Prewarping
262
Wikipedia Resources
2 T arctan ωa T 2
ω=
.
Applying these transformations before applying the bilinear transform actually enables direct conversions between the S-Domain and the Z-Domain. The act of applying one of these frequency warping characteristics to a function before transforming is called prewarping.
40.7 Wikipedia Resources • • • • •
w:Laplace transform7 w:Fourier transform8 w:Z-transform9 w:Star transform10 w:Bilinear transform11
Category:Control Systems12
7 8 9 10 11 12
http://en.wikipedia.org/wiki/Laplace%20transform http://en.wikipedia.org/wiki/Fourier%20transform http://en.wikipedia.org/wiki/Z-transform http://en.wikipedia.org/wiki/Star%20transform http://en.wikipedia.org/wiki/Bilinear%20transform http://en.wikibooks.org/wiki/Category%3AControl%20Systems
263
41 System Representations 41.1 System Representations This is a table of times when it is appropriate to use each different type of system representation: Properties Linear, Distributed Linear, Lumped Linear, TimeInvariant, Distributed Linear, TimeInvariant, Lumped
State-Space Equations no yes no
yes
Transfer Function no no yes
yes
Transfer Matrix no no no
yes
41.2 General Description These are the general external system descriptions. y is the system output, h is the system response characteristic, and x is the system input. In the time-variant cases, the general description is also known as the convolution description. General Description Time-Invariant, Non-causal Time-Invariant, Causal Time-Variant, Non-Causal Time-Variant, Causal
∞ y(t) = −∞ h(t − r)x(r)dr Rt y(t) = 0 h(t − r)x(r)dr R∞ y(t) = −∞ h(t, r)x(r)dr Rt y(t) = 0 h(t, r)x(r)dr
R
41.3 State-Space Equations These are the state-space representations for a system. y is the system output, x is the internal system state, and u is the system input. The matrices A, B, C, and D are coefficient matrices. Analog State Equations State-Space Equations Time-Invariant x0 (t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t)
265
System Representations State-Space Equations Time-Variant x0 (t) = A(t)x(t) + B(t)u(t) y(t) = C(t)x(t) + D(t)u(t) These are the digital versions of the equations listed above. All the variables have the same meanings, except that the systems are digital. Digital State Equations State-Space Equations Time-Invariant x0 [t] = Ax[t] + Bu[t] y[t] = Cx[t] + Du[t] Time-Variant x0 [t] = A[t]x[t] + B[t]u[t] y[t] = C[t]x[t] + D[t]u[t]
41.4 Transfer Functions These are the transfer function descriptions, obtained by using the Laplace Transform or the Z-Transform on the general system descriptions listed above. Y is the system output, H is the system transfer function, and X is the system input. Analog Transfer Function Transfer Function Y (s) = H(s)X(s) Digital Transfer Function Transfer Function Y (z) = H(z)X(z)
41.5 Transfer Matrix This is the transfer matrix system description. This representation can be obtained by taking the Laplace or Z transforms of the state-space equations. In the SISO case, these equations reduce to the transfer function representations listed above. In the MIMO case, Y is the vector of system outputs, X is the vector of system inputs, and H is the transfer matrix that relates each input X to each output Y. Analog Transfer Matrix Transfer Matrix Y(s) = H(s)X(s) Digital Transfer Matrix
266
Transfer Matrix
Transfer Matrix Y(z) = H(z)X(z)
267
42 Matrix Operations For more about this subject, see: Linear Algebra1 and Engineering Analysis2
42.1 Laws of Matrix Algebra Matrices must be compatible sizes in order for an operation to be valid: Addition Matrices must have the same dimensions (same number of rows, same number of columns). Matrix addition is commutative: A+B = B +A Multiplication Matrices must have the same inner dimensions (the number of columns of the first matrix must equal the number of rows in the second matrix). For instance, if matrix A is n × m, and matrix B is m × k, then we can multiply: AB = C Where C is an n × k matrix. Matrix multiplication is not commutative: AB 6= BA Because it is not commutative, the differentiation must be made between "multiplication on the left", and "multiplication on the right". Division There is no such thing as division in matrix algebra, although multiplication of the matrix inverse performs the same basic function. To find an inverse, a matrix must be nonsingular, and must have a non-zero determinant.
1 2
http://en.wikibooks.org/wiki/Linear%20Algebra http://en.wikibooks.org/wiki/Engineering%20Analysis
269
Matrix Operations
42.2 Transpose Matrix The transpose of a matrix, denoted by: XT is the matrix where the rows and columns of X are interchanged. In some instances, the transpose of a matrix is denoted by: X0 This shorthand notation is used when the superscript T applied to a large number of matrices in a single equation, and the notation would become too crowded otherwise. When this notation is used in the book, derivatives will be denoted explicitly with: d X(t) dt
42.3 Determinant The determinant of a matrix it is a scalar value. It is denoted similarly to absolute-value in scalars: |X| A matrix has an inverse if the matrix is square, and if the determinant of the matrix is non-zero.
42.4 Inverse The inverse of a matrix A, which we will denote here by "B" is any matrix that satisfies the following equation: AB = BA = I Matrices that have such a companion are known as "invertible" matrices, or "non-singular" matrices. Matrices which do not have an inverse that satisfies this equation are called "singular" or "non-invertable". An inverse can be computed in a number of different ways: 1. Append the matrix A with the Identity matrix of the same size. Use row-reductions to make the left side of the matrice an identity. The right side of the appended matrix will then be the inverse:
270
Eigenvalues
[A|I] → [I|B] 2. The inverse matrix is given by the adjoint matrix divided by the determinant. The adjoint matrix is the transpose of the cofactor matrix. A−1 =
adj(A) |A|
3. The inverse can be calculated from the Cayley-Hamilton Theorem.
42.5 Eigenvalues The eigenvalues of a matrix, denoted by the Greek letter lambda λ, are the solutions to the characteristic equation of the matrix: |X − λI| = 0 Eigenvalues only exist for square matrices. Non-square matrices do not have eigenvalues. If the matrix X is a real matrix, the eigenvalues will either be all real, or else there will be complex conjugate pairs.
42.6 Eigenvectors The eigenvectors of a matrix are the nullspace solutions of the characteristic equation: (X − λi I)vi = 0 There are is least one distinct eigenvector for every distinct eigenvalue. Multiples of an eigenvector are also themselves eigenvectors. However, eigenvalues that are not linearly independent are called "non-distinct" eigenvectors, and can be ignored.
42.7 Left-Eigenvectors Left Eigenvectors are the right-hand nullspace solutions to the characteristic equation: wi (A − λi I) = 0 These are also the rows of the inverse transition matrix.
271
Matrix Operations
42.8 Generalized Eigenvectors In the case of repeated eigenvalues, there may not be a complete set of n distinct eigenvectors (right or left eigenvectors) associated with those eigenvalues. Generalized eigenvectors can be generated as follows: (A − λI)vn+1 = vn Because generalized eigenvectors are formed in relation to another eigenvector or generalize eigenvectors, they constitute an ordered set, and should not be used outside of this order.
42.9 Transformation Matrix The transformation matrix is the matrix of all the eigenvectors, or the ordered sets of generalized eigenvectors: T = [v1 v2 · · · vn ] The inverse transition matrix is the matrix of the left-eigenvectors: 0 w1 w0 T −1 = 2 ···
wn0
A matrix can be diagonalized by multiplying by the transition matrix: A = T DT −1 Or: T −1 AT = D If the matrix has an incomplete set of eigenvectors, and therefore a set of generalized eigenvectors, the matrix cannot be diagonalized, but can be converted into Jordan canonical form: T −1 AT = J
272
MATLAB
42.10 MATLAB The MATLAB programming environment was specially designed for matrix algebra and manipulation. The following is a brief refresher about how to manipulate matrices in MATLAB: Addition To add two matrices together, use a plus sign ("+"): C = A + B; Multiplication To multiply two matrices together use an asterisk ("*"): C = A * B; If your matrices are not the correct dimensions, MATLAB will issue an error. Transpose To find the transpose of a matrix, use the apostrophe (" ' "): C = A'; Determinant To find the determinant, use the det function: d = det(A); Inverse To find the inverse of a matrix, use the function inv: C = inv(A); Eigenvalues and Eigenvectors To find the eigenvalues and eigenvectors of a matrix, use the eig command: [E, V] = eig(A); Where E is a square matrix with the eigenvalues of A in the diagonal entries, and V is the matrix comprised of the corresponding eigenvectors. If the eigenvalues are not distinct, the eigenvectors will be repeated. MATLAB will not calculate the generalized eigenvectors. Left Eigenvectors To find the left eigenvectors, assuming there is a complete set of distinct right-eigenvectors, we can take the inverse of the eigenvector matrix: [E, V] = eig(A); C = inv(V); The rows of C will be the left-eigenvectors of the matrix A.
273
Matrix Operations For more information about MATLAB, see the wikibook MATLAB Programming3 . Category:Control Systems4
3 4
274
http://en.wikibooks.org/wiki/MATLAB%20Programming http://en.wikibooks.org/wiki/Category%3AControl%20Systems
43 Appendix: MATLAB BWarningThis page would highly benefit from some screenshots of various systems. Users who have MATLAB or Octave available are highly encouraged to produce some screenshots for the systems here.
43.1 MATLAB This page assumes a prior knowledge of the fundamentals of MATLAB. For more information about MATLAB, see MATLAB Programming1 . MATLAB is a programming language that is specially designed for the manipulation of matrices. Because of its computational power, MATLAB is a tool of choice for many control engineers to design and simulate control systems. This page is going to discuss using MATLAB for control systems design and analysis. MATLAB has a number of plugin modules called "Toolboxes". Nearly all the functions described below are located in the control systems toolbox. If your system has the control systems toolbox installed, you can get more information about the toolbox by typing help control at the MATLAB prompt. Also, there is an open-source competitor to MATLAB called Octave. Octave is similar to MATLAB, but there are also some differences. This page will focus on MATLAB, but another page could be added to focus on Octave. As of Sept 10th, 2006, all the MATLAB commands listed below have been implemented in GNU octave. This page will use the {{MATLAB CMD}} template to show MATLAB functions that can be used to perform different tasks. MATLAB is a copyrighted product produced by The Mathworks. For more information about MATLAB and The Mathworks, see Control Systems/Resources2 .
43.1.1 Input-Output Isolation In a MIMO system, typically it can be important to isolate a single input-output pair for analysis. Each input corresponds to a single row in the B matrix, and each output corresponds to a single column in the C matrix. For instance, to isolate the 2nd input and the 3rd output, we can create a system:
1 2
http://en.wikibooks.org/wiki/MATLAB%20Programming Chapter 46 on page 305
275
Appendix: MATLAB sys = ss(A, B(:,2), C(3,:), D); This page will refer to this technique as "input-output isolation".
43.2 Step Response This operation can be performed using this MATLAB command: step First, let's take a look at the classical approach, with the following system: G(s) =
5s + 10 s2 + 4s + 5
This system can effectively be modeled as two vectors of coefficients, NUM and DEN: NUM = [5, 10] DEN = [1, 4, 5] Now, we can use the MATLAB step command to produce the step response to this system: step(NUM, DEN, t); Where t is a time vector. If no results on the left-hand side are supplied by you, the step function will automatically produce a graphical plot of the step response. If, however, you use the following format: [y, x, t] = step(NUM, DEN, t); Then MATLAB will not produce a plot automatically, and you will have to produce one yourself. Now, let's look at the modern, state-space approach. If we have the matrices A, B, C and D, we can plug these into the step function, as shown: step(A, B, C, D); or, we can optionally include a vector for time, t: step(A, B, C, D, t); Again, if we supply results on the left-hand side of the equation, MATLAB will not automatically produce a plot for us. This operation can be performed using this MATLAB command: plot If we didn't get an automatic plot, and we want to produce our own, we type:
276
Classical ↔ Modern [y, x, t] = step(NUM, DEN, t); And then we can create a graph using the plot command: plot(t, y); y is the output magnitude of the step response, while x is the internal state of the system from the state-space equations: x0 = Ax + Bu y = Cx + Du
43.3 Classical ↔ Modern This operation can be performed using this MATLAB command: tf2ss MATLAB contains features that can be used to automatically convert to the state-space representation from the Laplace representation. This function, tf2ss, is used as follows: [A, B, C, D] = tf2ss(NUM, DEN); Where NUM and DEN are the coefficient vectors of the numerator and denominator of the transfer function, respectively. This operation can be performed using this MATLAB command: ss2tf In a similar vein, we can convert from the Laplace domain back to the state-space representation using the ss2tf function, as such: [NUM, DEN] = ss2tf(A, B, C, D); Or, if we have more than one input in a vector u, we can write it as follows: [NUM, DEN] = ss2tf(A, B, C, D, u); The u parameter must be provided when our system has more than one input, but it does not need to be provided if we have only 1 input. This form of the equation produces a transfer function for each separate input. NUM and DEN become 2-D matricies, with each row being the coefficients for each different input.
277
Appendix: MATLAB
43.4 z-Domain Digital Filters This operation can be performed using this MATLAB command: filter Let us now consider a digital system with the following generic transfer function in the Z domain: H(z) =
n(z) d(z)
Where n(z) and d(z) are the numerator and denominator polynomials of the transfer function, respectively. The filter command can be used to apply an input vector x to the filter. The output, y, can be obtained from the following code: y = filter(n, d, x); The word "filter" may be a bit of a misnomer in this case, but the fact remains that this is the method to apply an input to a digital system. Once we have the output magnitude vector, we can plot it using our plot command: plot(y); This operation can be performed using this MATLAB command: ones To get the step response of the digital system, we must first create a step function using the ones command: u = ones(1, N); Where N is the number of samples that we want to take in our digital system (not to be confused with "n", our numerator coefficient). Once we have produced our unit step function, we can pass this function through our digital filter as such: y = filter(n, d, u); And we can plot y: plot(y);
43.5 State-Space Digital Filters Likewise, we can analyze a digital system in the state-space representation. If we have the following digital state relationship:
278
Root Locus Plots
x[k + 1] = Ax[k] + Bu[k] y[k] = Cx[k] + Du[k] We can convert automatically to the pulse response using the ss2tf function, that we used above: [NUM, DEN] = ss2tf(A, B, C, D); Then, we can filter it with our prepared unit-step sequence vector, u: y = filter(num, den, u) this will give us the step response of the digital system in the state-space representation.
43.6 Root Locus Plots This operation can be performed using this MATLAB command: rlocus MATLAB supplies a useful, automatic tool for generating the root-locus graph from a transfer function: the rlocus command. In the transfer function domain, or the state space domain respectively, we have the following uses of the function: rlocus(num, den); And: rlocus(A, B, C, D); These functions will automatically produce root-locus graphs of the system. However, if we provide left-hand parameters: [r, K] = rlocus(num, den); Or: [r, K] = rlocus(A, B, C, D); The function won't produce a graph automatically, and you will need to produce one yourself. There is also an optional additional parameter for gain, K, that can be supplied: rlocus(num, den, K);
279
Appendix: MATLAB Or: rlocus(A, B, C, D, K); If K is not supplied, MATLAB will supply an automatic gain value for you. Once we have our values [r, K], we can plot a root locus: plot(r); The rlocus command cannot be used with MIMO systems, so if your system is a MIMO system, you must separate out your coefficient matrices to isolate each separate Input-output pair, and graph each individually.
43.7 Digital Root-Locus Creating a root-locus diagram for a digital system is exactly the same as it is for a continuous system. The only difference is the interpretation of the results, because the stability region for digital systems is different from the stability region for continuous systems. The same rlocus function can be used, in the same manner as is used above.
43.8 Bode Plots This operation can be performed using this MATLAB command: bode MATLAB also offers a number of tools for examining the frequency response characteristics of a system, both using Bode plots, and using Nyquist charts. To construct a Bode plot from a transfer function, we use the following command: [mag, phase, omega] = bode(NUM, DEN, omega); Or: [mag, phase, omega] = bode(A, B, C, D, u, omega); Where "omega" is the frequency vector where the magnitude and phase response points are analyzed. If we want to convert the magnitude data into decibels, we can use the following conversion: magdb = 20 * log10(mag); This conversion should be known well enough by now that it doesn't require explanation.
280
Nyquist Plots
This operation can be performed using this MATLAB command: logspace When talking about Bode plots in decibels, it makes the most sense (and is the most common occurrence) to also use a logarithmic frequency scale. To create such a logarithmic sequence in omega, we use the logspace command, as such: omega = logspace(a, b, n); This command produces n points, spaced logarithmicly, from 10a up to 10b . If we use the bode command without left-hand arguments, MATLAB will produce a graph of the bode phase and magnitude plots automatically. The bode command, if used with a MIMO system, will use subplots to produce all the input-output relationship graphs on a single plot window. for a system with multiple inputs and multiple outputs, this can become difficult to see clearly. In these cases, it is typically better to separate out your coefficient matrices to isolate each individual input-output pair.
43.9 Nyquist Plots This operation can be performed using this MATLAB command: nyquist In addition to the bode plots, we can create nyquist charts by using the nyquist command. The nyquist command operates in a similar manner to the bode command (and other commands that we have used so far): [real, imag, omega] = nyquist(NUM, DEN, omega); Or: [real, imag, omega] = nyquist(A, B, C, D, u, omega); Here, "real" and "imag" are vectors that contain the real and imaginary parts of each point of the nyquist diagram. If we don't supply the right-hand arguments, the nyquist command automatically produces a nyquist plot for us. Like the bode command, the nyquist command will use subplots to display the input-output relations of MIMO systems on a single plot window. If there are multiple input-output pairs, it can be difficult to see the individual graphs.
281
Appendix: MATLAB
43.10 Lyapunov Equations 43.11 Controllability A controllability matrix can be constructed using the ctrb command. The controllability gramian can be constructed using the gram command.
43.12 Observability An observability matrix can be constructed using the command obsv
43.13 Further Reading • Ogata, Katsuhiko, "Solving Control Engineering Problems with MATLAB", Prentice Hall, New Jersey, 1994. ISBN 0130459070 • MATLAB Programming3 . • http://octave.sourceforge.net/ • MATLAB Category on ControlTheoryPro.com4
3 4
282
http://en.wikibooks.org/wiki/MATLAB%20Programming http://wikis.controltheorypro.com/index.php?title=Category:MATLAB
44 Glossary and List of Equations The following is a listing of some of the most important terms from the book, along with a short definition or description.
44.1 A, B, C Acceleration Error The amount of steady state error of the system when stimulated by a unit parabolic input. Acceleration Error Constant A system metric that determines that amount of acceleration error in the system. Adaptive Control A branch of control theory where controller systems are able to change their response characteristics over time, as the input characteristics to the system change. Adaptive Gain when control gain is varied depending on system state or condition, such as a disturbance Additivity A system is additive if a sum of inputs results in a sum of outputs. Analog System A system that is continuous in time and magnitude. ARMA Autoregressive Moving Average, see http://en.wikipedia.org/wiki/Autoregressive_ moving_average_model ATO Analog Timed Output. Control loop output is correlated to a timed contact closure. A/M Auto-Manual. Control modes, where auto typically means output is computer-driven, calculated while manual can be field-driven or merely using a static setpoint. Bilinear Transform a variant of the Z-transform, see http://en.wikibooks.org/wiki/Digital_Signal_ Processing/Bilinear_Transform
283
Glossary and List of Equations Block Diagram A visual way to represent a system that displays individual system components as boxes, and connections between systems as arrows. Bode Plots A set of two graphs, a "magnitude" and a "phase" graph, that are both plotted on log scale paper. The magnitude graph is plotted in decibels versus frequency, and the phase graph is plotted in degrees versus frequency. Used to analyze the frequency characteristics of the system. Bounded Input, Bounded Output BIBO. If the input to the system is finite, then the output must also be finite. A condition for stability. Cascade When the output of a control loop is fed to/from another loop. Causal A system whose output does not depend on future inputs. All physical systems must be causal. Classical Approach See Classical Controls. Classical Controls A control methodology that uses the transform domain to analyze and manipulate the Input-Output characteristics of a system. Closed Loop a controlled system using feedback or feedforward Compensator A Control System that augments the shortcomings of another system. Condition Number Conditional Stability A system with variable gain is conditionally stable if it is BIBO stable for certain values of gain, but not BIBO stable for other values of gain. Continuous-Time A system or signal that is defined at all points t. Control Rate the rate at which control is computed and any appropriate output sent. Lower bound is sample rate. Control System
284
D, E, F A system or device that manages the behavior of another system or device. Controller See Control System. Convolution A complex operation on functions defined by the integral of the two functions multiplied together, and time-shifted. Convolution Integral The integral form of the convolution operation. CQI Control Quality Index, = 1 − abs(P V − SP )/max[P V max − SP, SP − P V min], 1 being ideal. CV Controlled variable
44.2 D, E, F Damping Ratio A constant that determines the damping properties of a system. Deadtime time shift between the output change and the related effect (typ. at least one control sample). One sees "Lag" used for this action sometimes. Digital A system that is both discrete-time, and quantized. Direct action target output increase is required to bring the process variable (PV) to setpoint (SP) when PV is below SP. Thus, PV increases with output increase directly. Discrete magnitude See quantized. Discrete time A system or signal that is only defined at specific points in time. Distributed A system is distributed if it has both an infinite number of states, and an infinite number of state variables. See Lumped. Dynamic
285
Glossary and List of Equations A system is called dynamic if it doesn't have memory. See Instantaneous, Memory. Eigenvalues Solutions to the characteristic equation of a matrix. If the matrix is itself a function of time, the eigenvalues might be functions of time. In this case, they are frequently called eigenfunctions. Eigenvectors The nullspace vectors of the characteristic equation for particular eigenvalues. Used to determine state-transitions, among other things. See http://en.wikibooks.org/wiki/ Control_Systems/Eigenvalues_and_Eigenvectors Euler's Formula An equation that relates complex exponentials to complex sinusoids. Exponential Weighted Average (EWA) Apportions fractional weight to new and existing data to form a working average. Example EWA=0.70*EWA+0.30*latest, see Filtering. External Description A description of a system that relates the input of the system to the output, without explicitly accounting for the internal states of the system. Feedback The output of the system is passed through some sort of processing unit H, and that result is fed into the plant as an input. Feedforward whwn apriori knowledge is used to forecast at least part of the control response. Filtering (noise) Use of signal smoothing techniques to reject undesirable components like noise. Can be as simple as using exponential weighted averaging on the input. Final Value Theorem A theorem that allows the steady-state value of a system to be determined from the transfer function. FOH First order hold Frequency Response The response of a system to sinusoids of different frequencies. The Fourier Transform of the impulse response. Fourier Transform An integral transform, similar to the Laplace Transform, that analyzes the frequency characteristics of a system.
286
G, H, I See http://en.wikibooks.org/wiki/Waves/Fourier_Transforms
44.3 G, H, I Game Theory A branch of study that is related to control engineering, and especially optimal control. Multiple competing entities, or "players" attempt to minimize their own cost, and maximize the cost of the opponents. Gain A constant multiplier in a system that is typically implemented as an amplifier or attenuator. Gain can be changed, but is typically not a function of time. Adaptive control can use time-adaptive gains that change with time. General Description An external description of a system that relates the system output to the system input, the system response, and a time constant through integration. Hendrik Wade Bode Electrical Engineer, did work in control theory and communications. Is primarily remembered in control engineering for his introduction of the bode plot. Harry Nyquist Electrical Engineer, did extensive work in controls and information theory. Is remembered in this book primarily for his introduction of the Nyquist Stability Criterion. Homogeniety Property of a system whose scaled input results in an equally scaled output. Hybrid Systems Systems which have both analog and digital components. Impulse A function denoted δ(t), that is the derivative of the unit step. Impulse Response The system output when the system is stimulated by an impulse input. The Inverse Laplace Transform of the transfer function of the system. Initial Conditions The conditions of the system at time t = t0 , where t0 is the first time the system is stimulated. Initial Value Theorem A theorem that allows the initial conditions of the system to be determined from the Transfer function.
287
Glossary and List of Equations Input-Output Description See external description. Instantaneous A system is instantaneous if the system doesn't have memory, and if the current output of the system is only dependent on the current input. See Dynamic, Memory. Integrated Absolute Error (IAE) absolute error (ideal vs actual performance) is integrated over the analysis period. Integrated Squared Error (ISE) squared error (ideal vs actual performance) is integrated over the analysis period. Integrators A system pole at the origin of the S-plane. Has the effect of integrating the system input. Inverse Fourier Transform An integral transform that converts a function from the frequency domain into the timedomain. Inverse Laplace Transform An integral transform that converts a function from the S-domain into the time-domain. Inverse Z-Transform An integral transform that converts a function from the Z-domain into the discrete time domain.
44.4 J, K, L Lag The observed process impact from an output is slower than the control rate. Laplace Transform An integral transform that converts a function from the time domain into a complex frequency domain. Laplace Transform Domain A complex domain where the Laplace Transform of a function is graphed. The imaginary part of s is plotted along the vertical axis, and the real part of s is plotted along the horizontal axis. Left Eigenvectors Left-hand nullspace solutions to the characteristic equation of a matrix for given eigenvalues. The rows of the inverse transition matrix. Linear
288
M, N, O A system that satisfies the superposition principle. See Additive and Homogeneous. Linear Time-Invariant LTI. See Linear, and Time-Invariant. Low Clamp User-applied lower bound on control output signal. L/R Local/Remote operation. LQR Linear Quadratic Regulator. Lumped A system with a finite number of states, or a finite number of state variables.
44.5 M, N, O Magnitude the gain component of frequency response. This is often all that is considered in saying a discrete filter's response is well matched to the analog's. It is the DC gain at 0 frequency. Marginal Stability A system has an oscillatory response, as determined by having imaginary poles or imaginary eigenvalues. Mason's Rule see http://en.wikipedia.org/wiki/Mason’s_rule MATLAB Commercial software having a Control Systems toolbox. Also see Octave. Memory A system has memory if its current output is dependent on previous and current inputs. MFAC Model Free Adaptive Control. MIMO A system with multiple inputs and multiple outputs. Modern Approach see modern controls Modern Controls
289
Glossary and List of Equations A control methodology that uses the state-space representation to analyze and manipulate the Internal Description of a system. Modified Z-Transform A version of the Z-Transform, expanded to allow for an arbitrary processing delay. MPC Model Predictive Control. MRAC Model Reference Adaptive Control. MV can denote Manipulated variable or Measured variable (not the same) Natural Frequency The fundamental frequency of the system, the frequency for which the system's frequency response is largest. Negative Feedback A feedback system where the output signal is subtracted from the input signal, and the difference is input to the plant. The Nyquist Criteria A necessary and sufficient condition of stability that can be derived from Bode plots. Nonlinear Control A branch of control engineering that deals exclusively with non-linear systems. We do not cover nonlinear systems in this book. OCTAVE Open-source software having a Control Systems toolbox. Also see MATLAB. Offset The discrepancy between desired and actual value after settling. P-only control can give offset. Oliver Heaviside Electrical Engineer, Introduced the Laplace Transform as a tool for control engineering. Open Loop when the system is not closed, its behavior has a free-running component rather than controlled Optimal Control A branch of control engineering that deals with the minimization of system cost, or maximization of system performance.
290
P, Q, R Order The order of a polynomial is the highest exponent of the independent variable in that exponent. The order of a system is the order of the Transfer Function's denominator polynomial. Output equation An equation that relates the current system input, and the current system state to the current system output. Overshoot measures the extent of system response against desired (setpoint tracking).
44.6 P, Q, R Parabolic A parabolic input is defined by the equation 12 t2 u(t). Partial Fraction Expansion A method by which a complex fraction is decomposed into a sum of simple fractions. Percent Overshoot PO, the amount by which the step response overshoots the reference value, in percentage of the reference value. Phase the directional component of frequency response, not typically well-matched between a discrete filter equivalent to the analog version, especially as frequency approaches the Nyquist limit. The final value in the limit drives system stability, and stems from the poles and zeros of the characteristic equation. PID Proportional-Integral-Derivative Plant A central system which has been provided, and must be analyzed or controlled. PLC Programmable Logic Controller Pole A value for s that causes the denominator of the transfer function to become zero, and therefore causes the transfer function itself to approach infinity. Pole-Zero Form
291
Glossary and List of Equations The transfer function is factored so that the locations of all the poles and zeros are clearly evident. Position Error The amount of steady-state error of a system stimulated by a unit step input. Position Error Constant A constant that determines the position error of a system. Positive Feedback A feedback system where the system output is added to the system input, and the sum is input into the plant. PSD The power spectral density which shows the distribution of power in the spectrum of a particular signal. Pulse Response The response of a digital system to a unit step input, in terms of the transfer matrix. PV Process variable Quantized A system is quantized if it can only output certain discrete values. Quarter-decay the time or number of control rates required for process overshoot to be limited to within 1/4 of the maximum peak overshoot (PO) after a SP change. If the PO is 25% at sample time N, this would be time N+k when subsequent PV remains < SP*1.0625, presuming the process is settling. Raise-Lower Output type that works from present position rather than as a completely new computed spanned output. For R/L, the % change should be applied to the working clamps i.e. 5%(hi clamp-lo clamp). Ramp A ramp is defined by the function tu(t). Reconstructors A system that converts a digital signal into an analog signal. Reference Value The target input value of a feedback system. Relaxed A system is relaxed if the initial conditions are zero.
292
S, T, U, V Reverse action target output decrease is required to bring the process variable (PV) to setpoint (SP) when PV is below SP. Thus, PV decreases with output increase. Rise Time The amount of time it takes for the step response of the system to reach within a certain range of the reference value. Typically, this range is 80%. Robust Control A branch of control engineering that deals with systems subject to external and internal noise and disruptions.
44.7 S, T, U, V Samplers A system that converts an analog signal into a digital signal. Sampled-Data Systems See Hybrid Systems. Sampling Time In a discrete system, the sampling time is the amount of time between samples. Reflects the lower bound for Control rate. SCADA Supervisory Control and Data Acquisition. S-Domain The domain of the Laplace Transform of a signal or system. Second-order System; Settling Time The amount of time it takes for the system's oscillatory response to be damped to within a certain band of the steady-state value. That band is typically 10%. Signal Flow Diagram A method of visually representing a system, using arrows to represent the direction of signals in the system. SISO Single input, single output. Span the designed operation region of the item,=high range-low range. Working span can be smaller if output clamps are used.
293
Glossary and List of Equations Stability Typically "BIBO Stability", a system with a well-behaved input will result in a well-behaved output. "Well-behaved" in this sense is arbitrary. Star Transform A version of the Laplace Transform that acts on discrete signals. This transform is implemented as an infinite sum. State Equation An equation that relates the future states of a system with the current state and the current system input. State Transition Matrix A coefficient matrix, or a matrix function that relates how the system state changes in response to the system input. In time-invariant systems, the state-transition matrix is the matrix exponential of the system matrix. State-Space Equations A set of equations, typically written in matrix form, that relates the input, the system state, and the output. Consists of the state equation and the output equation. See http://en.wikibooks.org/wiki/Control_Systems/State-Space_Equations State-Variable A vector that describes the internal state of the system. Stability The system output cannot approach infinity as time approaches infinity. See BIBO, Lyapunov Stability. Step Response The response of a system when stimulated by a unit-step input. A unit step is a setpoint change for setpoint tracking. Steady State The output value of the system as time approaches infinity. Steady State Error At steady state, the amount by which the system output differs from the reference value. Superposition A system satisfies the condition of superposition if it is both additive and homogeneous. System Identification method of trying to identify the system characterization , typically through least squares analysis of input,output and noise data vectors. May use ARMA type framework. System Type
294
W, X, Y, Z The number of ideal integrators in the system. Time-Invariant A system is time-invariant if an input time-shifted by an arbitrary delay produces an output shifted by that same delay. Transfer Function The ratio of the system output to its input, in the S-domain. The Laplace Transform of the function's impulse response. Transfer Function Matrix The Laplace transform of the state-space equations of a system, that provides an external description of a MIMO system. Uniform Stability Also "Uniform BIBO Stability", a system where an input signal in the range [0, 1] results in a finite output from the initial time until infinite time. See http://en.wikibooks.org/ wiki/Control_Systems/Stability. Unit Step An input defined by u(t). Practically, a setpoint change. Unity Feedback A feedback system where the feedback loop element H has a transfer function of 1. Velocity Error The amount of steady-state error when the system is stimulated by a ramp input. Velocity Error Constant A constant that determines that amount of velocity error in a system.
44.8 W, X, Y, Z W-plane Reference plane used in the bilinear transform. Wind-up when the numerics of computed control adjustment can "wind-up", yielding control correction with an inappropriate component unless prevented. An example is the "I" contribution of PID if output has been disconnected during PID calculation Zero A value for s that causes the numerator of the transfer function to become zero, and therefore causes the transfer function itself to become zero. Zero Input Response
295
Glossary and List of Equations The response of a system with zero external input. Relies only on the value of the system state to produce output. Zero State Response The response of the system with zero system state. The output of the system depends only on the system input. ZOH Zero order hold. Z-Transform An integral transform that is related to the Laplace transform through a change of variables. The Z-Transform is used primarily with digital systems. See http://en.wikibooks.org/ wiki/Digital_Signal_Processing/Z_Transform
296
45 List of Equations The following is a list of the important equations from the text, arranged by subject. For more information about these equations, including the meaning of each variable and symbol, the uses of these functions, or the derivations of these equations, see the relevant pages in the main text.
45.1 Fundamental Equations Euler's Formula ejω = cos(ω) + j sin(ω) Convolution (a ∗ b)(t) =
Z ∞
a(τ )b(t − τ )dτ
−∞
Convolution Theorem L[f (t) ∗ g(t)] = F (s)G(s)
L[f (t)g(t)] = F (s) ∗ G(s) Characteristic Equation |A − λI| = 0
Av = λv
wA = λw Decibels dB = 20 log(C)
297
List of Equations
45.2 Basic Inputs Unit Step Function (
0, t < 0 1, t ≥ 0
u(t) = Unit Ramp Function
r(t) = tu(t) Unit Parabolic Function 1 p(t) = t2 u(t) 2
45.3 Error Constants Position Error Constant Kp = lim G(s) s→0
Kp = lim G(z) z→1
Velocity Error Constant Kv = lim sG(s) s→0
Kv = lim (z − 1)G(z) z→1
Acceleration Error Constant Ka = lim s2 G(s) s→0
Ka = lim (z − 1)2 G(z) z→1
298
System Descriptions
45.4 System Descriptions General System Description Z ∞
g(t, r)x(r)dr
y(t) = −∞
Convolution Description y(t) = x(t) ∗ h(t) =
Z ∞
x(τ )h(t − τ )dτ
−∞
Transfer Function Description Y (s) = H(s)X(s)
Y (z) = H(z)X(z) State-Space Equations x0 (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) Transfer Matrix C[sI − A]−1 B + D = H(s)
C[zI − A]−1 B + D = H(z) Transfer Matrix Description Y(s) = H(s)U(s)
Y(z) = H(z)U(z) Mason's Rule
M=
N yout X Mk ∆ = yin ∆ k=1
k
299
List of Equations
45.5 Feedback Loops Closed-Loop Transfer Function Hcl (s) =
KGp(s) 1 + KGp(s)Gb(s)
Open-Loop Transfer Function Hol (s) = KGp(s)Gb(s) Characteristic Equation F (s) = 1 + Hol
45.6 Transforms Laplace Transform F (s) = L[f (t)] =
Z ∞
f (t)e−st dt
0
Inverse Laplace Transform −1
f (t) = L
1 {F (s)} = 2π
Z c+i∞
est F (s) ds
c−i∞
Fourier Transform F (jω) = F[f (t)] =
Z ∞
f (t)e−jωt dt
0
Inverse Fourier Transform f (t) = F −1 {F (jω)} =
1 2π
Z ∞
F (jω)e−jωt dω
−∞
Star Transform ∗
∗
F (s) = L [f (t)] =
∞ X i=0
Z Transform
300
f (iT )e−siT
Transform Theorems
∞ X
X(z) = Z {x[n]} =
x[n]z −n
i=−∞
Inverse Z Transform x[n] = Z
−1
1 {X(z)} = 2πj
I
X(z)z n−1 dz
C
Modified Z Transform ∞ X
X(z, m) = Z(x[n], m) =
x[n + m − 1]z −n
n=−∞
45.7 Transform Theorems Final Value Theorem x(∞) = lim sX(s) s→0
x[∞] = lim (z − 1)X(z) z→1
Initial Value Theorem x(0) = lim sX(s) s→∞
45.8 State-Space Methods General State Equation Solution x(t) = e
At−t0
Z t
x(t0 ) +
eA(t−τ ) Bu(τ )dτ
t0
x[n] = An x[0] +
n−1 X
An−1−m Bu[n]
m=0
General Output Equation Solution y(t) = CeAt−t0 x(t0 ) + C
Z t
eA(t−τ ) Bu(τ )dτ + Du(t)
t0
301
List of Equations
n−1 X
y[n] = CAn x[0] +
CAn−1−m Bu[n] + Du[n]
m=0
Time-Variant General Solution Z t
φ(τ, t0 )B(τ )u(τ )dτ
x(t) = φ(t, t0 )x(t0 ) + t0
x[n] = φ[n, n0 ]x[t0 ] +
n X
φ[n, m + 1]B[m]u[m]
m=n0
Impulse Response Matrix (
G(t, τ ) =
C(τ )φ(t, τ )B(τ ) 0 (
G[n] =
CAk−1 N 0
if k > 0 if k ≤ 0
45.9 Root Locus The Magnitude Equation 1 + KG(s)H(s) = 0
1 + KGH(z) = 0 The Angle Equation ∠KG(s)H(s) = 180◦ ∠KGH(z) = 180◦ Number of Asymptotes Na = P − Z Angle of Asymptotes φk = (2k + 1)
302
if t ≥ τ if t < τ
π P −Z
Lyapunov Stability Origin of Asymptotes − Z P −Z
P
σ0 =
P
P
Breakaway Point Locations G(s)H(s) ds
= 0 or
GH(z) dz
=0
45.10 Lyapunov Stability Lyapunov Equation M A + AT M = −N
45.11 Controllers and Compensators PID D(s) = Kp +
Ki + Kd s s
T z +1 z −1 D(z) = Kp + Ki + Kd 2 z −1 Tz
303
46 Resources and Further Reading 46.1 Wikibooks A number of wikibooks exist on topics that are (a) prerequisites to this book (b) companion pieces to and references for this book, and (c) of further interest to people who have completed reading this book. Below will be a listing of such books, ordered according to the categories listed above.
46.1.1 Prerequisite Books • • • • •
Linear algebra1 Linear Algebra with Differential Equations2 Complex Numbers3 Calculus4 Signals and Systems5
46.1.2 Companion Books • • • •
Engineering Analysis6 Engineering Tables7 Analog and Digital Conversion8 MATLAB Programming9
46.1.3 Books for Further Reading • Signal Processing10 • Digital Signal Processing11
1 2 3 4 5 6 7 8 9 10 11
http://en.wikibooks.org/wiki/Linear%20algebra http://en.wikibooks.org/wiki/Linear%20Algebra%20with%20Differential%20Equations http://en.wikibooks.org/wiki/Algebra%2FComplex%20Numbers http://en.wikibooks.org/wiki/Calculus http://en.wikibooks.org/wiki/Signals%20and%20Systems http://en.wikibooks.org/wiki/Engineering%20Analysis http://en.wikibooks.org/wiki/Engineering%20Tables http://en.wikibooks.org/wiki/Analog%20and%20Digital%20Conversion http://en.wikibooks.org/wiki/MATLAB%20Programming http://en.wikibooks.org/wiki/Signal%20Processing http://en.wikibooks.org/wiki/Digital%20Signal%20Processing
305
Resources and Further Reading • Communication Systems12 • Embedded Control Systems Design13
46.2 Wikiversity v:Control Systems14 The Wikiversity project also contains a number of collaborative learning efforts in the field of control systems, and related subjects. As best as possible, we will attempt to list those efforts here: • v:Control Systems15 Wikiversity is also a place to host learning materials, such as assignments, tests, and reading plans. It is the goal of the authors of this book to create such materials for use in conjunction with this book. As such materials are added to wikiversity, they will be referenced here.
46.3 Wikipedia There are a number of Wikipedia articles on the topics covered in this book, and those articles will be linked to from the appropriate pages of this book. However, some of the articles that are of general use to the book are: • w:Control theory16 • w:Control engineering17 • w:Process control18 A complete listing of all Wikipedia articles related to this topic can be found at: • w:Category:Control theory19 .
46.4 Software 46.4.1 Root Locus Root-Locus is a free program that was used to create several of the images in this book. That software can be obtained from the following web address: http://www.geocities.com/aseldawy/root_locus.html
12 13 14 15 16 17 18 19
306
http://en.wikibooks.org/wiki/Communication%20Systems http://en.wikibooks.org/wiki/Embedded%20Control%20Systems%20Design http://en.wikiversity.org/wiki/Control%20Systems http://en.wikiversity.org/wiki/Control%20Systems http://en.wikipedia.org/wiki/Control%20theory http://en.wikipedia.org/wiki/Control%20engineering http://en.wikipedia.org/wiki/Process%20control http://en.wikipedia.org/wiki/Category%3AControl%20theory
Software Explicit permission has been granted by the author of the program to include screenshots on wikibooks. Images generated from the Root-Locus program should be included in Category:Root Locus Images20 , and appropriately tagged as a screenshot of a free software program.
46.4.2 MATLAB MATLAB, Simulink, the Control Systems Toolbox and the Symbolic Toolbox are trademarks of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders. For more information about MATLAB, or to purchase a copy, visit: http://www.themathworks.com For information about the proper way to refer to MATLAB, please see: http://www.mathworks.com/company/pressroom/editorial_guidelines.html All MATLAB code appearing in this book has been released under the terms of the GFDL by the respective authors. All screenshots, graphs, and images relating to MATLAB have been produced in Octave, with changes to the original MATLAB code made as necessary.
46.4.3 Octave Octave is a free open-source alternative program to MATLAB. Octave utilizes a scripting language that is very similar to that of MATLAB, although there are several differences. Most of the basic examples described in this book will work equally well in MATLAB or Octave, with no changes or only minor changes. For more information, or to download a copy of Octave, visit: http://octave.sourceforge.net
46.4.4 Commercial Vendors The following are some common vendors of control-related hardware and software. These links are for personal interest only, and do not constitute an official endorsement of the companies by Wikibooks. • Systems Technology, Inc21 • SimApp - Dynamic Simulation Made Easy22
20 21 22
http://en.wikibooks.org/wiki/%3ACategory%3ARoot%20Locus%20Images http://www.programcc.com/about.asp http://www.simapp.com
307
Resources and Further Reading
46.5 External Publications The following books and resources were used as reference works in the creation of this wikibook (books listed in alphabetical order). • Brogan, William L, Modern Control Theory, 3rd Edition, 1991. ISBN 0135897637 • Chen, Chi-Tsong, Linear System Theory and Design, 3rd Edition, 1999. ISBN 0195117778 • Dorf and Bishop, Modern Control Systems, 10th Edition, Prentice Hall, 2005. ISBN 0131277650 • Hamming, Richard, Numerical Methods for Scientists and Engineers, 2nd edition, Dover, 1987. ISBN 0486652416 • Kalman, R. E., When is a linear control system optimal, ASME Transactions, Journal of Basic Engineering, 1964 • Kalman, R. E., On the General Theory of Control Systems, IRE Transactions on Automatic Control, Volume 4, Issue 3, p110, 1959. ISSN 0096199X • Ogata, Katsuhiko, Solving Control Engineering Problems with MATLAB, Prentice Hall, New Jersey, 1994. ISBN 0130459070 • Phillips and Nagle, Digital Control System Analysis and Design, 3rd Edition, Prentice Hall, 1995. ISBN 013309832X The following books and resources are suitable for further reading. • DiStefano, Stubberud, Williams, Schaum's Outline Series Feedback and Control Systems, 2nd Edition, 1997. ISBN 0070170479 • Franklin, Powell, Workman, Digital Control of Dynamic Systems, 3rd Edition, 1997. ISBN 9780201820546 • Brosilow, Joseph, Techniques of Model-Based Control, 2002. ISBN 013028078X
46.6 External Resources • IEEE Control Systems Society23 • ControlTheoryPro.com24 A place for controls theory, application, and modeling help. • Univ Michigan open text for Prcoess Dynamics and Controls25
23 24 25
308
http://www.ieeecss.org/ http://wikis.ControlTheoryPro.com http://controls.engin.umich.edu/wiki/index.php/Main_Page
47 Contributors Edits 1 16 1 2 1 23 2 4 58 2 1 1 1 1 1 1 2 5 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
User Abletried1 Adrignola2 Agentx3r3 Anith 5554 Antonysigma5 Avicennasis6 Az15687 Bestable8 Billymac009 Bo Dorku10 Cbarlog11 CommonsDelinker12 Constant31413 DSP-user14 Danny B.15 Deepcyan16 Derby County FC17 Dirk Hünniger18 Discostu519 Doleszki20 Druzhnik21
http://en.wikibooks.org/w/index.php?title=User:Abletried http://en.wikibooks.org/w/index.php?title=User:Adrignola http://en.wikibooks.org/w/index.php?title=User:Agentx3r http://en.wikibooks.org/w/index.php?title=User:Anith_555 http://en.wikibooks.org/w/index.php?title=User:Antonysigma http://en.wikibooks.org/w/index.php?title=User:Avicennasis http://en.wikibooks.org/w/index.php?title=User:Az1568 http://en.wikibooks.org/w/index.php?title=User:Bestable http://en.wikibooks.org/w/index.php?title=User:Billymac00 http://en.wikibooks.org/w/index.php?title=User:Bo_Dorku http://en.wikibooks.org/w/index.php?title=User:Cbarlog http://en.wikibooks.org/w/index.php?title=User:CommonsDelinker http://en.wikibooks.org/w/index.php?title=User:Constant314 http://en.wikibooks.org/w/index.php?title=User:DSP-user http://en.wikibooks.org/w/index.php?title=User:Danny_B. http://en.wikibooks.org/w/index.php?title=User:Deepcyan http://en.wikibooks.org/w/index.php?title=User:Derby_County_FC http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger http://en.wikibooks.org/w/index.php?title=User:Discostu5 http://en.wikibooks.org/w/index.php?title=User:Doleszki http://en.wikibooks.org/w/index.php?title=User:Druzhnik
309
Contributors 2 6 9 2 1 1 1 2 2 1 2 1 1 3 8 1 1 2 25 1 12 2 1 2 3
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
310
Ducleotide22 Ennui23 Esj8824 Feraudyh25 Fishpi26 Foreign127 Frigotoni28 Hagindaz29 Hammer of Moradin30 Helptry31 Herbythyme32 Herbythyme is the Antichrist of Mumfum33 HethrirBot34 Hypergeek1435 Inductiveload36 Istevie37 Jawnsy38 JenVan39 Jguk40 Jmah41 Jomegat42 Josephkiran43 Kayau44 Kevinp245 Leisuresuitwally46
http://en.wikibooks.org/w/index.php?title=User:Ducleotide http://en.wikibooks.org/w/index.php?title=User:Ennui http://en.wikibooks.org/w/index.php?title=User:Esj88 http://en.wikibooks.org/w/index.php?title=User:Feraudyh http://en.wikibooks.org/w/index.php?title=User:Fishpi http://en.wikibooks.org/w/index.php?title=User:Foreign1 http://en.wikibooks.org/w/index.php?title=User:Frigotoni http://en.wikibooks.org/w/index.php?title=User:Hagindaz http://en.wikibooks.org/w/index.php?title=User:Hammer_of_Moradin http://en.wikibooks.org/w/index.php?title=User:Helptry http://en.wikibooks.org/w/index.php?title=User:Herbythyme http://en.wikibooks.org/w/index.php?title=User:Herbythyme_is_the_Antichrist_of_Mumfum http://en.wikibooks.org/w/index.php?title=User:HethrirBot http://en.wikibooks.org/w/index.php?title=User:Hypergeek14 http://en.wikibooks.org/w/index.php?title=User:Inductiveload http://en.wikibooks.org/w/index.php?title=User:Istevie http://en.wikibooks.org/w/index.php?title=User:Jawnsy http://en.wikibooks.org/w/index.php?title=User:JenVan http://en.wikibooks.org/w/index.php?title=User:Jguk http://en.wikibooks.org/w/index.php?title=User:Jmah http://en.wikibooks.org/w/index.php?title=User:Jomegat http://en.wikibooks.org/w/index.php?title=User:Josephkiran http://en.wikibooks.org/w/index.php?title=User:Kayau http://en.wikibooks.org/w/index.php?title=User:Kevinp2 http://en.wikibooks.org/w/index.php?title=User:Leisuresuitwally
External Resources 11 4 1 2 1 1 1 5 1 2 14 8 1 10 13 1 2 1 1 2 1 1 1 4 1
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
Lpkeys47 Macsdev48 Mike.lifeguard49 Mintz l50 Mreiki51 Murughendra52 Napalm Llama53 Nithinvgeorge54 Nonstandard55 Nostraticispeak56 Nrs13557 Panic2k458 Pedro Fonini59 QuiteUnusual60 Recent Runes61 Rmaax62 Ro890Z63 Roman12364 SPat65 Satyabrata66 Scruff32367 Sdayal68 Shaffers2169 Simoneau70 Soeb71
http://en.wikibooks.org/w/index.php?title=User:Lpkeys http://en.wikibooks.org/w/index.php?title=User:Macsdev http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard http://en.wikibooks.org/w/index.php?title=User:Mintz_l http://en.wikibooks.org/w/index.php?title=User:Mreiki http://en.wikibooks.org/w/index.php?title=User:Murughendra http://en.wikibooks.org/w/index.php?title=User:Napalm_Llama http://en.wikibooks.org/w/index.php?title=User:Nithinvgeorge http://en.wikibooks.org/w/index.php?title=User:Nonstandard http://en.wikibooks.org/w/index.php?title=User:Nostraticispeak http://en.wikibooks.org/w/index.php?title=User:Nrs135 http://en.wikibooks.org/w/index.php?title=User:Panic2k4 http://en.wikibooks.org/w/index.php?title=User:Pedro_Fonini http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual http://en.wikibooks.org/w/index.php?title=User:Recent_Runes http://en.wikibooks.org/w/index.php?title=User:Rmaax http://en.wikibooks.org/w/index.php?title=User:Ro890Z http://en.wikibooks.org/w/index.php?title=User:Roman123 http://en.wikibooks.org/w/index.php?title=User:SPat http://en.wikibooks.org/w/index.php?title=User:Satyabrata http://en.wikibooks.org/w/index.php?title=User:Scruff323 http://en.wikibooks.org/w/index.php?title=User:Sdayal http://en.wikibooks.org/w/index.php?title=User:Shaffers21 http://en.wikibooks.org/w/index.php?title=User:Simoneau http://en.wikibooks.org/w/index.php?title=User:Soeb
311
Contributors 1 10 1 1 1 4 4 3 1 1 1823 4 1 4 5 1 1 3
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
312
Sonia72 Spradlig73 Supermackin74 Tawker75 Tdenewiler76 Thenub31477 Tim.greatrex78 Ubigene79 Upul80 Van der Hoorn81 Whiteknight82 Wknight811183 XMollioTKs84 Xania85 Xris86 YMS87 Z3588 Zoomzoom89
http://en.wikibooks.org/w/index.php?title=User:Sonia http://en.wikibooks.org/w/index.php?title=User:Spradlig http://en.wikibooks.org/w/index.php?title=User:Supermackin http://en.wikibooks.org/w/index.php?title=User:Tawker http://en.wikibooks.org/w/index.php?title=User:Tdenewiler http://en.wikibooks.org/w/index.php?title=User:Thenub314 http://en.wikibooks.org/w/index.php?title=User:Tim.greatrex http://en.wikibooks.org/w/index.php?title=User:Ubigene http://en.wikibooks.org/w/index.php?title=User:Upul http://en.wikibooks.org/w/index.php?title=User:Van_der_Hoorn http://en.wikibooks.org/w/index.php?title=User:Whiteknight http://en.wikibooks.org/w/index.php?title=User:Wknight8111 http://en.wikibooks.org/w/index.php?title=User:XMollioTKs http://en.wikibooks.org/w/index.php?title=User:Xania http://en.wikibooks.org/w/index.php?title=User:Xris http://en.wikibooks.org/w/index.php?title=User:YMS http://en.wikibooks.org/w/index.php?title=User:Z35 http://en.wikibooks.org/w/index.php?title=User:Zoomzoom
List of Figures • GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html • cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. creativecommons.org/licenses/by-sa/3.0/
http://
• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. creativecommons.org/licenses/by-sa/2.5/
http://
• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. creativecommons.org/licenses/by-sa/2.0/
http://
• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. creativecommons.org/licenses/by-sa/1.0/
http://
• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons. org/licenses/by/2.0/ • cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons. org/licenses/by/2.0/deed.en • cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons. org/licenses/by/2.5/deed.en • cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons. org/licenses/by/3.0/deed.en • GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt • LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl. html • PD: This image is in the public domain. • ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided that the copyright holder is properly attributed. Redistribution, derivative work, commercial use, and all other use is permitted. • EURO: This is the common (reverse) face of a euro coin. The copyright on the design of the common face of the euro coins belongs to the European Commission. Authorised is reproduction in a format without relief (drawings, paintings, films) provided they are not detrimental to the image of the euro. • LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de • CFR: Copyright free use.
313
List of Figures • EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10. php Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses90 . Please note that images in the public domain do not require attribution. You may click on the image numbers in the following table to open the webpage of the images in your webbrower.
90
314
Chapter 48 on page 319
List of Figures
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38
91 92 93 94 95 96 97 98 99 100 101
Jules Boilly
Inductiveload91 Spradlig92
image source obtained from en:User:Petr.adamek93 (with permission) and previously saved as PD in PNG format. touched up a little and converted to SVG by en:User:Rbj94
Inductiveload95 Inductiveload96 Inductiveload97 Inductiveload98 Inductiveload99 Inductiveload100 Inductiveload101
PD PD GFDL GFDL GFDL GFDL GFDL GFDL GFDL GFDL GFDL GFDL GFDL GFDL PD GFDL GFDL GFDL GFDL GFDL GFDL GFDL GFDL PD PD
PD PD PD PD GFDL GFDL PD PD PD PD PD PD PD
http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3ASpradlig http://en.wikibooks.org/wiki/%3Aen%3AUser%3APetr.adamek http://en.wikibooks.org/wiki/%3Aen%3AUser%3ARbj http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload
315
List of Figures
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
316
Inductiveload102 Inductiveload103 Inductiveload104 Inductiveload105 Inductiveload106 Inductiveload107 Inductiveload108 Inductiveload109 Inductiveload110 Inductiveload111 Inductiveload112 Inductiveload113 Inductiveload114 Inductiveload115 Inductiveload116 Inductiveload117 Inductiveload118 Inductiveload119 Inductiveload120 Inductiveload121 Inductiveload122 Inductiveload123 Inductiveload124 Inductiveload125
http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload http://en.wikibooks.org/wiki/User%3AInductiveload
PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD PD GFDL PD GFDL GFDL
List of Figures
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
126 127 128 129 130 131 132 133 134 135
cc-by-sa-2.5 Constant314126 User:Netnet127 User:Netnet128 User:Netnet129 User:Netnet130 User:Netnet131
Whiteknight User:Netnet132 User:Netnet133 User:Netnet134 Robo Blazek, Pezinok135
PD PD PD PD PD GFDL GFDL GFDL cc-by-sa-3.0 PD PD PD PD PD GFDL GFDL GFDL
http://en.wikibooks.org/wiki/User%3AConstant314 http://en.wikibooks.org/wiki/User%3ANetnet http://en.wikibooks.org/wiki/User%3ANetnet http://en.wikibooks.org/wiki/User%3ANetnet http://en.wikibooks.org/wiki/User%3ANetnet http://en.wikibooks.org/wiki/User%3ANetnet http://en.wikibooks.org/wiki/User%3ANetnet http://en.wikibooks.org/wiki/User%3ANetnet http://en.wikibooks.org/wiki/User%3ANetnet http://en.wikibooks.org/wiki/%3Ask%3Auser%3Arobo
317
48 Licenses 48.1 GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright © 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program nonfree. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. “This License” refers to version 3 of the GNU General Public License. “Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. “The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations. To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work. A “covered work” means either the unmodified Program or a work based on the Program. To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer
network, with no transfer of a copy, is not conveying. An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work. A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work’s System Libraries, or generalpurpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users’ Legal Rights From AntiCircumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.
You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: * a) The work must carry prominent notices stating that you modified it, and giving a relevant date. * b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”. * c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. * d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: * a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. * b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. * c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. * d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. * e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.
When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies.
A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or nonconsumer uses, unless such uses represent the only significant mode of use of the product.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.
“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. “Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: * a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or * b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or * c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or * d) Limiting the use for publicity purposes of names of licensors or authors of the material; or * e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or * f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work)
from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor’s “contributor version”. A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others’ Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal ef-
fect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found. Copyright (C) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: Copyright (C) This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it under certain conditions; type ‘show c’ for details. The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License. Of course, your program’s commands might be different; for a GUI interface, you would use an “about box”. You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read .
48.2 GNU Free Documentation License Version 1.3, 3 November 2008 Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. 0. PREAMBLE The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standardconforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text. The "publisher" means any person or entity that distributes copies of the Document to the public. A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition. The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. 2. VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. 3. COPYING IN QUANTITY If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: * A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. * B. List on the Title
Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. * C. State on the Title page the name of the publisher of the Modified Version, as the publisher. * D. Preserve all the copyright notices of the Document. * E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. * F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. * G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice. * H. Include an unaltered copy of this License. * I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. * J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. * K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. * L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. * M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. * N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. * O. Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add an-
other; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. 5. COMBINING DOCUMENTS You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements". 6. COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. 8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title. 9. TERMINATION You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it. 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of
this License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Document. 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site. "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization. "Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document. An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright (C) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with . . . Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
48.3 GNU Lesser General Public License GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright © 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below. 0. Additional Definitions. As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL” refers to version 3 of the GNU General Public License. “The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as defined below. An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library. A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the “Linked Version”. The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.
The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work. 1. Exception to Section 3 of the GNU GPL. You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL. 2. Conveying Modified Versions. If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version: * a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or * b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy. 3. Object Code Incorporating Material from Library Header Files. The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following: * a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License. * b) Accompany the object code with a copy of the GNU GPL and this license document.
4. Combined Works. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following: * a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License. * b) Accompany the Combined Work with a copy of the GNU GPL and this license document. * c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document. * d) Do one of the following: o 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source. o 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user’s computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. * e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.)
5. Combined Libraries. You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following: * a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License. * b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 6. Revised Versions of the GNU Lesser General Public License. The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy’s public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.
View more...
Comments