GENETIC ANALYSIS OF YIELD AND YIELD CONTRIBUTING CHARACTERS IN HYBRID RICE ...

October 30, 2017 | Author: Anonymous | Category: N/A
Share Embed


Short Description

RAJENDRANAGAR HYDERABAD-500 030. ACHARYA NG . happiness on our family, who made me to believe ......

Description

GENETIC ANALYSIS OF YIELD AND YIELD CONTRIBUTING CHARACTERS IN HYBRID RICE (Oryza sativa L.)

A. ANIL KUMAR M.Sc. (Ag.)

DOCTOR OF PHILOSOPHY IN AGRICULTURE (GENETICS AND PLANT BREEDING)

2013

GENETIC ANALYSIS OF YIELD AND YIELD CONTRIBUTING CHARACTERS IN HYBRID RICE (Oryza sativa L.)

BY A. ANIL KUMAR M.Sc. (Ag.)

THESIS SUBMITTED TO THEACHARYA N.G. RANGA AGRICULTURAL UNIVERSITYIN PARTIAL FULFILMENT OF THE REQUIREMENTSFOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY IN AGRICULTURE (GENETICS AND PLANT BREEDING) CHAIR PERSON: Dr. FARZANA JABEEN

DEPARTMENT OF GENETICS AND PLANT BREEDING COLLEGE OF AGRICULTURE RAJENDRANAGAR HYDERABAD-500 030 ACHARYA N.G. RANGA AGRICULTURAL UNIVERSITY 2013

i

DECLARATION

I, A. ANIL KUMAR, hereby declare that the thesis entitled “GENETIC ANALYSIS OF YIELD AND YIELD CONTRIBUTING CHRACTERS IN HYBRID RICE (Oryza sativa L.)” submitted to the Acharya N.G. Ranga Agricultural University for the degree of Doctor of Philosophy in Agriculture is the result of original research work done by me. I also declare that no material contained in the thesis has been published earlier in any manner.

Place:

(A. ANIL KUMAR)

Date:

I. D. No. RAD/07-18

ii

CERTIFICATE

Mr. A. ANIL KUMAR has satisfactorily prosecuted the course of research and that

thesis

entitled

“GENETIC

ANALYSIS

OF

YIELD

AND

YIELD

CONTRIBUTING CHARACTERS IN HYBRID RICE (Oryza sativa L.)” submitted is the result of original research work and is of sufficiently high standard to warrant its presentation to the examination. I also certify that neither the thesis nor its part thereof has been previously submitted by him for a degree of any University.

Date:

(Dr. FARZANA JABEEN) Chairperson

iii

CERTIFICATE This is to certify that the thesis entitled “GENETIC ANALYSIS OF YIELD AND YIELD CONTRIBUTING CHARACTERS IN HYBRID RICE (Oryza sativa L.)” submitted in partial fulfilment of the requirements for the degree of „Doctor of philosophy in Agriculture‟ of the Acharya N.G. Ranga Agricultural University, Hyderabad is a record of the bonafide original research work carried out by Mr. A. ANIL KUMAR under our guidance and supervision. No part of the thesis has been submitted by the student for any other degree or diploma. The published part and all assistance and help received during the course of the investigations have been duly acknowledged by the author of the thesis.

Dr. FARZANA JABEEN Chairperson of Advisory Committee Thesis approved by the Student Advisory Committee Chairperson

Member

Member

Member

Dr. FARZANA JABEEN Principal Scientist (Res.) O/o Director of Research ANGRAU Rajendranagar, Hyderabad-500 030 Dr. C.CHERALU Principal Scientist Regional Agricultural Research Station Warangal Dr. P.V. RAO Dean of Agriculture (i/c) ANGRAU Rajendranagar, Hyderabad-500030

K.SUPRIYA Assistant Professor Department of Statistics and Mathematics College of Agriculture, ANGRAU Rajendranagar, Hyderabad-500 030

Date of final viva-voce:

iv

________________

________________

________________

________________

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Farzana Jabeen for her co-operation and confounding support during my research. Due to her helping nature and wisdom I could able to undertake my research work. I sincerely thank her for her support during my Ph.D programme. I wish to convey my deep sense of gratitude to Co-chairmen of my advisory committee Dr. C. Cheralu, Principal Scientist and Head Rice Section, RARS, Warangal, for his expert suggestions, encouragement and immense help in carrying out my investigation and preparation of manuscript. I sincerely extend my profound gratitude to the members of my advisory committee Dr. P.V.Rao, Professor, department of Plant Physiology and Sri Priya, Assistant professor, Department of Statistics and Mathematics, College of Agriculture, Rajendranagar for their valuable suggestions. I cordially offer my sincere and heartful gratitude for Dr. Ilyas ahmed, Dr. Ramesh, Principal Investigator, CISSA, IRRI, Dr. Hari Prasad, Senior Scientist, Hybrid section, DRR. Dr. Laha, Senior Scientist Plant Pathology, DRR, Rajendranagar for their Valuable suggestions, constructive criticism and constant encouragement from conception to completion of my research work. My sincere thanks to Dr. Rukmini Devi, Scientist, RARS, Warangal, Mrs Parimala, Scientist, National Seed Project, Rajendranagar, Dr. Damodar Raju, Scientist, ARS, Kunaram, Mr. L.Krishna, Scientist, ARS, Kampasagar for their kind co-operation extended during my multi location trials. It gives me great pleasure to express my deep sense of gratitude to Dr. T. Dayakar Reddy, Professor and Head, Department of Genetics and Plant Breeding, College of Agriculture, Rajendranagar for their co operation and kindness during my research work. I sincerely extend my profound gratitude to Dr. S. Sudheer Kumar, Dr. N. A. Ansari, Dr. Kuldeep Singh Dangi Professors, Dr. K.V. Radha Krishna, Dr. M. Bharathi, Dr. M. Sujatha, Dr. J. Suresh, Department of Genetics and Plant Breeding, College of Agriculture, Rajendranagar. v

My deepest adoration to my parents Mrs. Jaya laxmi and Mukundam for their patience, love and dedicated efforts to educate me to this level. Words are not sufficient to describe the love and affection of my beloved sisters Vinoda and Vimala . I kneel to their bounty of love and care showered on me. I would heartily acknowledge the constant encouragement, assistance and inspiration given to me by my brothers-in-law Rajarathnam and Rajendraprasad and aunty and uncle Vajramma and laxmi narayana. No words found to express my heartful indebtness to my dear friends Somu, Rakesh, Bandi, Kiran, Gali, Ravikanth and Chandu for their constant encouragement, help and companionship during my Ph.D programme. I take this poourtunity to thank my friends Surender, Munna, Sridar, Sudheer, Bheem, Kiran kumar,Naik, Kamatam, Madhu, Krishna and Koti, My seniors Satish Chandra and Sandhya Kishore, my juniors Usha, Madhusudhan Reddy, Satnarayana Reddy, Chandu, Jathru and Rajesh for their constant support and encouragement. My sincere thanks to one and all, those who contributed directly and indirectly during my research work. That I could not included their names individually. I humbly thanks to the authorities of Acharya N.G. Ranga Agricultural University and Government of Andra Pradesh for their financial support in the form of stipend during my study period. I am very much thankful to the Directorate of Rice Research, Rajendranagar, Barwale foundation, Himayathanagar and IRRI, Philippines for providing parental material for my Ph.D research work. Above all my whole hearted prostrations to the almighty for showering the light of happiness on our family, who made me to believe “Miracles do happen in every one‟s life”.

Date:

(A. Anil Kumar)

vi

LIST OF CONTENTS

Chapter No.

Title

Page No.

I

INTRODUCTION

II

REVIEW OF LITERATURE

III

MATERIAL AND METHODS

IV

RESULTS AND DISCUSSION

V

SUMMARY AND CONCLUSIONS

LITERATURE CITED

____________________________________________________________________

vii

LIST OF TABLES TABLE No. 1

TITLE Review of variability studies in rice for yield and yield contributing characters

2

Review of Heritability and genetic advance studies in rice for yield and yield contributing characters

3

Details of parents and checks used for combining ability, heterosis and stability analysis

4

Details of pedigree of CMS lines

5

Details of pedigree of restorer lines

6

Designation of restorer lines used in the study

7

genotypic and phenotypic coefficient of variance for yield and yield attributing characters

8

Heritability, GA and GA% mean for yield and yield contributing characters

9

Pooled analysis of variance for combining ability (L X T) for yield and yield components in rice

10.1

Mean performance of parents and hybrids for Days to fifty per cent flowering, Plant height (cm) and Flag leaf length (cm) over locations and pooled

10.2

Mean performance of parents and hybrids for Flag leaf width (cm), Number of productive tillers per plant and Number of unproductive tillers per plant over locations and pooled

10.3

Mean performance of parents and hybrids for Panicle length (cm), Plant weight (g) and Number of filled grains per panicle over locations and pooled

10.4

Mean performance of parents and hybrids for Spikelet fertility (%), 1000 seed weight (g) and Grain yield per plant (g) over locations and pooled

viii

PAGE No.

Table contd…. TABLE No.

TITLE

11

Estimates of general and specific Combining ability variances and proportionate gene action in rice for twelve characters in rice

12.1

Estimates of general and specific combining ability effects for days to 50 % flowering and plant height at Warangal, Kunaram and Kampasagar and over locations in rice

12.2

Estimates of general and specific combining ability effects for panicle length and panicle weight at Karimnagar, Warangal and Hyderabad and over locations in rice

12.3

Estimates of general and specific combining ability effects for no. of productive tillers/plant and no. of unproductive tillers/plant at Karimnagar, Warangal and Hyderabad and over locations in rice

12.4

Estimates of general and specific combining ability effects for Flag leaf length (cm) and Flag leaf width (cm) at Karimnagar, Warangal and Hyderabad and over locations in rice

12.5

12.6

Estimates of general and specific combining ability effects for Spikelet fertility (%) and Number of grains per panicle at Karimnagar, Warangal and Hyderabad and over locations in rice Estimates of general and specific combining ability effects for Test weight and Grain yield per plant at Karimnagar, Warangal and Hyderabad and over locations in rice

13.1

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA- 6201 and KRH-2) for days to fifty percent flowering at Warangal and Kunaram.

13.2

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for days to fifty percent flowering at Kampasagar and Pooled.

13.3

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for plant height at Warangal and Kunaram.

13.4

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for plant height at Kampasagar and Pooled.

ix

PAGE No.

Table contd…. TABLE No.

TITLE

13.5

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for number of productive tillers per plant at Warangal and Kunaram.

13.6

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for number of productive tillers per plant at Kampasagar and Pooled.

13.7

Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for number of unproductive tillers per plant at Warangal and Kunaram.

13.8

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for number of unproductive tillers per plant at Kampasagar and Pooled.

13.9

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for panicle length at Warangal and Kunaram.

13.10

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for panicle length at Kampasagar and Pooled.

13.11

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for flag leaf length at Warangal and Kunaram.

13.12

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for flag leaf length at Kampasagar and Pooled.

13.13

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for flag leaf width at Warangal and Kunaram.

13.14

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for flag leaf width at Kampasagar and Pooled.

13.15

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for panicle weight at Warangal and Kunaram.

13.16

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for panicle weight at Kampasagar and Pooled.

13.17

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Spikelet fertility (%) at Warangal and Kunaram.

13.18

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Spikelet fertility (%) at Kampasagar and Pooled.

x

PAGE No.

Table contd…. TABLE No.

TITLE

13.19

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for number of filled grains per panicle at Warangal and Kunaram.

13.20

Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for number of filled grains per panicle at Kampasagar and Pooled.

13.21

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Test weight at Warangal and Kunaram.

13.22

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Test weight at Kampasagar and Pooled.

13.23

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Grain yield per plant at Warangal and Kunaram.

13.24

Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for Grain yield per plant at Kampasagar and Pooled.

14a

ANOVA of variance for yield and yield components for stability in rice

14b

ANOVA of variance for yield and yield components for stability in rice

15

Environmental indices for yield and yield components in rice

16.1 16.2 16.3 17

PAGE No.

Mean performance and stability parameters for Days to 50% flowering and Plant height (cm) in rice Mean performance and stability parameters for Number of productive tillers per plant and rice Mean performance and stability parameters for Test weight (g) and Grain yield per plant (g) in rice Grain quality analysis of parents and hybrids for nine characters

LIST OF PLATES PLATE No. 1 2

TITLE Panicle of high heterotic hybrids IR 79128A x R56 and IR 68897A x R27 Panicle of high heterotic hybrids IR 80155A x R53 and IR 79156A x R53

xi

PAGE No.

LIST OF SYMBOLS AND ABBREVIATIONS

% 0

C

: :

Per cent Degree Celsius

CD (P=0.05%):

Critical Difference at 5 per cent level

cm

:

Centimetre

mm

:

Millimetre

ml

:

Millilitre

Cov (F.S)

:

Covariance of Full Sibs

Cov. (H.S)

:

Covariance of Half Sibs

CV

:

Co-efficient of Variation

d.f.

:

degrees of freedom

et al.

:

and others people

No.

:

Number

H

:

Heritability in Broad sense

GA

:

Genetic Advance

gca

:

general combining ability

GCV

:

Genotypic Co-efficient of Variation

g

:

Gram

ha

:

Hectare

kg

:

Kilogram

kg ha-1

:

Kilogram per hectare

m

:

Metre

2

m

:

Metre square

M ha

:

Million hectares

Mt

:

Million tonnes

PCV

:

Phenotypic Co-efficient of Variation

RBD

:

Randomized Block Design

sca

:

specific combining ability

viz.,

:

Namely

vs.

:

Against

2

g

:

Genotypic Variance

2p

:

Phenotypic Variance xii

etc.

:

and so on; and other people/things

e.g.

:

for example, for instance

per se

:

As such with mean

SD

:

Standard Deviation

ANOVA

:

Analysis of Variance

CMS

:

Cytoplasmic Male Sterile

RARS

:

Regional Agricultural Research Station

A.M.

:

Before noon

HRR

:

Head Rice Recovery

SEm

:

Standard error between means

xiii

LIST OF TABLES TABLE No. 1

TITLE Review of variability studies in rice for yield and yield contributing characters

2

Review of Heritability and genetic advance studies in rice for yield and yield contributing characters

3

Details of parents and checks used for combining ability, heterosis and stability analysis

4

Details of pedigree of CMS lines

5

Details of pedigree of restorer lines

6

Designation of restorer lines used in the study

7

genotypic and phenotypic coefficient of variance for yield and yield attributing characters

8

Heritability, GA and GA% mean for yield and yield contributing characters

9

Pooled analysis of variance for combining ability (L X T) for yield and yield components in rice

10.1

Mean performance of parents and hybrids for Days to fifty per cent flowering, Plant height (cm) and Flag leaf length (cm) over locations and pooled

10.2

Mean performance of parents and hybrids for Flag leaf width (cm), Number of productive tillers per plant and Number of unproductive tillers per plant over locations and pooled

10.3

Mean performance of parents and hybrids for Panicle length (cm), Plant weight (g) and Number of filled grains per panicle over locations and pooled

10.4

Mean performance of parents and hybrids for Spikelet fertility (%), 1000 seed weight (g) and Grain yield per plant (g) over locations and pooled

PAGE No.

Table contd…. TABLE No.

TITLE

11

Estimates of general and specific Combining ability variances and proportionate gene action in rice for twelve characters in rice

12.1

Estimates of general and specific combining ability effects for days to 50 % flowering and plant height at Warangal, Kunaram and Kampasagar and over locations in rice

12.2

Estimates of general and specific combining ability effects for panicle length and panicle weight at Karimnagar, Warangal and Hyderabad and over locations in rice

12.3

Estimates of general and specific combining ability effects for no. of productive tillers/plant and no. of unproductive tillers/plant at Karimnagar, Warangal and Hyderabad and over locations in rice

12.4

Estimates of general and specific combining ability effects for Flag leaf length (cm) and Flag leaf width (cm) at Karimnagar, Warangal and Hyderabad and over locations in rice

12.5

Estimates of general and specific combining ability effects for Spikelet fertility (%) and Number of grains per panicle at Karimnagar, Warangal and Hyderabad and over locations in rice Estimates of general and specific combining ability effects for Test weight and Grain yield per plant at Karimnagar, Warangal and Hyderabad and over locations in rice

12.6

13.1

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA- 6201 and KRH-2) for days to fifty percent flowering at Warangal and Kunaram.

13.2

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for days to fifty percent flowering at Kampasagar and Pooled.

13.3

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for plant height at Warangal and Kunaram.

13.4

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for plant height at Kampasagar and Pooled.

PAGE No.

Table contd…. TABLE No.

TITLE

13.5

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for number of productive tillers per plant at Warangal and Kunaram.

13.6

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for number of productive tillers per plant at Kampasagar and Pooled.

13.7

Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for number of unproductive tillers per plant at Warangal and Kunaram.

13.8

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for number of unproductive tillers per plant at Kampasagar and Pooled.

13.9

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for panicle length at Warangal and Kunaram.

13.10

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for panicle length at Kampasagar and Pooled.

13.11

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for flag leaf length at Warangal and Kunaram.

13.12

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for flag leaf length at Kampasagar and Pooled.

13.13

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for flag leaf width at Warangal and Kunaram.

13.14

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for flag leaf width at Kampasagar and Pooled.

13.15

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for panicle weight at Warangal and Kunaram.

13.16

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for panicle weight at Kampasagar and Pooled.

13.17

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Spikelet fertility (%) at Warangal and Kunaram.

13.18

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Spikelet fertility (%) at Kampasagar and Pooled.

PAGE No.

Table contd…. TABLE No.

TITLE

13.19

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for number of filled grains per panicle at Warangal and Kunaram.

13.20

Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for number of filled grains per panicle at Kampasagar and Pooled.

13.21

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Test weight at Warangal and Kunaram.

13.22

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Test weight at Kampasagar and Pooled.

13.23

Estimates of heterosis, heterobeltiosis and standard heterosis (over PA6201 and KRH-2) for Grain yield per plant at Warangal and Kunaram.

13.24

Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for Grain yield per plant at Kampasagar and Pooled.

14a

ANOVA of variance for yield and yield components for stability in rice

14b

ANOVA of variance for yield and yield components for stability in rice

15

Environmental indices for yield and yield components in rice

16.1 16.2 16.3 17

Mean performance and stability parameters for Days to 50% flowering and Plant height (cm) in rice Mean performance and stability parameters for Number of productive tillers per plant and rice Mean performance and stability parameters for Test weight (g) and Grain yield per plant (g) in rice Grain quality analysis of parents and hybrids for nine characters

PAGE No.

NAME OF THE AUTHOR

:

Anil Kumar Arroju

TITLE OF THE THESIS

:

“GENETIC ANALYSIS OF YIELD AND YIELD CONTRIBUTING CHARACTERS IN HYBRID RICE (Oryza sativa L.)”

DEGREE TO WHICH IT IS : SUBMITTED

DOCTOR OF PHILOSOPHY

FACULTY

:

AGRICULTURE

DISCIPLINE

:

GENETICS AND PLANT BREEDING

MAJOR ADVISOR

:

Dr. FARZANA JABEEN

UNIVERSITY

:

ACHARYA N.G. RANGA AGRICULTURAL UNIVERSITY, RAJENDRANAGAR, HYDERABAD30.

YEAR OF SUBMISSION

:

2013

ABSRACT The present investigation entitled “GENETIC ANALYSIS OF YIELD AND YIELD ATTRIBUTING CHARACTERS IN HYBRID RICE (Oryza sativa L.)” was undertaken to study the combining ability, heterosis and stability of experimental hybrids for yield and yield attributing characters and to evaluate grain quality characters of the hybrids. Based on the pedigree records 20 parents (14 identified restorer lines and six CMS lines) were selected which were having ideal characters of restorer and CMS lines, in addition to yield. The selected 14 restorer lines were crossed with six male sterile lines in line x tester mating design during kharif, 2009. The resulting 84 F1 hybrids along with 20 parents and six checks including three hybrid checks (DRRH-2, PA 6201 and KRH 2) and three varietal checks (Annada, IR 64 and Jaya) were sown during rabi, 2009-2010 at three different locations situated at three different agro-climatic regions of Andhra Pradesh viz., Regional Agricultural Research Station, Kunaram for Northern Telangana Zone, Regional Agricultural Research Station, Warangal for Central

Telangana Zone and

Regional

Agricultural Research Station, Kampasagar for Southern Telangana Zone for studying combining ability, heterosis and stability.

The pooled analysis of variance revealed significant differences due to environments for all the characters indicating significant diversity among the environments. The mean sum of squares due to parents and crosses were significant for all the characters indicating the wider variability among the parents used and hybrids developed. Comparison of parents vs. crosses recorded significant for all the characters indicating presence of heterosis. Variances due to lines and testers were significant for most of the characters and interactions of lines x tester, parents x locations, (parents vs. crosses) x locations, crosses x locations, lines x locations, testers x locations and line x testers x locations were significant for most of the yield contributing traits. This indicates the existence of wide variability in the material under study and there is a good scope for identifying promising parents and hybrid combinations and improving the yield through yield contributing characters. For the character grain yield per plant, line IR-68897A recorded significant positive gca effects at three locations and in pooled analysis and the line IR-79156A recorded significant gca effects at Warangal, Kunaram and in pooled analysis. The line IR-79128A recorded significant negative gca effects at all three locations and in pooled analysis and the line IR-58025A recorded significant negative gca effects at Kunaram, Kampasagar and in pooled analysis. Among the testers, R-17, R-53 and R-56 recorded significant positive gca effects at all three locations and in pooled analysis. The testers, R-24, R-27, R-31, R-35 and R-36 recorded significant gca effects in any of the two locations out of three locations and in pooled analysis. The testers R-21 and R-25 recorded significant negative gca effects at all three locations and in pooled analysis. The testers R-7, R-32 and R-34 recorded significant gca effects in any of the two locations out of three locations and in pooled analysis. Among 84 hybrids evaluated, 18 hybrids at Warangal, 22 hybrids at Kunaram, 22 hybrids at Kampasagar and 23 hybrids at pooled analysis recorded significant positive sca effects. The hybrids IR-58025A x R-53, IR-79128A x R-19, IR-79128A x R-56, IR-80555A x R-35 and IR-80555A x R-36 recorded significant positive sca effects at all three locations and in pooled analysis,

In pooled analysis, the hybrids exhibited a range of average heterosis and heterobeltiosis from -15.38 (IR-58025A x R-7) to 87.56 (IR-80555A x R-36) and -24.35 (IR-58025A x R-7) to 87.53 (IR-80555A x R-36), respectively and 52 hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -32.54 (IR-80155A x R-21) to 31.89 (IR-79128A x R-56) and -38.29 (IR-80155A x R21) to 20.67 (IR-79128A x R-56) respectively. 28 and 13 hybrids recorded significant positive heterosis over PA-6201 and KRH-2. Among hybrids, only one hybrid IR-79156A X R-36 (22.67g) possessed significantly higher grain yield than the best check KRH-2 (20.69g) and recorded nearer to unit bi value, hence it is considered to be ideal and highly adaptable hybrid having average stability and expected to perform well in all the environments. Eleven hybrids recorded significantly higher or on par yields and regression coefficient of more than one and hence are adaptable for favourable environments. The hybrids, IR-79128A X R-56 (24.97g), IR80555A X R-35 (23.91g), IR-79128A X R-17 (23.46g), IR-68897A X R-53 (22.42g) and IR-80155A X R-19 (21.77g) recorded bi values of less than one and considered to be adaptable to poor environments. Based on grain quality analysis of hybrids, five hybrids viz., IR 68897A x R56, IR 79156A x R53, IR 80555A x R19, IR 80155A x R53 and IR 80555A x R36 were identified as good grain quality hybrids with high per se performance and high heterosis for grain yield per plant.

Chapter I

INTRODUCTION

Rice (Oryza sativa L.) is one of the most important cereal crops in the world, as it feeds nearly half of the planet’s population and approximately three quarters of a billion of world’s poorest people. In Asia, about 90 per cent rice is produced and consumed. Thus, the slogan “Rice is life” aptly suits to the King of Cereals. In India, it is the major staple food crop providing 43 per cent of calorie requirement for more than 70 per cent population. The green revolution in much rice producing countries enabled global rice production to meet the demand of the world’s increasing population. However, by 2025, the world must increase rice production to 880 Million tonnes (M t) from the present 600 M t.

In

India, rice is grown in 44.8 Million hectares (M ha) resulting in the production of 98.4 M t with a mean productivity of 2.2 t ha-1. To meet the demands of increasing population and to maintain self-sufficiency, the present production level needs to be increased upto 140 M t by 2025. Therefore, the average yields of irrigated rice have to be increased from the present 2.2 t ha-1 to 3.1 t ha-1. To achieve the enhanced yields, rice varieties with high yield advantage must be developed to meet the goal of increased rice production. Several breeding strategies are being employed in increasing yield potential of rice. Among the available strategies, hybrid rice offers an immediate opportunity to break the yield plateau set by the semi-dwarf rice varieties after the first green revolution. Chinese are the pioneers in hybrid rice and they have extensively capitalized on hybrid rice technology, resulting in a significant increase in productivity in last three decades. The area under hybrid rice occupies more than half of the total rice area in China. Good hybrids have the potential for yielding 15-20 per cent more than the best inbred variety grown under similar conditions. Following the Chinese success in commercialization of hybrid rice, India has initiated applied strategic program on hybrid rice during 1989. So far, 46 rice hybrids have been developed and released for commercial cultivation in India. Among these, 29 hybrids have been developed by public sector while the remaining

17 hybrids have been developed by the private sector. The total area covered under paddy is about 44 M ha in the country. Of this, 1.45 M ha area was planted with hybrid rice during kharif 2008. By 2010, it is anticipated to achieve 2.0 M ha under hybrid rice (around 6 per cent of the paddy area) with a seed production of 30 000 tonnes (t). Hybrid rice cultivation is becoming popular in Uttar Pradesh, Bihar, Jharkhand, Punjab, Haryana, Maharashtra, Karnataka, Madhya Pradesh and Chhattisgarh. In the recent past, the area under hybrid rice cultivation is drastically increasing in Andhra Pradesh especially in Telangana region. Large scale hybrid rice seed production is concentrated in just two districts of Andhra Pradesh viz., Karimnagar and Warangal. About 75 – 80 per cent of the total hybrid rice seed of the country is produced in this region. The other seed production centers are in Kurnool and Khammam districts of Andhra Pradesh and in some parts of Maharashtra and Karnataka. Successful development of rice hybrids by utilizing the cytoplasmic genic male sterility and fertility restoration system mainly depends on the availability of stable male sterile lines. It is also important to choose suitable parents with favourable alleles which upon crossing could produce heterotic hybrids. Combining ability of the parents provides useful information on their selection for better performance of hybrids (Dhillon, 1975); besides elucidating the nature and magnitude of gene action in the inheritance of a particular character.

The line × tester analysis of combining ability proposed by

Kempthorne (1957) is the most commonly used method to find out the general and specific combiners and to study the nature of gene action governing the inheritance of different characters In breeding programmes, special importance is laid on study and consideration of the amount of the stability of crop varieties or hybrids in relation to different environmental conditions. To analyze the stability, estimation of genotype x environment interaction is critical for accurate cultivar evaluation in large multi-environment trials. Cultivars that exhibit high levels of mean performance and stability across a wide range of environmental conditions are desirable for rice production. Hybrid rice cultivars are commercially produced in India. However, little research has been conducted comparing their stability for grain yield. Heterosis can be defined as the upward deviation of the F1 hybrid based on the mean values of the two parents. Heterosis may be positive or negative. Depending upon the

breeding objectives, both positive and negative heterosis is useful for crop improvement. In general, positive heterosis is desired for yield and negative heterosis for maturity. Although, rice is a naturally self-pollinating crop, considerable heterosis is observed in their F1 hybrids. Heterosis or hybrid vigor is manifested as improved performance of F1 hybrids generated by crossing two diverse inbred parents. Next to grain yield, cooking quality in the cereals is the important factor to be considered in breeding. The increased yield of rice hybrids alone does not ensure profitability to farmers if their quality is not acceptable and if they fetch a low price in the market, as over the years the consumer preference has changed drastically towards quality rice. In the recent past, the export of non-basmati quality rice had increased substantially, quality rice will not only earn foreign exchange though but, also fetch high price in the local market for the farmers. Hence, there is an imperative need for development of stable high yielding rice hybrids along with good grain and cooking quality attributes. Keeping in view the above aspects, the present investigation was undertaken with the following objectives: 1. To study the nature and magnitude of genetic variability, heritability, genetic advance and the magnitude of heterosis for yield and yield contributing characters. 2. To study the gene action and combining ability of parents and crosses. 3. To study the stability of yield and yield components of experimental hybrids. 4. To study the grain quality characters of the hybrids.

CHAPTER II

REVIEW OF LITERATURE

The present investigation was undertaken to elucidate combining ability and gene action, heterosis, stability of the hybrids over the locations. The literature available on these aspects is reviewed briefly section-wise as under. 2.1

Variability, heritability and genetic advance

2.2

Combining ability

2.3

Heterosis

2.4

Stability

2.5

Grain quality

2.1 Variability, heritability and genetic advance 2.1.1 Variability The information on the nature and magnitude of variability for different quantitative and qualitative traits in any crop species plays a vital role while formulating efficient breeding programmes. Superior genotypes can be isolated by selection, if considerable genetic variation exists within the population. It is essential to partition the overall variability into heritable and non-heritable components with the help of genetic parameters like genotypic and phenotypic coefficient of variation. Partitioning of observed variability into heritable and non-heritable components is very much essential to get a true indication of the genetic variation of the trait. Genetic parameters such as genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV), heritability (h2

(b))

and genetic advance (GA) are commonly used in

describing the variability of a character. A brief review of studies on variability in rice is presented in tabular form.

Table 1. Review of variability studies in rice for yield and yield contributing characters Character

Variability

Reference Awasthi and Pandey (2000)

1) Days to 50% flowering

High

Patil and Sarawgi (2005) Nandan et al. (2010)

Manonmani et al. (1996) Vange and Ojo (1997) Chikkalingaiah et al. (1999) Moderate

Jaiswal et al. (2007) Yadav et al. (2010) Selvaraj et al. (2011)

Shivani and Reddy (2000) Sinha et al. (2004) Qamar et al. (2005) Bisne and Motiramani (2006) Low

Krishna et al. (2008) Khan et al. (2009) Chandra et al. (2009) Jayasudha and Sharma (2010) Ullah et al. (2011) Awasthi and Pandey (2000)

2) Plant height (cm)

Sinha et al. (2004)

High

Jaiswal et al. (2007) Nandan et al. (2010) Yadav et al. (2010)

Shivani and Reddy (2000) Bisne and Motiramani (2006) Moderate

Krishna et al. (2008) Chandra et al. (2009) Jayasudha and Sharma (2010) Selvaraj et al. (2011)

Nath and Talukdar (1997) Chikkalingaiah et al. (1999) Low

Qamar et al. (2005) Khan et al. (2009) Ullah et al. (2011)

3) Flag leaf

High Yadav et al. (2010)

Length (cm)

4) Flag leaf

Yadav et al. (2010) Moderate

Width (cm)

Shivani and Reddy (2000) 5) No. of

Sinha et al. (2004)

productive tillers per plant

Patil and Sarawgi (2005) High

Jaiswal et al. (2007) Nayudu et al. (2007) Jayasudha and Sharma (2010) Selvaraj et al. (2011)

Vange and Ojo (1997) Qamar et al. (2005) Moderate

Bisne and Motiramani (2006) Krishna et al. (2008) Chandra et al. (2009)

Murthy et al. (1999) Low

Satyavathi et al. (2001) Raju (2002)

6) Panicle length (cm)

High

Kaw et al. (1999) Tripathi et al. (1999) Nayudu et al. (2007)

Moderate

Nayak et al. (2002) Jaiswal et al. (2007) Jayasudha and Sharma (2010) Nandan et al. (2010)

Low

Shivani and Reddy (2000)

Satyavathi et al. (2001) Bisne and Motiramani (2006) Krishna et al. (2008) Khan et al. (2009) Chandra et al, (2009) Selvaraj et al. (2011) Ullah et al. (2011)

7) Panicle weight (g)

Low

Nandan et al. (2010)

Shivani and Reddy (2000) Bisne and Motiramani (2006)

8) Number of filled grains per panicle

Nayak et al. (2002) High

Patil and Sarawgi (2005) Krishna et al. (2008) Nandan et al. (2010)

Moderate

Low

Selvaraj et al. (2011)

Nath and Talukdar (1997) Khan et al. (2009)

Mishra et al. (1996) 9) Spikelet

Nath and Talukdar (1997)

fertility (%)

High

Shivani and Reddy (2000) Bisne and Motiramani (2006) Jayasudha and Sharma (2010) Nandan et al. (2010)

Low

Qamar et al. (2005) Hasib (2005)

10) Test weight (g)

High

Patil and Sarawgi (2005) Bisne and Motiramani (2006) Jaiswal et al. (2007) Nayudu et al. (2007) Nandan et al. (2010)

Vange and Ojo (1997) Shivani and Reddy (2000) Moderate

Nayak et al. (2002) Chandra et al. (2009) Selvaraj et al. (2011) Ullah et al. (2011)

Chikkalingaiah et al. (1999) Vange et al. (1999) Low

Satyavathi et al. (2001) Yadav et al. (2010) Shivani and Reddy (2000)

11) Grain yield

Sinha et al. (2004)

per plant (g)

Bisne and Motiramani (2006) Jaiswal et al. (2007) Krishna et al. (2008) High

Anbanandan et al. (2009) Jayasudha and Sharma (2010) Nandan et al. (2010) Yadav et al. (2010) Selvaraj et al. (2011)

Satyavathi et al. (2001) Moderate

Qamar et al. (2005) Chandra et al. (2009) Ullah et al. (2011)

Low

2.1.2

Khan et al. (2009)

Heritability and Genetic Advance

Heritability (h2) measures the relative amount of the heritable portion of variability, while the genetic advance (GA) helps to measure the amount of progress that could be expected with selection in a character. Estimates of heritability along with estimates of genetic advance are more useful in choice of selection method rather than heritability or genetic advance alone (Johnson et al., 1955). High heritability coupled with high genetic advance indicates that the improvement could be made for a character by simple selection on phenotypic performance. The available literature on heritability and genetic advance in rice is reviewed briefly.

Table 2. Review of Heritability and genetic advance studies in rice for yield and yield contributing characters Character

Heritability

Genetic advance as per cent mean

Reference

Sankar et al. (2006) Bharadwaj et al. (2007)

1) Days to 50% flowering

Jaiswal et al. (2007) High

High

Kishore et al. (2008) Yadav et al. (2010) Selvaraj et al. (2011)

Shivani and Reddy (2000) High

Moderate

Bisne and Motiramani (2006) Chandra et al, (2009)

Madhavilatha et al. (2005) Patil and Sarawgi (2005) Qamar et al. (2005) High

Low

Krishna et al. (2008) Jayasudha and Sharma (2010) Ullah et al. (2011)

Moderate

High

Singh and Chaudhary (1996)

2) Plant height (cm)

High

High

Shivani and Reddy (2000) Bisne and Motiramani (2006) Bharadwaj et al. (2007) Jaiswal et al. (2007) Karad and Pol (2008) Kumar and Ramesh (2008) Chandra et al, (2009) Yadav et al. (2010) Selvaraj et al. (2011)

High

Moderate

Qamar et al. (2005) Jayasudha and Sharma (2010)

High

Low

Patil and Sarawgi (2005) Ullah et al. (2011)

Moderate

High

Sinha et al. (2004)

High

High

Yadav et al. (2010)

High

High

Yadav et al. (2010)

3) Flag leaf Length (cm)

4) Flag leaf Width (cm)

Shivani and Reddy (2000) 5) No. of productive tillers per plant

High

High

Patil and Sarawgi (2005) Bisne and Motiramani (2006) Jaiswal et al. (2007) Nayudu et al. (2007) Anbanandan et al. (2009) Selvaraj et al. (2011)

High

Moderate

Patra et al. (2006)

Qamar et al. (2005) High

Low

Chandra et al. (2009) Jayasudha and Sharma (2010)

Nath and Talukdar (1997) 6) Panicle length (cm)

High

High

Chikkalingaiah et al. (1999) Nayak et al. (2002)

Shivani and Reddy (2000) High

Moderate

Patil and Sarawgi (2005) Patra et al. (2006) Bisne and Motiramani (2006) Jaiswal et al. (2007) Selvaraj et al. (2011)

High

Low

Jayasudha and Sharma (2010)

Moderate

Low

Chandra et al. (2009) Ullah et al. (2011)

7) Panicle weight (g)

Low

Moderate

Nandan et al. (2010)

Low

Low

Singh and Chaudhary (1996)

Low

High

Nandan et al. (2010)

Shivani and Reddy (2000) 8) Number of filled grains per panicle

High

High

Patil and Sarawgi (2005) Bisne and Motiramani (2006) Selvaraj et al. (2011)

High

Low

Mishra et al. (1996)

Low

High

Nandan et al. (2010)

High

High

Shivani and Reddy (2000) Bisne and Motiramani (2006)

9) Spikelet fertility (%) High

Moderate

Nath and Talukdar (1997) Jayasudha and Sharma (2010)

High

Low

Mishra et al. (1996) Qamar et al. (2005)

Low

Moderate

Nandan et al. (2010) Bisne and Motiramani (2006) Bharadwaj et al. (2007)

10) Test weight (g)

Jaiswal et al. (2007) High

High

Karad and Pol (2008) Anbanandan et al. (2009) Selvaraj et al. (2011) Ullah et al. (2011)

Reddy and De (1996) High

Moderate

Shivani and Reddy (2000) Sinha et al. (2004)

High

Low

Patil and Sarawgi (2005) Chandra et al. (2009)

Moderate

Moderate

Yadav et al. (2010)

Low

High

Nandan et al. (2010) Shivani and Reddy (2000)

11) Grain yield per plant (g)

High

High

Patil and Sarawgi (2005) Bisne and Motiramani (2006) Sankar et al. (2006) Jaiswal et al. (2007) Nayudu et al. (2007) Kumar and Ramesh (2008) Yadav et al. (2010) Selvaraj et al. (2011) Ullah et al. (2011)

Sinha et al. (2004) High

Moderate

Qamar et al. (2005) Patra et al. (2006)

High

Low

Jayasudha and Sharma (2010)

Moderate

Low

Chandra et al. (2009)

Low

High

Nandan et al. (2010)

Low - Moderate Low - Moderate Bharadwaj et al. (2007)

2.2

Combining Ability and Gene Action Combining ability studies are useful in classifying parental lines in terms of their

performance. In self pollinated crops, these studies are useful in assessing the ability of parents and thus, aid in selecting parents which when crossed would give rise to more desirable segregants, as the choice of parents is the first step in any plant breeding programme aimed at improving yield or other attributes. Combining ability is the ability of an inbred line to transmit the desirable performance to its hybrid progenies. Sprague and Tatum (1942) defined general combining ability (gca) as the average performance of a line in hybrid combinations. The term specific combining ability (sca) was applied to designate the crosses in which certain combinations do relatively better or worse than what would be expected on the basis of average performance of lines involved. The estimation of gca and sca gives an idea of the performance of the parent. In cross combinations, general combining ability is associated with additive effects of the genes and specific combining ability is attributed primarily to deviation from the additive scheme caused by dominance and epistasis (Rojas and Sprague, 1952). Combining ability as a measure of gene action was given in Table 1. Lokaprakash et al. (1991) found that both GCA and SCA variances were highly significant for the traits like plant height, number of productive tillers per plant, panicle weight, number of fertile spikelets per panicle, thousand grain weight, yield per plant and harvest index indicating the importance of both additive and non-additive gene action. However, preponderance of additive gene action was recorded for plant height, while for others non-additive type was prominent. The parents, HP 19 and HP 11 were good general combiners for yield and yield components except plant height. In a study, Manuel and Prasad (1992) noticed that additive gene action was important for straw yield per plant, while both additive and non additive gene actions were important for the inheritance of dry matter production, harvest index and grain yield per plant. The parents, ASD 16 and IR 50 were the best general combiners for grain yield, straw yield and dry matter production and their hybrid, ASD 16 x IR 50 recorded the highest SCA effects for the above three traits as well as harvest index. Ghosh (1993) carried out combining ability analysis in rice for yield and its attributing traits. The parents viz., Annada, IET 8674 and IET 7255 were identified as good general combiners for yield per plant. The crosses, IET 7255 x Prasanna, IET 8674 x

Dular, IET 8674 x Annada, Dular x IET 10899, Annada x Prasanna and Annada x Dular exhibited higher SCA effects for yield per plant. Chakraborthy et al. (1994) reported that additive gene action was predominant for days to 50% flowering, flag leaf length, spikelets per panicle and 100- grain weight, while non-additive gene action was predominant for plant height, panicles per plant, grain weight per panicle and yield per plant. The cross combinations Mahsuri x Pankaj, Mahsuri x Monoharsali and Pankaj x Monoharsali showed positive specific combining ability effects for yield per plant. Vijayakumar et al. (1994) observed predominance of additive gene action for plant height, productive tillers per plant, number of grains per panicle, grain yield per plant, grain elongation after cooking and 1000-grain weight. Based on the GCA effects, the lines MH/Prakash and Intan/Gowri were found as good general combiners for yield components. The hybrid (Intan/Gowri) x Mahsuri was identified as good specific combiner. Manual and Rangaswamy (1995) studied a total of 51 rice hybrids and along with their parents for combining ability on eight characters. Based on the mean performance and GCA effects, TM 4309 and TKM 6 were identified as the best combining restorer parents followed by IR 64, CO 37, ADT 36, Jaya, ASD 18 and TNAU 88013, while ADT 39 was identified as a potential maintainer for the CMS line V 20 A. Based on the mean performance and SCA effects, five hybrids viz., IR 62829 A/TKM6.V 20 A/TNAU 88013, IR 62829A/TM 4309, IR 58025 A/TKM 6 and IR 58025 A/TM 4309 were identified as the best for grain yield and most component traits. Devaraj and Nadarajan (1996) evaluated thirty hybrids which were obtained by crossing three CMS lines and ten testers in line X tester fashion. On the basis of sca effects, eight hybrids for days to 50% flowering, ten for plant height, five for productive tillers, six for panicle length, fourteen for filled grains per panicles, sixteen for test weight and six crosses viz., V 20A X ARC 11353R, V 20 A X IR 50R, V 20A X IR 66R, IR 62829A X ADT 37R, IR 58025A X ACM 65R and IR 58025A X ACM 90R for grain yield per plant were identified as superior ones with significantly higher sca effects. The study conducted by Rogbell and Subbaraman (1997) revealed that the magnitude of variance due to SCA was predominant over GCA for all the eight traits studied. Among the parents, CNA 4121, IR 61457-8-3-3-1, IR 10198-66-2 and IR 54717-C10-113-1-2-2-2

were found to be good general combiners for grain yield. Six crosses were identified as the best hybrids based on their per se performance, high heterosis and high SCA effects. Manonmani and Ranganathan (1998) reported the importance of non additive- gene action for days to flowering, plant height, number of productive tillers, panicle length, number of grains per primary ear, 100-grain weight and grain yield. Among the parents, IR 50 and Kalyani II possessed high GCA effect for earliness and IR 50, CO 37, ASD 17 for grain yield. The crosses, ASD 16 x Kalyani II, IR 50 x ASD 8 and ASD 16 x ASD 17 were identified with good SCA effect for days to flowering, number of productive tillers and grain yield, respectively. The combining ability analysis by Babu et al. (2000) indicated the importance of nonadditive gene action for the inheritance of all the characters studied. Two CMS lines viz., IR 58025A and IR 62829A and three testers viz., WGL 3962, IET 9762 and IET 10021 were found to be good general combiners for yield and other yield attributes. The hybrids, IR 62829A x WGL 3962, IR 62829 x IR 276-301-06-01R, IR 62829A x MTU 9992, APMS 2A x IET 9762, IR 58025A x IET 10021 and APMS 1A x IET 10021 were found to be good heterotic combinations for grain yield. Lavanya (2000) studied combining ability for yield and its components from line X tester analysis of five CMS lines and six restorers as testers, indicated that dominance gene effect was predominant for the characters, productive tillers per plant, filled grains per panicle, spikelet fertility percent, harvest index, grain protein content and grain yield. Additive gene effects were predominant for days to 50% flowering, plant height, panicle length, and test weight. The lines IR 54752A, IR 58025A, IR 68229 A and testers WGL 3962, Swarna and Vajram were good general combiners for grain yield. The crosses IR 54752A X Prathiba, IR 54752 A X IR 36, IR 46830A X Vajram, IR 58025A X WGL 3962, IR 58025A X IR 64 and IR 62829A X Swarna exhibited higher specific combining ability effects for grain yield. Combining ability analysis was studied by Satyanarayana et al. (2000) for grain yield and its components using three CMS lines and thirty three restorer lines. Among the CMS lines studied, V 20 A is good general combiner for earliness, whereas IR 58025A and IR 62829A were rated as good general combiners for yield and among restorers, ten were rated as good general combiners for yield. Seventeen cross combinations exhibited high sca effects for yield.

Annadurai and Nadarajan (2001b) studied combining ability for thirty five hybrids along with the parents for yield components. Predominance of non-additive gene action was observed for all the characters studied. Ponni for productive tillers per plant and total dry matter accumulation and IR 58025A for grain yield per plant and total dry matter accumulation were identified as superior parents with high per se performance and significant gca effects. The cross combinations V 20A X IR 50400-64-1-2-2-2, PMS 10A X Ponni and IR 62829A X BR 736-200301 were found to be the best specific combiners. Banumathy et al. (2003) reported the predominance of non-additive gene action over additive gene action in the inheritance of grain yield and the associated traits. The lines, IR 58025A, IR 69616A and IR 70364A and testers, CB 95066, IR 10198-66-2R, IR 65515-47-2-1-19, TNAU 94241, TNAU 94301 and TNAU 841434 were good general combiners for grain yield per plant. The cross combinations, IR 68888A x CB 95066, IR 68888A x IR 10198-66-2R, IR 69616A x TNAU 841434, IR 70364A x TNAU 80030 and IR 70370 x CO 47 exhibited high SCA effects for grain yield. Prakash et al. (2003) studied the combining ability analysis and reported the predominant role of additive gene action for all the yield and yield contributing characters. Based on the study, he could able to identify IR-58025A and PMS-10A as good general combiners for most of the yield contributing characters among the three CMS lines and NDRK-5026 and NDRK-5028 were as good general combiners for most of the characters among restorer lines. In his studies, he also reported that none of the crosses exhibited high specific combining ability effects for all the characters. Swain et al. (2003) found that both GCA and SCA variances were highly significant for all the traits studied, indicating the importance of both additive and non-additive gene actions for expression of these traits. However, predominance of non additive gene action was recorded for days to flowering, number of panicles per plant and grain yield per plant, while additive type of gene action was predominant for plant height, panicle length, spikelets per panicle, 1000-grain weight, harvest index and straw yield per plant. Ketanangka ranked first as good general combiner, followed by Rahaspanjar, for the yield and yield components, except for plant height. The parent, CR 1006 appeared as good general combiner for plant height. The crosses, Rahaspanjar x Swarna and CR-260-77 x Ketanangka appeared to be the best for grain yield, with high SCA effects. Kshirasagar et al. (2005) studied combining ability for four CMS lines, ten testers and their hybrids by following line X tester design, gca effects revealed that among lines, IR-

68887A and IR-68888A were good general combiners for grain yield and for few yield traits. Among the testers, IR 59601-301-3-6, IET-16309, IR-35366 and IR-5813-62-3 were good general combiners for grain yield per plant. Panwar (2005) studied the combining ability of parents and crosses in rice, and reported the importance of non-additive gene action controlling all the traits studied. The line, IET 13846 and the testers, Kasturi, Basmati 370, Pusa Basmati-1, Taraori Basmati and IR 64 were good general combiners for grain yield per plant. Fourteen cross combinations recorded significant SCA effects for grain yield per plant. Bisne and Motiramani (2005) studied combining ability for yield and its components from line X tester analysis of four CMS lines and eight testers. The results indicated that non additive gene action was predominant for characters like plant height, effective tillers per plant, total number of spikelets per panicle, total number of filled spikelets per panicle, spikelet fertility percentage, grain yield per plant, days to 50% flowering, panicle length, 100 grain weight, harvest index, length and breadth of paddy. The lines, DRR 2A and PMS 10A and testers, BKP 232, R 827-287, R 1060-1674-1-1 and R 714-2-103 were good general combiners for grain yield. The crosses, DRR 2A/ R 827-287 and DRR 2A/ R 10601674-1-1 exhibited higher specific combining ability with high standard heterosis for grain yield. Rosamma and Vijaykumar (2005) studied twenty hybrids along with their parents for combining ability for yield traits. Among female parents, IR 68890A recorded high positive gca for most of the yield contributing traits. Among hybrids evaluated, IR 68890A X Aishwarya was identified as the most superior specific combiner followed by IR 68891A X IR 36, IR 62829A X Matta Triveni, IR 62829A X Kanchana and IR 68891A X Annapurna. Sao and Motiramani (2006) studied combining ability in rice by line X tester analysis for all yield and yield contributing characters involving four CMS lines, 13 testers and resulting 52 hybrids. Among the CMS lines studied, DRR 22A was a good general combiner for plant height and CMS line IR 67684A was also good general combiner for number of productive tillers per plant, total number of filled spikelets per panicle, spikelet fertility percentage and pollen sterility percentage. Among the testers, Swarna was found to be the best general combiner for grain yield per plant. In line x tester interaction study, Kumar et al. (2006) found that mean squares due to parents vs crosses differed significantly for majority of the traits. Among the CMS lines,

IR 68886A for earliness and IR 58025A for yield and its component traits were found to be superior general combiners. Four testers viz., Pusa 1040, PSRM-1-16-48-11, RAU 1411-4 and RAU 1414-10 were rated as good general combiners for yield. The crosses, IR 68886A x Pusa 1040, IR 58025A x RAU 1411-10 and IR 68886A / PSRM-1-16-48-11 recorded significant heterosis for yield and yield contributing traits. Faiz et al. (2006) studied combining ability by taking two CMS lines and two restorer lines and their hybrids to estimate the combining ability effects for yield and yield traits. In the two CMS lines, IR 69616A was found to be a good general combiner for most of the traits whereas among the testers, Basmati 385 was observed to be a good general combiner for most of the traits. Hariprasanna et al. (2006) studies showed significant specific combining ability (sca) and general combining ability (gca) effects for yield and its characters indicating the role of both additive and non-additive gene action. Malini et al. (2006) studied combining ability analysis of fifty rice hybrids along with their parents and revealed the preponderance of non additive gene action. The specific combining ability variance was higher than general combining ability variance for all the characters studied viz., days to flowering, plant height, panicles per plant, panicle length, spikelets per panicle, grains per panicle, straw yield and grain yield. Among the parents studied, IR 688886A, IR 688897A, ADT 41, ADT 42, CO 43 and White Ponni were the best combiners for grain yield, panicles per plant and grains per panicle for their significant general combining ability effects. Raju et al. (2006) studies indicated that the amount of heterosis for leaf area index (LAI) at tillering stage, crop growth rate (CGR) from tillering to heading, harvest index (HI), 100-grain weight and grain yield per plant was high and the inheritance of LAI, CGR net assimilation rate (NAR), HI, days to 50 per cent flowering, productive tillers per plant, filled grains per panicle and grain yield per plant were predominantly under the control of non-additive gene action, whereas, 100-grain weight was largely governed by additive gene action. The parents, IR 20 for LAI, RDR 763 for LAI, NAR and productive tillers per plant and Lunisree for CGR, HI, Biological yield and 100-grain weight were identified as good general combiners. The per se performance of the parents was found to be a good indicator of their general combining ability. The best specific crosses with high SCA effects mostly involved parents with high x low or low x low GCA effects, hence heterosis

breeding would be more rewarding to achieve another quantum jump in rice yields through exploitation of physiological traits. Sarial et al. (2007) reported that out of four, two CMS lines, IR 58025A and PMS 3A were identified as good general combiners for grain yield and other traits. The specific combiners characterized with high SCA effects were IR 58025A x Basmati 385, IR 62829A x Basmati 385, IR 62829A x HKR 241 and PMS 3A x P1031-8-5-1 for grain yield, biomass per plant and effective tillers per plant. Narasimman et al. (2007) revealed that ADT 44 was a good general combiner for all the six traits studied. The parent, CR 1009 was also observed to be a good combiner for all the traits except harvest index. The cross, ADT 4 x CR 1009 exhibited highly significant positive sca effects coupled with highly significant positive heterobeltiosis and standard heterosis for number of filled grains per panicle, biomass per plant and grain yield per plant. Sanjeevkumar et al. (2007) found that both GCA and SCA variances were highly significant for all the characters indicating the importance of both additive and nonadditive gene actions. However, preponderance of additive gene action was recorded for the traits viz., plant height, days to 50 per cent flowering and 100-seed weight while, both additive and non-additive gene effects were almost equally important for grain yield per plant, leaf area index. Preponderance of non-additive gene action was recorded for panicle length and grain length. The parents, HPR 2047, VL 93-3613 and J 08 were good general combiners for grain yield and other related characters. The parents, HPR 1164 and J 08 were good general combiners for shortest plant height and earliness. These crosses involving the above mentioned parents were promising as revealed by their sca effects. The cross combinations, HPR 2047 x VL 93-3613, HPR 1164 x IR 57893-8, VL 91-1754 x J 08, VL 93-3613 x J 08 and VL 91-1754 x VL 93-3613 showed significant positive specific effects for grain yield per plant and some associated characters. Sarma et al. (2007) observed that additive genetic variance was higher in magnitude for plant height, panicle length and all other quality parameters. Non-additive gene action on the other hand was predominant for grain yield and its components viz., effective tillers, panicle weight and grain weight. Combining ability study by Venkatesan et al. (2007) revealed non-additive gene action governing the characters viz., days to first flower, plant height and grain yield per plant. Predominance of GCA variance was recorded for days to first flower, plant height

and grain yield per plant. Among the parents, the lines AD 25137, AD 25157 and MDU 5 and testers, ADT 36, ADT 36, ADT 43 and IR 50 were good combiners for grain yield and most of the other components studied. Thirty hybrids generated from crossing three lines with ten testers were studied along with parents for combining ability and gene action involved in expression of characters in basmati rice. The GCA and SCA effects were significant for all the characters, indicating the importance of both additive and non-additive genetic components. But, it is found that there was predominance of non-additive genetic components for expression of different traits in the present set of materials. Amongst the parental lines, RP 3392-75-5-11-1 and RP 3644-41-9-5-5 were best general combiners for grain yield along with other traits. The most specific combiners for grain yield and other traits were Pusa 3A x RP 3392-75-11-1, IR 68281A x BTCE 10-98, IR 58025A x HKR 97-401, Pusa x RP 3644-36-15-8-4 and IR 68281A x RP 3644-41-9-5-5 (Pradhan and Singh, 2008). Shihang et al. (2008) reported that eleven CMS lines and six restorer lines were crossed to study the specific combining ability (SCA) and general combining ability (GCA) for eight yield characters of indica rice. The GCA and SCA for eight yield characters were highly significant. Shukla and Pandey (2008) observed 120 hybrids derived from hybridization of 30 elite TGMS lines and four cultivars in line x tester mating design. Pooled analysis revealed highly significant variances for lines, general combining ability (GCA), specific combining ability (SCA) and line x testers. The TGMS line, 365-8S was good combiner for grain yield and its components studied. Preponderance of non-additive gene action suggested good prospects of hybrid breeding. Eighteen hybrids generated from crossing six basmati lines with three tester parents were studied for combining ability for grain yield and its component characters. Additive gene action was predominant for flag leaf area, panicle length, grain weight per panicle and grain yield per plant while days to flowering, panicle bearing tillers per plant and grains per panicle exhibited preponderance of non-additive gene action. Kasturi, Basmati 5853 and Haryana Basmati-1 among the lines and Pant Dhan 11 among the testers emerged as good general combiner for various traits. Basmati C 622 x TN 1, Basmati 5853 x Pant Dhan 11 and Pusa Basmati 1 x TN 1 crosses emerged as most promising ones. (Sharma and Mani, 2008).

Dalvi and Patel (2009) developed 60 hybrids from crossing four CMS lines with 15 restorer lines to study the specific combining ability (SCA) and general combining ability (GCA) for 13 yield characters of rice. Among the male parents, the lines BR-827-35-3-1, RTN-3 and IR-46 and the female parent, IR-58025A were good combiners for grain yield and most of the other components except plant height and L:B ratio. The specific combiners characterized with high SCA effects were IR 58025A x BR-827-35-3-1, IR58025A x RTN-3 and IR-68885A x RTN-3 for grain yield per hill. Non-additive gene action was predominant for grain yield and its components except days to 50 per cent flowering and productive tillers per plant. The study conducted by Salgotra et al. (2009) revealed that the magnitude of variance due to SCA was predominant over GCA for all the eight traits studied except days to fifty per cent flowering. Fifteen hybrids derived from hybridization of five elite varieties and well developed cultivars in line x tester mating design. Among the parents, Pusa 2517-251-1, Sanwaal basmati, Super basmati, Ranbir basmati and Basmati 370 were found to be good general combiners for grain yield. Five crosses were identified as the best hybrids for yield and its components which can be used for exploitation of heterosis for yield. Combining ability analysis by Jayasudha and Sharma (2010) revealed predominance of non-additive gene action for all the characters under study. Non-additive gene action was estimated by comparative variance of general combining ability to specific combining ability. The estimates of general combining ability effects of lines and testers showed that CMS lines, IR 58025A and testers, RPHR-203-3, OR-1898-18 and RAU 729-12-44 were superior general combiners for seed yield per plant. Babu et al. (2010) studied ninty six hybrids along with parents for combining ability for yield, yield components and quality characters. Predominant non-additive gene action was recorded for most of the characters except for spikelet fertility percentage and harvest index which were governed by additive gene action. Among the parents, PMS 3A, MTU 1064 and MTU 11-161-28-1-1 were found to be good general combiners for yield and yield components. PMS 10A X MTU 11-161-28-1-1 and PMS 10A X MTU 11 193-23-1 were identified as most promising crosses for yield based on sca effects and per se performance. Study of Muthuramu et al. (2010) revealed the non-additive gene action for all the characters except plant height indicating the high magnitude of specific combining ability than general combining ability except for plant height. The hybrids, PMK 3/MDU 5, PMK

3/ASD 16, PMK 3/Mattaikal and ASD 16/Vellai Chithiraikal recorded significant sca effects with desirable per se performance for most of the traits involving either with one good and one poor combiner. Bagheri and Jelodan (2010) revealed the variance of SCA was higher than the GCA variance for all the traits except for plant height indicating the predominance of nonadditive gene action in the inheritance of the traits. Within CMS lines, parents, IR 62829A and among male parents, IR 50 and Poya were observed to be good general combiners for most of the characters studied. The cross combinations, IR 68229A X Mosa-tarom, IR 68899A X Poya, IR 58025A X IR 50 and IR 58025A X Poya were observed to be good specific cross combinations for yield and yield related traits. Combining ability study by Saidaiah et al. (2010) revealed higher SCA variance than GCA variance for all the traits indicating the prevalence of non-addtive gene action. The lines, APMS 6A, Pusa 5A and CRMS 32A and testers, 1096, 1005, IBL-57 and SC5-9-3 were good general combiners for yield and for most of the yield contributing characters. The hybrids, APMS 6A x SC5-9-3, APMS 6A x 1005 and APMS 6A x GQ 25 were identified as good specific combinations for yield and yield contributing traits. Thakre et al. (2010) studied the combining ability analysis for yield and grain quality traits in rice through line x tester analysis of 45 hybrids developed by crossing three females with 15 male lines along with parents and checks. The estimates of gca effects indicated that among females, IR 68886 A and IR 68897 A and among males, IR-44, IR60, IR-9761, IR-4266-29-4-2-2-2, IR-5638-139-2-2, IR-69701-9-3-1 and IR-71138-49-2-2 are good general combiners for grain yield per plant. High sca effects were observed in the crosses, IR 68886A X IR-44, IR 68897A X IET-15554, IR 68897 A X IR-56455-206-2, IR 68902 A X IR-4266-29-4-2-2-2 and IR 68897 A X IR-62161-184-3-1-3-2 and they were found to be the best combinations for grain yield per plant and quality traits.

2.3

Heterosis Heterosis is the phenomenon in which the F1 of the two genetically dissimilar parents

showed increased vigour or performance for various traits over the mid parental value (relative or mid-parent heterosis) or over the better parent (heterobeltiosis) or over the best commercial variety (standard heterosis) . Shull (1914) coined the term ‘Heterosis’ and it

usually refers to relative heterosis. From the point of view of plant breeding, increase of F1 value over the better parent or the best commercial variety is most important. The tendency for the offspring of crossed varieties to have more culms and greater productivity than the parental varieties in rice was first observed by Jones (1926). Since then, commercial exploitation of heterosis by way of producing hybrid rice varieties have been successful. Nowadays, rice breeders are also concentrating their efforts in heterosis breeding to produce rice hybrids. According to Swaminathan et al. (1972) hybrid vigour in a self pollinated crops have to be economically advantageous and must give 25 per cent more than the best commercial variety. The available literature on heterosis in rice is reviewed below. Range of heterosis per cent over Number of crosses studied Mid parent Better parent Commercial check

Reference

1. Days to 50 percent flowering 4

--

--

-31.90 to -10.90 Sharma and Mani (1990)

75 -16.00 to 14.00 -12.00 to 29.00 -27.00 to 19.00 Peng and Virmani (1991) 21

-5.12 to 7.39

-7.82 to 7.27

-4.79 to 15.16

Sreedhar and Kulkarni (1993)

36

--

--

-9.50 to 24.00

Yolanda and Vijendradas (1996)

28 -16.80 to 12.00 -27.50 to 15.00

--

Ganesan et al. (1997)

30

--

-19.50 to 18.40 -19.00 to 16.00 Mishra and Pandey (1998)

60

--

-13.93 to 25.26

-34.56 to 7.22

Vishwakarma et.al. (1998)

15

--

--

-2.04 to 5.70

Devasia and Rangaswamy (1999)

14

--

--

-14.00 to 22.00 Singh and Maurya (1999)

8

--

--

-10.15 to 2.38

15 100

-16.16 to 4.10 -43.70 to 42.90 --

24 -16.21 to 13.51 30

--

--

Guha Sarkar et al. (2001) Ghosh (2002)

--

-6.77 to 14.59

Banumathy et al. (2003b)

--

--

Joshi et al. (2004)

-8.27 to 22.06

--

Verma et al. (2004)

2

5.70 to14.87

-1.70 to1.13

--

Yadav et al. (2004)

8

--

-14.70 to 11.50

--

Bhandarkar et al. (2005)

8

-10.71 to 12.19

--

--

Shanthala et al. (2006)

36

--

19 to 47

-25 to 21

5

-9.62 to -1.6

-6.4 to -1.3

-16.3 to -3.3

Anjuchaudhary et al. (2007)

-5.53 to 16.99

Deoraj et al. (2007)

45 -11.59 to 17.74 -10.95 to 19.35

Singh et al. (2006a)

33

--

--

-2.67 to -2

Eradasappa et al. (2007)

25

--

--

-8.2 to 13.6

Rosamma and Vijayakumar (2007)

48

--

-24.35 to 8.16

-3.33 to 8.89

Akash Parihar and Pathak (2008)

32

-6.44 to -2.06

-12.27 to -7.74

-13.52 to 9.05

Venkatesan et al.(2008)

20 -16.16 to 15.29 -18.64 to 11.21

--

42

--

--

96

--

-19.82 to 8.25

0.00 to 20.33

12

-17.30 to 4.95

-23.2 to 0.00

--

76

--

-9.35 to 8.28

-12.71 to 4.42

36

--

Roy et al. (2009)

-11.35 to 18.58 Amudha et al. (2010) Kumarbabu et al. (2010) Nadali Bagheri and Nadali Babaeian Jelodan (2010) Sandhyakishore et al. (2010)

-14.56 to 30.88 -13.79 to 14.26 Sanjeev Kumar (2010)

2. Plant height 75 -8.00 to 24.00

-4.00 to 55.00

-21.00 to 27.00 Peng and Virmani (1991)

17

--

-27.52 to 14.40

-25.52 to 57.52 Lokaprakash et al. (1992)

21

-4.19 to 5.97

-3.99 to 20.45

21 -25.77 to 43.78 -28.97 to 37.65

--

Singh et al. (1992)

-36.72 to 28.87 Sreedhar and Kulkarni(1993)

36 -7.10 to 15.50

10.10 to 12.80

-7.52 to 0.40

Pandey et al. (1995)

8

0.00 to18.70

-18.70 to 6.70

--

Reddy and Nerkar (1995)

4

--

-16.40 to -1.30

--

Sharma and Mani (1996)

8

6.32 to 29.03

-21.55 to 20.07

28

0.40 to 11.80

-14.20 to 9.80

30

--

-37.00 to 29.80

-26.50 to 15.20 Mishra and Pandey (1998)

60

--

-3.35 to 89.64

-19.86 to 52.68 Vishwakarma et al. (1998)

15

--

--

-18.71 to 6.74 Devasia and Rangaswamy (1999)

32

--

--

-19.62 to 16.57 Lingaraju et al. (1999)

14

--

--

-12.06 to 20.30 Singh and Maurya (1999)

8

1.20 to 18.90

-16.80 to 7.20

8

--

--

15 -6.30 to 30.30 10 0

--

-11.50 to 5.20 --

10 -77.03 to 26.23 -86.82 to 25.29 24 -32.01 to 21.15 30

--

2 17.63 to 24.90

41.47 to 85.59 Ganesan et al. (1997) --

--

Jayamani et al. (1997)

Tiwari and Sarathe (2000)

-6.30 to 23.30 Guha Sarkar et al. (2001) --

Ghosh (2002)

-5.35 to 22.61 Banumathy et al. (2003b) -29.18 to 26.43 Alam et al. (2004)

-

--

Joshi et al. (2004)

-26.75 to 28.08

--

Verma et al. (2004)

9.03 to 22.67

--

Yadav et al. (2004)

8

--

-19.73 to 22.81

--

Bhandarkar et al. (2005)

4

--

-13.48 to 0.35

--

Faiz et al. (2006)

--

--

Shanthala et al. (2006)

-25 to 21

8 -35.96 to -3.98 36

--

-19 to 47

12

--

5.23 to 72.73

5

-12 to -1.5

-11.92 to 0.6

45 -23.14 to 53.32 -16.15 to 89.76

Singh et al. (2006a)

-19.18 to 28.88 Singh et al. (2006b) -5.32 to 2.5

Anjuchaudhary et al. (2007)

-25.41 to 85.11 Deoraj et al. (2007)

33

--

--

-4.71to -1.77

Eradasappa et al. (2007)

24

--

--

-11.2 to 34.4

Rosamma and Vijayakumar (2007)

48

--

-37.41 to 13.46

-17.86 to 14.75 Akash Parihar and Pathak (2008)

32 -10.29 to 0.52

-14.18 to -1.74

-12.25 to -0.27 Venkatesan et al. (2008)

10 -13.69 to 51.23 -25.28 to 41.68

--

Ramakrishnan et al. (2009)

20

--

-16.31 to 50.88

-23.86 to 29.18 Roy et al. (2009)

96

--

-18.56 to 10.52

-7.06 to 25.84 Kumarbabu et al. (2010)

12 -0.14 to 18.75

-32.20 to 3.40

21

-17.71 to 33.46

--

Nadali Bagheri and Nadali Babaeian Jelodan (2010)

--

-10.59 to 20.76 Sanjeev Kumar et al. (2010)

3. Panicle length 17

--

21 -12.19 to 15.76

-13.13 to 18.00

-31.20 to 7.55 Singh et al.(1992)

-18.91 to 15.58

-20.79 to 16.35 Sreedhar and Kulkarni(1993) -14.25 to 19.4 Bobby and Nadarajan (1994)

50

--

--

36

-4.50 to 24.80

-6.50 to 20.40

4

--

0.90 to 11.40

8

-3.51 to 29.51

-9.92 to 27.91

28

-9.50 to13.00

-12.50 to 7.40

30

--

-22.6 to 30.90

-0.60 to 35.10 Mishra and Pandey (1998)

60

--

-4.73 to 23.20

-9.90 to 18.85 Vishwakarma et al.(1998)

32

--

--

24

-3.25 to 5.90

-4.25 to 4.22

14

--

--

14

--

-8.64 to 31.57

5.41 to 38.93

Joshi (2001)

15

7.20 to 59.20

1.60 to 46.20

--

Ghosh (2002)

100

--

--

10

-7.94 to 19.89

-6.08 to 19.72

30

--

-27.37 to 42.29

-12.50 to 46.90 Pandey et al. (1995) --

Sharma and Mani (1996)

-3.18 to 33.64 Ganesan et al. (1997) --

Jayamani et al. (1997)

-26.80 to 11.60 Lingaraju et al. (1999) -4.6 to 3.67

Sathya et al. (1999)

-3.98 to 15.57 Singh and Maurya (1999)

-2.04 to 16.08 Banumathy et al. (2003b) -23.76 to 16.74 Alam et al. (2004) --

Joshi et al. (2004)

28 -20.30 to 28.30

-24.50 to 24.40

--

Vanaja and Babu (2004)

2

0.97 to 3.90

-0.77 to 2.05

--

Verma et al. (2004)

24

-6.08 to 32.44

--

--

Yadav et al. (2004)

8

--

-22.02 to 3.20

--

Bhandarkar et al. (2005)

8

-20.82 to 7.43

--

--

Shanthala et al. (2006)

25

--

-18 to 34

-24 to 19

45 -10.09 to 37.61

-18.42 to 36.84

Singh et al. (2006a)

-14.03 to 43.85 Deoraj et al. (2007)

33

--

--

38.92 to 40.37 Eradasappa et al. (2007)

60

--

-43.88 to 30.56

-31.98 to 70.67 Singh et al. (2007)

48

--

-31.73 to 43.21

-31.73 to 8.15 Parihar and Pathak (2008)

32

-5.51 to 16.91

-0.12 to 16.53

4.18 to 14.06

20

--

-2.09 to 28.46

-6.89 to 26.23 Roy et al. (2009)

10

--

-0.10 – 39.00

-4.40 to 34.95 Hari ramakrishnan et al. (2009)

42

--

--

96

--

-12.19 to 16.42

-4.04 to 21.62 Kumarbabu et al. (2010)

28

--

--

-3.11 to 26.95 Muthuramu et al. (2010)

Venkatesan et al. (2008)

-11.98 to 10.99 Amudha et al.(2010)

Nadali Bagheri and Nadali Babaeian Jelodan (2010)

12

3.70 to 34.4

-13.30 to 15.59

--

76

--

-3.71 to 22.84

-7.85 to 15.49 Sandhyakishore et al. (2010)

36

--

-19.34 to 27.64

-5.62 to 33.77 Sanjeev Kumar et al. (2010)

4. Panicle weight 21

-43.97 to 62.73

-50.24 to 57.83

32

--

--

15

-14.2 to 88.33

-26.0 to 105.9

--

Lokaprakash et al. (1992)

-37.89 to140.52 Lingaraju (1997) --

Ghosh (2002)

5. No. of productive tillers per plant 21 -34.65 to 48.86

-39.84 to 47.71

21

1.05 to 57.24

-1.56 to 52.99

50

--

--

36 12.70 to 117.60 13 60 to117.60

--

Lokaprakash et al. (1992)

-18.76 to 31.33 Sreedhar and Kulakarni (1993) 5.60 to 43.4 9.80 to109.40

Bobby and Nadarajan (1994) Pandey et al. (1995)

8

-6.60 to 100.90

-15.60 to 61.20

--

Reddy and Nerkar (1995)

4

--

0.0 to 25.7

--

Sharma and Mani (1996)

36

--

--

-9.63 to 45.20

8

12.00 to116.00

0.00 to 92.86

28

3.80 to 40.90

5.60 to 29.70

30

--

-17.20 to 226.80 -34.60 to 79.10 Mishra and Pandey (1998)

60

--

-9.44 to 130.28

15

--

--

-40.95 to 35.42 Devasia and Rangaswamy (1999)

32

--

--

-55.90 to17.32

24

-3.41 to 6.38

-3.71 to4.88

-2.01 to 5.86

45

13.30 to 83.80

--

--

Singh and Haque (1999)

14

--

--

0.94 to 122.64

Singh and Maurya (1999)

Yolanda and Vijendradas (1996)

55.56 to 222.22 Ganesan et al. (1997) --

8.38 to 145.77

Jayamani et al. (1997)

Vishwakarma et al. (1998)

Lingaraju et al. (1999) Sathya et al. (1999)

35 -17.44 to 126.57 -25.38 to 90.58

-49.24 to 14.96 Annadurai and Nadarajan (2001a)

14

--

-10.87 to 8.53

-19.53 to 98.1

Joshi (2001)

8

--

--

-4.92 to 53.79

Guha Sarkar et al. (2001)

-11.10 to 48.30

--

15 14.60t to 63.80

Ghosh (2002)

22

--

--

-14.84 to 89.14 Panwar et al. (2002)

10 0

--

--

-16.74 to 71.67 Banumathy et al. (2003b)

10

-28.6 to 31.81

-45.76 to 37.63

-39.09 to 32.12 Alam et al. (2004)

2

2.47 to 2.70

1.47 to 2.47

--

Verma et al. (2004)

30

--

-31.51 to 45.27

--

Yadav et al. (2004)

8

--

-22.87 to 74.29

--

Bhandarkar et al. (2005)

4

--

-37.50 to 11.04

--

Faiz et al. (2006)

8

-26.29 to 55.26

--

--

Shanthala et al. (2006)

36

--

-42 to 64

-45 to 105

Singh et al. (2006a)

21 -21.25 to 25.42

-24.59 to 22.60

--

Singh et al. (2006b)

45

-27.87 to 96.5

-28.57 to 97.05

33

--

--

3

--

48

--

-34.08 to 3.29

-13.52 to 50.33 Akash Parihar and Pathak (2008)

32

9.56 to 85.36

7.61 to 78.96

-12.25 to -0.27

10

--

6.58 to 50.66

-10.27 to 26.09 Hari ramakrishnan et al. (2009)

20

--

3.53 to 226.76

10.28 to 194.88 Roy et al. (2009)

21

--

-1.21 to 147.52

42

--

--

96

--

-33.16 to 82.11

28

--

--

-3.26 to 20.75

Muthuramu et al. (2010)

76

--

-33.78 to 28.33

-8.37 to 46.80

Sandhyakishore et al. (2010)

-59.68 to 37.09 Deoraj et al. (2007) 34.54 to 36.15

Eradasappa et al. (2007)

35.63 to 167.29 137.58 to 329.09 Narasimman et al. (2007)

--

Venkatesan et al. (2008)

Mehrajuddin and Salgotra (2009)

-48.84 to 57.78 Amudha et al.(2010) -28.33 to 92.22 Kumarbabu et al. (2010)

6.Flag leaf length 39

--

30

-41.80 to 31.30 -25.15 to 80.54

-33.10 to 28.50 Qi et al. (1990) --

Mishra and Pandey (1998)

7.Spikeletfertility 32

--

--

-138.14 to 60.2 Vidyachandra (1991)

25

--

--

-252.56 to 33.8 Radhakrishna (1992)

10

--

--

8.32 to 124.59 Patil (1993)

10

--

--

-16.70 to -1.84 Yolanda and Vijendradas (1996)

8

--

--

-56.66 to 65.80 Lingaraju (1997)

30

--

28

--

14

--

-72.90 to 82.00 -81.30 to 25.10 Mishra and Pandey (1998) --60.97 to 3.41

-0.77 to 5.14 -68.96 to 3.07

Singh and Maurya (1999) Joshi (2001)

8

--

--

-9.40 to 17.13 Guha Sarkar et al. (2001)

22

--

--

-23.89 to 14.98 Panwar et al. (2002)

100

--

--

-38.07 to 31.21 Banumathy et al. (2003b)

24

-34.37 to 25.67

--

--

Joshi et al. (2004)

4

--

-64.33 to 3.24

--

Faiz et al. (2006)

48

--

-32.80 to 26.79 -30.60 to 18.64 Akash Parihar and Pathak (2008)

10

--

-12.70 to 7.35

-12.91 to 3.16 Ramakrishnan et al. (2009)

96

--

-96.24 to -2.5

-95.87 to 7.02 Kumarbabu et al. (2010)

28

--

--

-21.49 to 90.20 Muthuramu et al. (2010)

12 -56.90 to 120.40 -78.40 to 17.18 76

--

--

-20.00 to 18.54 -18.80 to 8.23

Nadali Bagheri and Nadali Babaeian Jelodan (2010) Sandhyakishore et al. (2010)

8. No. Of filled grain per panicle 21

-64.03 to 47.12

32

--

--

24

-9.08 to 10.25

-14.63 to 5.77

35

-2.85 to 85.75 -21.72 to 78.

14

--

-57.07 to 35.31

22

--

--

-59.06 to 76.59 Sreedhar and Kulkarni (1993) -44.30 to 59.11 Lingaraju (1997) -5.66 to 48.29

Sathya et al. (1999)

-4.46 to 28.74

Annadurai and Nandarajan (2001a)

-62.64 to 46.86 Joshi (2001) -16.04 to 43.28 Panwar et al. (2002)

10 0

--

--

30

--

-91.77 to 25.31

--

Yadav et al. (2004)

4

--

-80.47 to 7.39

--

Faiz et al. (2006)

63

--

-90 to 71

-91 to 63

Singh et al. (2006a)

12

--

9.21 to 24.43

10.34 to 37.67

Singh et al. (2006b)

45

-2.87 to 55.1

33

--

3

--

24

--

--

60

--

-29.9 to 54.73

-28.85 to 11.86 Singh et al. (2007)

48

--

-32.80 to 26.79

-30.60 to 18.64 Akash Parihar and Pathak (2008)

-2.14 to 28.44

-20.66 to -2.14

32 -18.39 to28.97

-59.72 to 62.96 Banumathy et al. (2003b)

-17.08 to 57.57 -15.06 to -46.02 Deoraj et al. (2007) --

3.69 to 45.11

Eradasappa et al. (2007)

61.55 to 138.15 256.13 to 299.28 Narasimman et al. (2007) -25.5 to 47

10 -16.01 to 20.11 -20.44 to 15.83 20

--

28

--

--

76

--

-23.92 to 88.38

--

Rosamma and Vijayakumar (2007)

Venkatesan et al. (2008) Hari ramakrishnan et al. (2009)

-53.57 to 108.63 -63.93 to 88.56 Roy et al. (2009) -15.89 to 144.78 Muthuramu et al. (2010) -34.52 to 61.65 Sandhyakishore et al. (2010)

9. 1000 grain weight 21

-5.26 to 61.74

-7.05 to 57.89

36

--

--

60

--

15

--

--

-10.17 to 10.59 Devasia and Rangaswamy (1999)

32

--

--

-55.90 to 8.91 Lingaraju (1999)

24 14

-8.06 to17.06

Sreedhar and Kulakarni(1993)

-29.60 to 6.50 Yolanda and Vijendradas (1996)

-30.33 to 12.62 -41.63 to -5.83 Vishwakarma et al. (1998)

-33.84 to 28.04 -37.25 to 14.24 -26.84 to 25.01 Sathya et al. (1999) --

--

-46.46 to 26.66 Singh and Maurya (1999)

35

-10.42 to 51.60 -14.19 to 37.62

-8.94 to 33.41 Annadurai and Nandarajan (2001a)

14

--

-20.36 to 6.75

22.74 to 58.64 Joshi (2001)

22

--

--

10

--

--

24.4 to 37.18

Banumathy et al. (2003b)

10

-3.92 to 9.07

-5.67 to 0.96

-1.82 to 4.22

Alam et al. (2004)

24

-32.95 to 31.82

--

--

Joshi et al. (2004)

28

-27.40 to 1.28

-34.40 to -0.60

--

Vanaja and Babu (2004)

2

2.90 to 4.20

-0.33 to 4.20

--

Verma et al. (2004)

75

--

--

8

-9.27 to 12.61

--

--

36

--

26 to 48

-23 to 23

45

-22.29 to 45.92

-44 to 24.78

60

--

-28.62 to 42.48

33

--

--

3

--

-5.83 to 7.78

24

--

--

48

--

32

1.17 to 5.47

-6.79 to 4.47

10.63 to 33.25 Venkatesan et al. (2008)

10

--

3.70 to 49.19

-6.81 to 43.81 Hari ramakrishnan et al. (2009)

20

--

5.11 to 81.66

-11.91 to 48.51 Roy et al. (2009)

96

--

-35.77 to 19.16

-26.67 to 8.33 Kumarbabu et al. (2010)

28

--

--

-0.21 to 17.19 Muthuramu et al. (2010)

76

--

-21.08 to 14.45

-28.15 to 7.11 Sandhyakishore et al. (2010)

36

--

-26.77 to 19.17

-1.22 to 26.99 Sanjeev Kumar et al. (2010)

-34.55 to -5.82 Panwar et al. (2002)

-1.51 to 38.38 Singh (2005) Shanthala et al. (2006) Singh et al. (2006a)

-34.21 to 51.76 Deoraj et al. (2007) -56.31 to 0

Singh et al. (2007)

-23.65 to 57.94 Eradasappa et al. (2007) -3.75 to 11.82 Narasimman et al. (2007) -29.4 to -0.7

Rosamma and Vijayakumar (2007)

-29.12 to 13.12 -37.07 to 28.55 Akash Parihar & Pathak (2008)

10. Grain yield per Plant 75 -45.00 to 157.0

-59.00 to 98.00

-59.00 to34.00 Peng and Virmani (1991)

12

-6.50 to 81.30

-8.40 to 45.00

21 -48.71 to 77.14

-54.54 to72.22

--

--

-12.50 to16.4

50

--

36 -5.60 to 268.20

-8.60 to 258.20

8

-40.60 to 6.89

0.10 to 127.80

4

--

--

8

-60.78 to 104.9

-66.67 to 40.00

28 -10.20 to 108.90 -12.80 to 106.90 30

--

45 -5.60 to131.70 8

1.0 to 130.00

-4.50 to 46.30 Sahai and Chaudhary (1991) Lokaprakash et al. (1992) Bobby and Nadarajan (1994)

-5.60 to 301.60 Pandey et al. (1995) --

Reddy and Nerkar (1995)

-13.20 to 26.10 Sharma and Mani (1996) -14.00 to 320.0 Jayamani et al. (1997) --

Ganesan et al. (1997)

-99.80 to 230.80 -91.30 to 92.00 Mishra and Pandey (1998) --

--

Singh and Haque (1999)

-34.40 to 68.30

--

Tiwari and Sarathe (2000)

14

--

-54.99 to 139.2 -20.87 to 369.97 Joshi (2001)

8

--

--

10 3

--

--

15

--

-5.80 to 119.30

22

--

--

15.87 to 154.63 Guha Sarkar et al. (2001) -4.52 to 30.00 Pandey et al. (2001) -24.10 to 91.90 Ghosh (2002) -0.57 to 54.75 Panwar et al. (2002)

10 -33.70 to 209.82 -50.79 to 197.51 -69.71 to 26.22 Alam et al. (2004) 24 -43.33 to 93.16

--

--

Joshi et al. (2004)

28 -90.40 to 457.30 -93.3 to 356.00

--

Vanaja and Babu (2004)

2

1.93 to 16.89

-1.60 to 14.29

--

Verma et al. (2004)

30

--

-97.31 to 114.60

--

Yadav et al. (2004)

8

--

13.79 to 70.98

--

Bhandarkar et al. (2005)

10

--

8.77 to 104.67

--

Kshirasagar et al. (2005)

8

--

--

38.01

27

--

Salgotra et al. (2005)

-33.93 to 237.33 -33.93 to111.28 Anandkumar et al. (2006)

4

--

-87.98 to 41.83

--

Faiz et al. (2006)

8

-61.81 to 14.79

--

--

Shanthala et al. (2006)

36

--

-72 to152

-74 to 80

12

--

11.72 to 89.29

5

-164.2 to 281.6

124.9 to 211

45

31 to 121.38

33

--

--

3

-75.14 to 90.50

-181.57 to 270.98

--

24

--

--

-38.3 to 70.6

60

--

-54.69 to 69

48

--

-21.53 to 29.53

Singh et al. (2006a)

18.48 to 104.7 Singh et al. (2006b) 65.3 to 211

Anjuchaudhry et al. (2007)

-42.24 to 104.06 -52.13 to 33.38 Deoraj et al. (2007)

32 -59.62 to 75.72

-50.45 to 64.74

20

--

40.58 to 403.21

10

--

-4.09 to 36.30

21

--

-41.91 to 23.75

42

--

--

96

--

-84.43 to 89.83

12 -78.40 to 95.18 -81.30 to 106.60

-51.57 to 57.94 Eradasappa et al. (2007) Narasimman et al. (2007) Rosamma and Vijayakumar (2007)

-60.35 to 22.64 Singh et al. (2007) -13.56 to 41.17 Akash Parihar & Pathak (2008) --

Venkatesan et al. (2008)

12.23 to 362.96 Roy et al. (2009) -5.17 to 31.21 Hari ramakrishnan et al. (2009) --

Mehrajuddin and Salgotra (2009)

-86.69 to 61.51 Amudha et al. (2010) -85.78 to 69.43 Kumarbabu et al. (2010) --

Nadali Bagheri and Nadali Babaeian Jelodan (2010)

76

--

-2.69 to 150.56

-44.25 to 44.69 Sandhyakishore et al. (2010)

36

--

-11.06 to 65.32

-14.12 to 65.32 Sanjeev Kumar et al. (2010)

2.4

Stability Study of G X E interaction is important to plant breeders because it can limit the

progress in the selection process, hence is a basic cause of differences between genotypes for yield stability. Varieties that show low G X E interaction and have high stable yields

are desirable for crop breeders and farmers, because it indicates that the environments have less effect on the performance of genotypes and their yields are largely due to their genetic composition. Therefore, evolution of rice varieties that have high yield and stability in performance over a wide range of environments will remain an important criterion in rice breeding. Blum (1980) defined yield stability as a measure of variation between potential and actual yield of genotypes across different environments. The yielding ability of a variety or hybrid is the result of its interaction with the prevailing environment. Environmental factors such as soil characteristics and types, moisture, sowing time, fertility, temperature and day length vary over the years and locations. There is a strong influence of environmental factors during various stages of crop growth (Bull et al. 1992) and thus, genotypes differ widely in their response to environments. Many research workers are of the view that average high yield should not be the only criteria for genotype superiority unless its superiority in performance is confirmed over different types of environmental conditions. Stability in performance of a genotype over a range of environments is a desirable attribute and depends upon the magnitude of genotype x environment interactions. The developed cultivars or hybrids should adapt to a wide range of target environments, is the eventual goal of Plant Breeders. Hence, pattern of response of genotypes is studied by the plant breeders by testing genotypes in different environments to study genotype x environment, genotypes to environments and to eliminate as much as possible the unexplainable and extraneous variability contained in the data. Several statistical techniques have been developed to describe G X E and measure the stability of genotypes in which Eberhart and Russel is simple in evaluation and includes the parameter deviation from the regression. Many research workers have worked on the regression models and made an attempt to quantify the G X E interaction and select stable genotypes in rice. A few researchers studied G X E interaction in hybrid rice using Eberhart and Russel model and a brief review is presented below. Young and Virmani (1990) studied the stability of 140 hybrids and 17 parents over six environments created by three fertilizer levels (0, 60 and 120 kg N ha -1) applied in three different fields over two seasons. They observed that the hybrids were less stable than the parents based on the regression values and deviation from regression. The hybrid, IR 54752 A X IR 54 showed above average performance and was stable. They concluded that

the stable hybrids can be developed from the stable parents but such parents do not necessarily generate stable hybrids. Vivekanandan (1991) evaluated six F1 hybrids along with their parents in dry and wet seasons to compare the grain yield and its components. Hybrids and parents performed better in dry season than in wet season for most of the traits. The low yield of hybrids and parents during wet season was due to low maximum temperature at maturity and high rainfall received during the flowering phase. Leenakumary (1994) evaluated seven hybrids along with four check varieties over four seasons for stability. Dry seasons were conducive for expression of most of the characters. Hybrids were found to be homeostatic or well buffered and showed better response over environmental changes compared to check varieties. Further, the hybrids viz., IR 58025A x IR 30864R, IR 58025A x IR 13419-113-3R and IR 58025A x IR 976119-1R were found promising. Manuel and Rangaswamy (1994) studied 16 hybrids along with their parents for their stability performance under four-nutrio-environmental conditions for six characters. The hybrids viz., IR 58025A / TNAU 77013 and V 20A / TNAU 88013 were identified as the most stable and consistent genotypes for grain yield in all the nutrio-environments. The former showed stability for plant height, spikelet fertility and dry matter production, while the latter for plant height. The hybrids viz., IR 58025A / TM 4309, IR 62829A / TKM 6 and IR 62829A / TM 4309 though top yielders were found to be unstable, suitable for highly favorable environments. Lavanya et al. (1997) evaluated 32 rice hybrids at different nitrogen levels tested in two different seasons. Based on stability parameters, only one hybrid, IR 62829A / Vajram which ranked third in grain yield, was stable over the environments with predictable performance (bi = 1.57). Based on linear regression coefficients, however, the IR 58025A / Swarna hybrid with highest yield (1125 gm-2) and high heterosis for yield (85.8) was found to be most suitable for specific environments. The other hybrids, IR 58025A / Vajram and IR 62829A / Swarna, are with above average yield (1004 and 857 gm-2) and average response (bi = 0.63 and 2.06) though unpredictable for yield. Hegde and Vidyachandra (1998) evaluated five rice hybrids along with four standard check varieties of different durations for their stability for grain yield components and other morphological characters over seven locations in Karnataka. Significant GenotypeEnvironment (G X E) interactions were observed for all the characters under study. The

results indicated the presence of both linear and non-linear component of G X E interactions for all the characters. The two hybrids, IR 58025A / KMR-3 and IR 58025A/ IR-9761 have regression coefficient near to one , deviation from regression coefficient was near to zero with average mean yield and are considered to be stable than others. The correlation analysis between stability parameters (bi and S 2di) for grain yield and its components revealed that stability parameters in rice hybrids appeared to be governed by different genes and gene combinations. Ahmed et al. (1998) examined the stability of hybrids for yield in two sets of environments (low and high yield in comparison to the average yield). Grain yield data was recorded for eight hybrids in 1994-95 wet season and dry season using the inbreds Jaya, Rasi and IR 36 as controls at five locations. The results indicated that the stability of rice hybrids for grain yield is comparable to the best inbred control variety - Jaya. The hybrids, IR 58025A x IR 34686 and IR 58025A x IR 29723 showed better yield stability over the seasons than Jaya. Lohithaswa et al. (1999) carried out analysis of variance for ten quantitative traits on fifteen genotypes and four check varieties. The study revealed significant genotypic differences in all the four seasons for all the traits except number of tillers per plant, number of productive tillers per plant and panicle length. Genotypes x Season interactions were found to be significant for all the seven characters considered for stability analysis. The effect due to season (linear) was significant for days to 50 per cent flowering, number of filled spikelets per panicle and grain yield per plant. The variance due to genotype x season (linear) was non significant for all the traits. Non- linear component was found to be significant for all the characters. Among the fifteen genotypes studied, eleven showed stability for yield of which three (IR 58025A x IR 29723, IR 58025A x IR 13419 and Jaya) had average stability (bi=1). The hybrid, IR 58025 x IR 13419 was found to be stable for most of the characters. Significant positive correlations between mean and S 2di for grain yield per plant and mean and bi for per day production per plant were observed. Deshpande et al. (2002) evaluated 11 rice hybrids for their stability performance in respect of three characters over the locations. For grain yield, the hybrids viz., Sahyadri, PHB 71 and PA 6201 and for days to 50% flowering, the hybrids viz, Sahyadri, NSD 2, PA 6201, CNRH 3 and PHB 71 exhibited stability. All the 11 hybrids exhibited stability for spikelet fertility per cent over different environments. The hybrids viz., Sahyadri, PHB 71

and PA 6201 were found most stable over the locations for their yield and yield contributing characters. Deshpande et al. (2003) estimated stability parameters of yield per plant, days to 50% flowering, spikelets per panicle and spikelet fertility % in 12 rice hybrids at five locations of Maharashtra. The hybrid Sahyadri was recommended for favourable environments possessing very high mean yield (9.34 t ha -1), regression coefficient more than unity and minimum deviation from regression. The hybrids, PHB 71, NSD 2 and KRH 2 were the other hybrids rated as promising. For yield, deviation from regression magnitudes of all the hybrids was non-significant and regression coefficient magnitudes of all the hybrids except DRRH-1 and KRH 2 were significant, suggesting that the yield behavior in all the genotypes except in those two hybrids was highly predictable. For days to 50% flowering, the magnitudes of bi were non-significant and the magnitudes of S2di were significant for most of the hybrids, suggesting that the flowering behavior was unpredictable. Predominance of non-linear component was observed for spikelet fertility per cent. Sarkar et al. (2003) reported that stability analysis on fertility restoration, yield and other attributes revealed that fertility restoration in hybrids from different CMS lines was highly sensitive to the changes in the environment with gradual delay of sowing dates. Estimates of stability parameters showed that the hybrids were unstable over the environments for both fertility restoration and grain yield. The results indicated the specificity of the hybrids to various environmental conditions. Munisonnappa et al. (2004) studied the stability analysis with 11 rice genotypes which includes seven hybrids and four checks for eleven quantitative traits in six environments. Genotype X Environment interactions were found to be significant for ten out of the eleven characters studied. Variance due to G X E (linear) was significant for days to fifty percent flowering, plant height, number of spikelets per panicle, 1000 grain weight and grain yield per plant. Among seven hybrids studied, four hybrids viz., DRR H1, KRH-2, Sahyadri and KMRH-4 showed stability for yield with high mean when compared with checks Jaya and IR 30864. Babu et al. (2005) studied twenty seven rice hybrids for their stability with respect to yield and its components at three different salt affected environments.

Significant

genotype x environment interaction (G x E) showed differential behavior of genotypes under different conditions for all the traits studied.

Significant linear and non-linear

components of G x E interaction observed for number of grains per panicle and spikelet

fertility suggests that the genotypes differed from their linear response to environment. Based on the stability parameters, hybrid, TS 6 / BTS 24 was found to be stable in all kinds of salt effected soils and also hybrid TS 29/ CSR 13 might perform well under high saline soils. Lavanya et al. (2005) studied thirty rice hybrids and their parents for their stability in two seasons with different nitrogen levels. The study indicated that a substantial portion of the G x E interaction was due to the linear component for tiller number, plant height, panicle length, spikelet fertility percentage, test weight and harvest index. Hybrids were less stable than parents except for the hybrid, IR 62829A X Vajram. Several high yielding hybrids and parents were identified for favorable and poor environments. The present study revealed that stable hybrids were developed from stable parents but stable parents may not necessarily generate a stable hybrid. Gopinath and Reddy (2005) carried out the stability analysis by using 13 CMS lines of WA source and one CMS line of Oryza sativa f. spontanea for male sterility as well as other important agronomic traits. No single CMS line was stable for all the six characters studied. The CMS lines, PMS 2A and PMS 3A were found suitable for favorable environments. The CMS line, ZS 97A was stable for male sterility character over ten dates of sowing. These CMS lines may be utilized for converting locally adopted genotypes with desirable agronomic traits. Shanmuganathan and Ibrahim (2005) evaluated eleven rice hybrids in six different environments for their stability. Significant mean sum of squares due to genotypes, environments and G X E interaction was observed. Both linear and non-linear components of G X E interaction were important for the expression of most of the traits; however, linear component was larger in magnitude than the non-linear component. The hybrid CORH 2 was found stable for most of the characters. Deshpande and Dalvi (2006) evaluated the performance of 12 rice hybrids in respect of grain yield and other characters under five environments in Maharashtra and revealed that stability in the yield of the hybrid appeared to differ in respect of level of stability in the component traits. It was found that stability in grain yield was due to stability in yield components only and plasticity in others. This pattern of stability and plasticity in component traits differs from hybrid to hybrid. The yield behavior in almost all the genotypes except KRH 2 and DRRH 1 was highly predictable. The hybrid, KRH 2 was found to be stable for yield as it has average yield performance; regression coefficient is

near to unity and minimum deviation from regression. The hybrids, PHB 71 and NSD 2 can be rated as promising hybrids. Sahyadri may be rated as the most promising hybrid under favourable environment. Viraktamath et al. (2006) studied stability of eleven hybrids released prior to 1999 extensively evaluated in multi-locational trials during three seasons viz., kharif 1999 (64 locations), rabi 1999-2000 (15 locations) and kharif, 2000 (46 locations). The hybrid, KRH 2 topped in both the kharif (wet) and rabi (dry) seasons, whereas Sahyadri hybrid was found to be better during rabi (dry), seasons. On an overall basis, the hybrids KRH 2, PHB 71, Sahyadri, 6201, NSD 2 and DRRH 1 were found promising and widely adaptable.

Panwar et al. (2008) studied Genotype × Environment interaction for grain yield, its components and grain quality traits in 10 parents and their 45 F1 s of scented rice (Oryza sativa L.) under four environments created by four different dates of transplanting during wet season, 2003. Significant genotype x environment interactions was observed for all the eleven characters having homogeneous error variance in environments. Among the linear and non-linear components of G X E interaction, linear component was predominant for most of the characters, suggesting variation in the performance of different genotypes grown over environments. Mean squares due to environment (linear) was also found significant for all the characters, indicating differences between environments and their influence on genotypes for expression of these characters. Based on stability parameters and overall mean, genotypes IET 13549 and Pusa Basmati-1 were most stable under different environments, while IET 13846 was suitable for poor environments and the crosses Taroari Basmati x IET 16320, IET 13549 x IET 13846 and Pusa Basmati-1 x IET 13846 were more suitable for favourable environments with respect to these characters. Forty eight hybrid combinations were studied along with their 14 parents and two standard checks for their stability performance at three locations in Andhra Pradesh for eight quantitative characters. The G X E interaction was significant for days to 50 per cent flowering, plant height, number of productive tillers per plant, panicle length, number of grains per panicle and grain yield per plant. Linear component was also significant for above mentioned characters, while non-linear component was found significant for all the traits studied (Shankar et al., 2008). Umadevi et al. (2010) studied Genotype x Environment interaction for grain yield and their component characters in eighteen parents and their 80 hybrids of rice under three

environments during summer, 2008. The environment + (genotype x environment) interaction was significant for all the characters indicating distinct nature of environments and genotype x environment interactions in phenotypic expression.

The genotype x

environment (linear) interaction component showed significance for all the characters studied except 100 grain weight and number of grains per panicle. This indicated significant differences among the genotypes for linear response to environments (bi), behavior of the genotypes could be predicted over environments more precisely and G X E interaction was outcome of the linear function of environmental components. Based on stability parameters and overall mean, five hybrids viz., APMS 6A X IR 62037R, APMS 6 A X RR 347R, IR 80559A X MDU 5R, IR 72081A X TP 1021R, IR 75596A X ASD 068R and IR 80154A X TP 1021R were stable in performance for grain yield. The parents IR 62037R, RR 347R, TP 1021R and ASD 06-8R can be used as male parents for developing stable hybrids over environments. Saidaiah et al. (2011) evaluated 115 rice hybrids, their parents, five cytoplasmic male sterile lines, 23 restorer parents and four checks for their stability at three different locations representing three different agro-climatic zones of Andhra Pradesh. The study indicated that a substantial portion of G X E interaction was due to the linear component for days to 50% flowering, productive tillers per plant, panicle weight, filled grains per panicle, grain yield per plant and productivity per day. Hybrids were less predictable than the parents for days to 50% flowering, productive tillers per plant, panicle weight and grain yield per plant. Several high yielding hybrids and parents were identified for general CRMS 32A × RPHR 517 and APMS 6A × RPHR 118, favorable PUSA 5A × RPHR 1096, IR 58025A × KMR 3 and CRMS 32A × GQ 120 and poor CRMS 32A × GQ 70 environments. Sreedhar et al. (2011) evaluated 60 rice hybrids and their parents along with five checks for their stability across three different agro climatic zones in Andhra Pradesh. Genotype X environment interaction was significant due to linear component for panicle weight, number of productive tillers per plant, number of filled grains per panicle, 1000 grain weight and single plant yield. Among parents, APMS 6A, IR-80559A, KMR-3R, BR-827-35R, IR-63883-41-3R, IR-21567R were stable and among hybrids, APMS 6A x IR-24R, APMS 6A x BR-827-35R, IR-80555A x IR-54742R, IR-80559A x KMR-3R and IR-80151A x IR-54742R were stable and manifested better performance than the rest of the hybrids and over promising hybrid checks KRH-2 and PA-6201.

Umma et al. (2013) evaluated 13 rice hybrids in five agro-ecological zones in Bangladesh. The study based on AMMI indicated that sum of squares due to G x E was significant for yield, amylase content and protein content.

2.5

Grain Quality Grain quality is the second most important factor for rice breeders after yield as the

quality is going to decide the success of the developed variety or hybrid. As the economic levels of the consumers are increasing so as their tendency to prefer good grain quality is also increasing. Quality refers to the degree of excellence and suitability of specific utility of the plant product. Initially in the beginning the mandate of rice researchers was to maximize the yield but in the recent past it has been shifted to quality rice production, this was due to the high preference of the consumers towards the premium quality rice. Latha et al. (2005) analyzed grain and cooking quality characters of twenty, two line rice hybrids and hybrid ADTRH-1 and white ponni were used as checks. In this study, the hybrid TS 18/CB 96026 possessing medium slender grain with KLAC of 14mm as that of improved white ponni, intermediate amylose content and soft gel consistency along with other desirable quality parameters coupled with high grain yield is ideal for commercial exploitation. In most of the cases, the parents having desirable grain and cooking qualities produce hybrids with acceptable quality attributes. Das et al. (2005) studied the physico-chemical characters of thirteen elite lines of upland rice and three checks. Highest HRR was recorded in RR363-737 and RR 166-645 among long slender grain type cultures and Anjali among short bold type cultures. Out of the thirteen test entries, eight were short bold type, four were long slender and one was long bold type. All the cultures had intermediate amylose content and intermediate gelatinization temperature except RR 363-737. Water uptake ranged from 172 to 331ml. Binodh et al. (2006) analyzed grain quality characters of fifty five promising rice cultures/genotypes and hybrids for physico-chemical and cooking quality traits and compared with national check variety - BPT 5204. All the hybrids showed high milling out turn and head rice recovery compared to varieties. The present study revealed that hybrids TNRH-55, TNRH-31, TNRH-50, ADRH-15 and ADTRH-1 were identified as most promising for most of the quality characters.

Vanaja and Babu (2006) evaluated the physico-chemical characters and cooking quality of fifty six high yielding rice varieties from different eco-geographical areas. Most of the Indian varieties exhibited high hulling and milling percentage coupled with intermediate amylose content (20-25%) for most of the varieties. One of the Taiwan variety Kachsuittg Sen Yu 338 and the only one Malaysian genotype MR 123 (8-19%) and other varieties viz., IR50, TB-85-2, CC 1, Ahalyaand and DIC 3355-5-1-4 had low amylose content. Babu et al. (2007)

studied grain quality characters in 36 hybrids and their parents.

The quality performance of parents and hybrids were determined based on the mean values of percentage of total milled rice, head rice recovery, kernel length, kernel breadth, L/B ratio, alkali spreading value and amylose content. However, of the 49 genotypes studied TS 29, IR 58025A, CSR 13, CSR 27 and BTS 24 had significantly high per se values for most of the quality traits whereas, the hybrids TS 6/CSR 27 recorded high mean value for all the quality traits observed followed by TS 29/BTS 24. Shikari et al. (2008) evaluated 15 rice varieties including one basmati type variety for various physical, chemical and cooking quality traits. Jhelum, SKAU-341, Chenab-988 had high milling out turn and high head rice recovery. K-475 had lowest amylose content. Highest cooked and uncooked kernel length was recorded for Pusa Sugandh-3 followed by SKAU-389. Short bold rice type, K-332 and Koshar had moderate sticky rice with low amylose while, Pusa Sugandh-3 had well separated cooked kernels with high amylose content and high aroma. Rani et al. (2008) analyzed 78 rice genotypes for fifteen physico-chemical characters. Vellari Kayama recorded shortest kernel length (4.89mm) and test grain weight (14.8g) and the heaviest being CO 43 (31g). Remarkable variation was observed in case of water uptake which ranged from 90 ml to 315 ml. Amylose content ranged from low (15.57%) in Sudha to high (27.9%) in Swati. Out of the 78 genotypes, twenty genotypes possess intermediate amylose content and alkali spreading value which is a desirable combination governing cooking and eating quality features. Hossain et al. (2009) evaluated 17 newly identified new plant type inter-sub-specific hybrids. Out of the 17 hybrids, 13 hybrids showed hulling percentage of above 80% and the remaining showed in the range of 78.67% to 79.65%. All the hybrids showed high percentage of milled rice recovery than the check DRRH-1, while three hybrids showed higher milling percentage than PRH-10. The highest hulling percentage was found in the

hybrid H-13(83.43%), while for milling percent, high mean value was found for the hybrid H-11(66.76%). All the hybrids except H-15 were superior to the check Jaya (44.79 %) for the trait of head rice recovery. As many as 12 hybrids showed higher HRR than check PRH-10(51.32%), while ten hybrids than check DRRH-1(54.76 %). Bhonsle and Krishnan (2010) evaluated fourteen aromatic rice varieties for physical, chemical, cooking and organoleptic-tests based on consumer preferences. High milling percentage was recorded in EK-Kadi (82.46%) and Ghansal (80.96%). The L/B ratio among the varieties ranged from2.08 to 4.85. No chalkiness was recorded in Ghansal, Kotimirsal and Pusa Sugandh-2. Among the varieties, amylose content ranged from17.26 to 27.69%. The highest GC was recorded in Ghansal and lowest in Pusa Basmati-1. Kernel length after cooking ranged from 2.31 to 5.88mm. Water uptake ratio ranged from 250 to 350. Organoleptic test revealed that the varieties, Basmati local, Jiresal, Kotimiresal, Pusa Basmati-1, Pusa Sugandh-2, Pusa Sugandh-3, Pusa Sugandh-5, Kasturi and Vasumati were having excellent grain quality characters.

Chapter III

MATERIAL AND METHODS The present investigation in hybrid rice was undertaken to estimate combining ability effects through line × tester analysis, heterosis, combining ability, grain quality and to test the stability of experimental crosses obtained from Cytoplasmic Male Sterile (CMS) lines across the locations. The materials utilized and the methodologies adopted in the investigation to achieve the desired objectives are described under the following major heads. 3.1

Studies on combining ability, heterosis and stability

3.2

Grain quality analysis

3.3

Statistical analysis

3.1 Studies on Combining Ability, Heterosis and Stability 3.1.1 Material Based on the pedigree records 20 lines (14 identified restorer lines and six CMS lines) were selected which were having ideal characters of restorer and CMS lines, in addition to yield. The selected 14 restorer lines were crossed with six male sterile lines in

line x tester mating design during kharif, 2009. The resulting 84 F1 hybrids along

with 20 parents and six checks including three hybrid checks (DRRH-2, PA 6201 and KRH 2) and three varietal checks (Annada, IR 64 and Jaya) were sown during rabi, 2009-2010 at three different locations situated in three different agro-climatic regions of Andhra Pradesh viz., Agricultural Research Station, Kunaram for Northern Telangana Zone, Regional Agricultural Research Station, Warangal for Central Telangana Zone and Agricultural Research Station, Kampasagar for Southern Telangana Zone for studying combining ability, heterosis and stability. The list of male sterile lines, fertility restorers and checks were given in Table 3. Pedigree record of the CMS lines was given in Table 4 and for restorer lines in Table 5. The restorer lines are abbreviated for convenience and were presented in Table 6.

Table 3. Details of parents and checks used for combining ability, heterosis and stability analysis S. No.

Name

Source

CMS lines 1

IR-58025A

IRRI , Philippines

2

IR-68897A

IRRI , Philippines

3

IR-79128A

IRRI , Philippines

4 5

IR-79156A IR-80155A

IRRI , Philippines IRRI , Philippines

6

IR-80555A

IRRI , Philippines

Restorer lines 1

IR-7R

IRRI , Philippines

2

IR-17 R

IRRI , Philippines

3

IR-19 R

IRRI , Philippines

4

IR-21 R

IRRI , Philippines

5

IR-24 R

IRRI , Philippines

6

IR-25 R

IRRI , Philippines

7 8

IR-27 R IR-31 R

IRRI , Philippines IRRI , Philippines

9

IR-32 R

IRRI , Philippines

10

IR-34 R

IRRI , Philippines

11

IR-35 R

IRRI , Philippines

12

IR-36 R

IRRI , Philippines

13 14

IR-53 R IR-56 R

IRRI , Philippines IRRI , Philippines

1

Hybrid Checks DRRH-2

Public sector hybrid

2

PA 6201

Private sector hybrid

3

KRH 2

Public sector hybrid

1 2

Varietal Checks Annada IR 64

National check National check

3

JAYA

National check

Table 5. Details of pedigree of restorer lines S. No. Restorer lines 1

IR-33509-26-2-2R

Pedigree KEWAL/IR 13168-143-1//IR 50 IR-43559-132-3/IR-4819-77-3-2//IR-38699-

IR 55838-B2-2-3-2-3R

49- 3-1-2/IR 26940-20-3-3-3-1

3

IR 57298-174-2-2R

IR 35293-125-3-2-3/IR 24632-34-2//IR 3536628-3-1-2-2

4

IR 58103-62-3R

IR 72/IR 42015-7-1-2-1-2-2

5

IR 59682-132-1-1-2 R

IR 48613-54-3-3-1/IR 28239-94-2-3-6-2

2

IRAT-115/IR-9782-111-2-1-2//IR-43048-UBN 6

IR 60199-B-B-2-1R

7

IR 60919-150-3-3-3-2R

Not available

8

IR 62036-222-3-3-1-2R

IR 48563-123-5-5-2/IR 42068-22-3-3-1-3

9

IR 62037-12-1-2-2-2R

IR 48563-123-5-5-2/PSB RC 10

10

IR 62037-93-1-3-1-1R

IR 48563-123-5-5-2/PSB RC 10

11

IR 62048-47-3-3--2R

IR 48606-131-3-1-3-1/IR 52280-117-1-1-3

12

IR 62161- 184-1-3-2R

IR 52280-96-2-2-3/IR 52280-117-1-1-3

13

IR 68427-8-3-3-2R

14

IR 69701-22-2-1R

513-1-3-3-1

IR 58029-180-2-3-3/IR 44624-127-1-2-2-3

From a composite of [IR 36 /IR 9761-19-1R,IR 36 /IR 66 R,IR 36 /IR 19058-107-1R,IR 36 /IR 72 R,IR 36 /IR 44675-101-3-3-2-2R,IR 36 /IR 47310-94-4-3-1R,IR 36 ]

Table 6. Designation of restorer lines used in the study

S. No.

Restorer line

Restorer line designated as

1

IR-33509-26-2-2R

R-7

2

IR 55838-B2-2-3-2-3R

R-17

3

IR 57298-174-2-2R

R-19

4

IR 58103-62-3R

R-21

5

IR 59682-132-1-1-2 R

R-24

6

IR 60199-B-B-2-1R

R-25

7

IR 60919-150-3-3-3-2R

R-27

8

IR 62036-222-3-3-1-2R

R-31

9

IR 62037-12-1-2-2-2R

R-32

10

IR 62037-93-1-3-1-1R

R-34

11

IR 62048-47-3-3--2R

R-35

12

IR 62161- 184-1-3-2R

R-36

13

IR 68427-8-3-3-2R

R-53

14

IR 69701-22-2-1R

R-56

3.1.2 Methods 3.1.2.1 Generation of F1 hybrids 3.1.2.1.1 Experimental technique The 14 restorer lines were crossed with six CMS lines in a line x tester mating design to obtain 84 F1 hybrids during kharif, 2009 at Research Farm, RARS, Warangal (Andhra Pradesh). Unpaired-parent method of planting arrangement was used for making line x tester crosses. Five staggered sowings of the parents were undertaken at an interval of seven days to ensure synchronous flowering to produce adequate crossed seed. Twenty eight days old seedlings were transplanted in 4 rows of 6 m length with a spacing of 20 x 15 cm. The plot size was 417.60 (86 x 4.8) m2. 3.1.2.1. 2 Crop management Fertilizers were applied to the main field at the rate of 100 kg nitrogen, 40 kg phosphorus and 60 kg murate of potash ha-1. Nitrogen was applied in three split doses with one-fourth as basal, one-half at the time of active tillering stage and one-fourth at panicle initiation stage. Entire phosphorus and murate of potash were applied as single dose in the puddle. The recommended package of practices and necessary prophylactic measures were adopted to raise a healthy crop for all the five sets. 3.1.2.1.3 Hybridization Clipping: Healthy CMS lines with just emerged panicles were uprooted, labelled and potted in the morning hours of the day into plastic buckets filled with mud and were transferred to the net house. Productive tillers with healthy panicles were selected and the leaf sheath was separated carefully. Further, spikelets that had completed anthesis (at the top) if any and young spikelets at the bottom of the panicle were removed. Matured spikelets which were about to flower on the next day alone were used for crossing. Top one-quarter to one-half of the glumes of each spikelet was clipped off with fine scissors. The panicle was then bagged with butter paper bag to avoid unwanted cross pollination and to prevent dehydration and was labelled properly. The clipping process was carried out during evening hours of the previous day of crossing. Pollination: On the following morning (9.00 am to 11.00 am), panicles ready for anthesis, selected from healthy restorer parents were brought to the crossing chamber, in which temperature, relative humidity and light conducive for anthesis was maintained.

When the mature anthers of restorer parent were ready for dehiscence, the CMS lines were brought inside the crossing chamber. Butter paper bags covering clipped panicles of the female parents were removed. Further, the panicles were gently shaken so that the sterile extruded anthers fall off. Viable pollen from panicles of male parents was then gently shaken over the female parents until adequate pollen was deposited on the stigmas of the emasculated spikelets. The pollinated spikelets were then covered with fresh butter paper bags to prevent further cross pollination if any, duly labelled and fixed against the support of bamboo sticks. The process of pollination was continued upto 11.00 am. Clipping and pollination was started from the panicle base and preceded upwards as this procedure leads to less damage to the spikelet under attention without causing any damage. Crossed seeds were collected after four weeks from the plants maintained in the pots in the net house. The seeds were then sun dried, dehusked, counted and placed in small labelled envelopes. The number of crossed seed collected for each cross varied from 350-600.

3.1.2.1.4 Field evaluation of F1 hybrids and parents Crossed seeds of hybrids were treated with Bavistin solution (0.1%) and kept for germination in petridishes. Satisfactory germination was observed on the 3rd and 4th day of soaking. The seedlings were transferred to small raised beds covered with a layer of sand, planted in lines and sufficient care was taken to avoid water logging and complete drying up of the nursery beds. Top dressing was done with urea and need based plant protection was undertaken for raising healthy and vigorous seedlings. Such healthy, strong and vigorous seedlings of 28 days old were transplanted in the main field. The parent seed was soaked in water for 24 hours and then incubated for 48 hours. The germinated seedlings were transferred to wet beds and proper care was taken to raise a healthy nursery. All the entries after attaining an age of 28 days were transplanted in the main field in a complete randomized block design with two replications during rabi, 2009-2010 at all the three locations. Each entry was planted in two rows of 1.8 m length. Single seedling was transplanted per hill by adopting a spacing of 20 x 15 cm and all recommended package of practices were followed to raise a healthy crop.

3.1.2.2 Recording of observations Five plants were tagged at random for each entry in each replication. Observations were recorded for yield, yield attributing characters and grain quality characters from these tagged plants in all the genotypes in each replication. The mean data for the character, days to 50 per cent flowering was recorded on plot basis. The method of recording data for each trait is described below character-wise. 1. Days to 50% flowering (DFF) The total numbers of days taken from the date of sowing to extrusion of the panicle tip above the sheath of the flag leaf in 50 per cent of plants in a plot. 2. Plant height (cm) The plant height was recorded by measuring the total height from the base of the plant to the tip of the main panicle and excluding awn if present and is expressed in centimeters. 3. Flag leaf length (cm) Flag leaf length was measured from the base of leaf blade to its tip during flowering 4. Flag leaf width (cm) Flag leaf width was measured at broader place of leaf blade during flowering in centimeters 5. Number of productive panicles per plant Number of productive tillers per plant, which bear panicle, were recorded at the time of maturity. 6. Number of unproductive tillers per plant Number of tillers, which are not having panicles, were recorded at the time of maturity. 7. Panicle length (cm) It was measured from the base of the panicle to tip of panicle in centimeters 8. Panicle weight (g) It was recorded as single panicle weight of main tiller 9. Number of filled grains per panicle Filled spikelets of all the panicles of the hill were counted and recorded. 10. Spikelet fertility (%) Spikelet fertility was calculated as the ratio of fertile grains per panicle to the total number of grains in a panicle and was expressed as percentage.

11. 1000 seed weight (g) One thousand well filled grains were counted from a random sample of each entry in each replication and weighed with the help of electronic balance in grams. 12. Grain Yield per plant (g) Panicles from a single plant were harvested at maturity, threshed, cleaned and dried to 12-14 per cent moisture content and the weight was recorded in grams.

3.2 Grain Quality Analysis 1. Hulling percentage One hundred grams samples of well dried paddy (12-14% moisture) in duplicate from each entry were dehulled in Satake Dehusker (Type-THU 35B) and the weight of brown rice was recorded. Hulling percentage was computed as Weight of brown rice (g) Hulling percentage

=

----------------------------------- x 100 Weight of rough rice (g)

2. Milling percentage The brown rice obtained by dehulling was passed through Satake Grain Testing Mill (Type-TM 05) for one minute thirty seconds to obtain uniform 7-8 per cent polish. The weight of polished rice was recorded. Milling percentage was calculated as

Weight of milled rice (g) Milling percentage =

----------------------------------- x 100 Weight of rough rice (g)

3. Head rice recovery (%) The milled samples were sieved to separate whole kernels from the broken ones. Small proportion of whole kernels which passed along with broken grains was separated by hand. Full rice and three- fourth kernels were taken as whole milled rice for computation. Head rice recovery (HRR) was calculated in percentage as Weight of milled rice HRR (%)

=

----------------------------------- x 100 Weight of rough rice

4. Kernel length, breadth and L/B ratio (mm) Ten polished kernels with their tips intact from each replication of the bulk samples of each entry were measured for length and breadth using a Satake Grain Shape Tester. Average of length and breadth was taken in millimeters and L/B ratio was calculated. Based on length and L/B ratio following Ramaiah (1969) classification, grain type was assigned. Grain type

Length

L/B ratio

Long Slender (LS)

6mm and above

3mm and above

Short Slender (SS)

less than 6mm

3mm and above

Medium Slender (MS)

less than 6mm

2.5-3.0mm

Long Bold (LB)

6mm and above

less than 3.0mm

Short Bold (SB)

less than 6mm

less than 2.5mm

5. Kernel length after cooking (mm) Five grams sample was taken in a labelled test tube and 15 ml tap water was added and soaked for ten minutes. The tubes were placed in a water bath maintained at boiling temperature (100°c) for 20 minutes. After cooking, the cooked rice from the test tube was emptied into petriplates. The cooked kernel’s length was expressed in millimeters. 6. Alkali spreading value and gelatinization temperature: Time required for cooking is determined by the gelatinization temperature. Gelatinization temperature, a physical property of starch, is the range of temperature within the starch granules design to swell irreversibly in hot water. The gelatinization temperature ranges from 55 to 790C and is divided into three main groups: Low (< 700C), Intermediate (70-740C) and High (75-790C). Gelatinization temperature is estimated by the extent of alkali spreading and clearing of milled rice soaked in 1.7% potassium hydroxide solution (KOH) for 23 hours at room temperature. Rice varieties with low gelatinization temperature disintegrate completely, where as rice varieties with intermediate gelatinization temperature show only partial disintegration and rice varieties with high gelatinization temperature remain unaffected in the alkali solution. Six whole milled grains per replication were spread evenly in transparent plastic boxes containing 10 ml of 1.7 per cent KOH of one day old. These boxes were kept undisturbed in an incubator at 27-300C for 23 hours. The alkali spreading of kernels were noted on a seven point scale and expressed as average of six values. Scoring was done by following the method described by Little et al. (1958).

Spreading scale: 1 - Kernel not effected 2 - Kernel swollen 3 - Kernel swollen, collar incomplete and narrow 4 - Kernel swollen, collar complete and wide 5 - Kernel split or segmented, collar complete wide 6 - Kernel dispersed, merging with collar 7 - Kernel completely dispersed and intermingled According to alkali spreading score, the gelatinization temperature of the entries were classified as follows: Alkali spreading value

Rating

Gelatinization temperature

1-2

Low

High

3

Low intermediate

High Intermediate

4-5

Intermediate

Intermediate

6-7

High

Low

7. Aroma: The characteristic flavor of rice is due to the presence of volatile oil - 2-acetyl-1pyrroline on the basis of which rice is categorized as aromatic and non-aromatic. There are several methods to identify aroma in rice but the technique suggested by Nagaraju et al. (1991) is easy and helps in quick screening of many samples. According to the procedure, 2-4 grams of milled rice is taken in a test tube and 5ml of 0.1N KOH solution is added and boiled upto 50oC for four minutes. Five minutes after boiling, based on the strength of the aroma, the aroma is scored as non-scented, mildly scented and strongly scented.

3.3 Statistical Analysis The data recorded on different traits were subjected to the following statistical analysis. 3.3.1 Analysis of variance 3.3.1.1 RBD analysis The adopted design was Randomized Complete Block Design (RCBD) replicated twice. The analysis of variance was carried out by the method of Panse and Sukhatme (1985).

Yij = m + gi + vj + eij Where, Yij

= phenotypic observation of ith genotype in jth replication

m

= general mean

gi

= effect of ith genotype

vj

= effect of jth replication

eij

= random error

The analysis of variance (ANOVA) was carried out for each character as indicated below: ANOVA Source

d.f.

MS

F calculated

Replications (r)

(r-l)

Mr

Mr/Me

Treatments (t)

(t-l)

Mt

Mt/Me

Error (e)

(r-l) (t-l)

Me

Total

(rt-l)

Where, r

= number of replications

t

= number of treatments (genotypes)

Mr

= mean sum of squares of replications

Mt

= mean sum of squares of treatments

Me

= mean sum of squares of error

df

= degrees of freedom

MS

= mean sum of squares The significance of mean sum of squares for each character was tested against the

corresponding error degrees of freedom using ‘F’ test (Fisher and Yates, 1967). 3.3.2 Line x Tester analysis The data recorded on the material generated as per Line x Tester model of Kempthorne (1957) was subjected to analysis of variance as per the Line x Tester model given by Singh and Chaudhary (1985).

3.3.2.1: ANOVA for Line x Tester analysis Source

d.f

Replications (r)

(r-l)

Genotypes (a)

(a-l)

Parents (p)

(p-l)

Crosses (c)

(c-l)

Parents vs. crosses

MS

l

Males (m)

(m-l)

Mm

Females (f)

(f-l)

Mf

Males x females (m x f)

(m-l) (f-l)

M (m x f)

Error

(r-l) (a-l)

Me

Where, r = number of replications p = number of parents m = number of males Mm = mean sum of squares of males Mf = mean sum of squares of females M (m x f) = mean sum of squares of males and females Me = mean sum of squares of error d.f = degrees of freedom MS = mean sum of squares

a = number of genotypes c = number of crosses f = number of females

The significant differences among the genotypes and replications were verified by applying ‘F’ test (Fisher and Yates, 1967). 3.3.2.2.1 Coefficient of variation Phenotypic and genotypic coefficients of variation (PCV and GCV) These were computed according to Burton (1952) Phenotypic standard deviation PCV (%) = -------------------------------------------- x 100 General mean

Genotypic standard deviation GCV (%) = ------------------------------------------- x 100 General mean Categorization of the range of variation was followed as proposed by Subramanian and Menon (1973). Less than 10%

:

Low

10 to 20 %

:

Moderate

More than 20%

:

High

3.3.2.2.2 Heritability in broad sense [h2(b)] Heritability in broad sense was estimated as per Allard (1960) Genotypic variance (2g) h2(b) =

--------------------------------------- x 100 Phenotypic variance (2p)

As suggested by Johnson et al. (1955), h2(b) estimates were categorized as: Low

:

0-30%

Medium

:

31-60%

High

:

61% and above

3.3.2.2.3 Genetic advance (GA) This was estimated as per the formula proposed by Lush (1949) and Johnson et al. (1955). GA = K. p.h2(b) Where, K

= Selection differential at 5 per cent selection intensity which accounts to a constant value 2.06 (Lush, 1949)

h2(b)

= Heritability in broad sense

p

= Phenotypic standard deviation

3.3.2.2.4

Genetic advance as per cent of mean (GAM) GA

GAM

= --------------------- x 100 Grand mean

The range of genetic advance as per cent of mean was classified as suggested by Johnson et al. (1955) Low

:

Less than 10%

Moderate

:

10-20%

High

:

More than 20%

3.3.2.3 Estimation of combining ability Combining ability was estimated based on the method of Kempthorne (1957). The estimates of general and specific combining ability and their variances were obtained by using covariance of half sibs and full sibs. ANOVA Source

d.f

SS X2 .. k mf

MS Expected mean squares -

X2 … mfr

X2ij. r

-

X2 … mfr

(m-l)

X2i.. fr

-

X2 … mfr

M1

2 + r [ Cov (F.S) - 2Cov (H.S) + fr Cov (H.S)]

Females

(f-l)

X2..j. mr

-

X2 … mfr

M2

2 + r [Cov (F.S) – 2Cov (H.S) + mr Cov (H.S)]

Males X Females

(m-l)(f-l)

X2(ij) r

-

X2i.. fr

M3

2 + r [Cov(F.S) – 2 Cov (H.S)]

-

X2.j. mr

+

X2 … mfr M4

2

Replications

(r-l)

Hybrids

(mf-l)

Males

Error

(r-l)(mf-l) By difference

Total

(mfr-l)

X2(ij)k

-

X2… mfr

Where, X…

= Sum of all the (ij) hybrid combinations

X..k

= Sum of kth replication

X(ij)

= Sum of ijth hybrid combination over all replications

X.j.

= Sum of jth female parent over all males and replications

Xijk

= ijth observation in kth replication Covariance of full sibs and covariance of half sibs were estimated by using the

formula (Kempthorne, 1957) given below:

Covariance of half = sibs

1

(f -1) (M1) + (m-1) (M2)

r (2mf – f – m)

f + m -2

Covariance of full = sibs

+

-M3

(M1-M4) + (M2-M4) + (M3-M4) 3r 6 r Cov (H.S) – r (m + f) Cov (H.S) 3r

3.3.2.4 Estimation of variances Using the covariances of half sibs and full sibs which were estimated by the above equations, variance due to general combining ability (2 gca) and variance due to specific combining ability (2 sca) were estimated as : 2 gca

= Covariance of half sibs

2 sca

= Covariance of full sibs – 2 Covariance of half sibs

3.3.2.5 Estimation of combining ability effects The additive model used to estimate the gca and sca effects of the ijk observations was Xij

=  + gi + gj + sij + eijk

Where, 

= population mean

gi

= gca effect of ith male parent

gj

= gca effect of jth female parent

sij

= sca effect of ijth combination

eijk

= error associated with the observation Xijk

i

= number of male parents

j

= number of female parents

k

= number of replications

The estimation of individual effects was as follows: X…  = ---------mfr Where, X…

= Total of all hybrid combinations over all replications

(i) Lines: X…

Xi.. gi = ----------

- ----------

fr

mfr

Where, Xi

= Total of ith male parent over all females and replications

(ii) Testers: X…

X.j. gj =

----------

-

mr

---------mfr

Where, X.j.

= Total of jth female parent over all male parents and replications

Xij. Sij =

---------r

Xi.. -

---------- fr

X.j.

--------- + --------mr

Where, Xij.

X…

= ijth combination total over all replications

mfr

3.3.2.6 Standard errors for combining ability effects The standard errors (SE) pertaining to gca and sca effects of different combinations were calculated as follows: Error of variance SE (gi) males (gca for line)

=

½

--------------------rf

Error of variance SE (gj) females (gca for tester)

=

½

--------------------rm

2 error of variance SE (sij) male x female combination =

½

--------------------r

Where, r

= number of replications

m

= number of males

f

= number of females

3.3.3 Estimation of heterosis Heterosis was estimated for 84 hybrids for 12 characters using the following formulae: 3.3.3.1 Heterosis over mid parent Heterosis was expressed as per cent increase or decrease observed in the F1 over the mid-parent as per the following formula. Heterosis (%) (h1) =

F1  MP x100 MP

Where,

F1

= Mean of F1

MP

= Mean of parents

3.3.3.2 Heterosis over better parent Heterobeltiosis was expressed as per cent increase or decrease observed in F1 over the better parent as per the formula given by Liang et al. (1971). Heterobeltiosis (%) (h2) =

F1  BP x100 BP

Where,

BP = Mean of better parent (for the characters like days to 50% flowering, earliness is desirable so the early parents are taken as better parents). 3.3.3.3 Heterosis over standard checks Standard heterosis was expressed as per cent increase or decrease observed in F1 over standard checks. Standard heterosis (%) (h3) =

F1  Mean of check x100 Mean of check

3.3.3.4 Test of significance for heterosis To test the significance for different types of heterosis, computation of standard error (SEm) is needed. For relative heterosis and heterobeltiosis, SEm was calculated based on error mean squares (EMS) from the ANOVA tables consisting parents and crosses, whereas, EMS from the RBD ANOVA (2e) table based on all treatments (parents, crosses and check) was used for standard heterosis. The significance of heterosis viz., relative heterosis, heterobeltiosis and standard heterosis was then tested by comparing the calculated ‘t’- value with the tabulated Student’s ‘t’-value for appropriate error degrees of freedom at 5 per cent and 1 per cent level of significance (0.05 and 0.01 level of probability), respectively. ‘t’cal for Heterosis and Heterobeltiosis = Where, SEm =

F1  Mean of mid parents or better parent SEm

2EMS/ r

EMS = Error mean of squares r = Number of replications t’cal for Standard heterosis = Where, SEm SC  2e 2 / r

F1  Mean of check SEm SC

3.3.3.5 Least significance difference (critical difference) for heterosis The significance of the difference between two estimates of heterosis were tested by computing the least significant difference (LSD) by multiplying the SEm with the appropriate Student’s ‘t’ value of respective error degrees of freedom at desired level of probability. CD = SEm x‘t’ table value at error degrees of freedom 3.3.4 Stability Model 3.3.4.1 Eberhart and Russell’s model (1966) Data obtained from the three environments were subjected to pooled analysis of variance (Panse and Sukhatme, 1985). The genotype x environment interactions were significant for seven characters viz., days to 50% flowering, plant height, number of productive tillers per plant, panicle length, panicle weight, number of filled grains per panicle and grain yield per plant and for rest of the five characters the interactions were non significant. Hence, the data was further analysed to determine the phenotypic stability of different hybrids and parents pertaining to the above seven characters only. (i) Phenotypic stability analysis Following the methodology of Eberhart and Russell’s model (1966), three parameters namely (i) overall mean of each genotype over a range of environments, (ii) the regression of each genotype on the environmental index and (iii) a function of the squared deviation from the regression were estimated. Eberhart and Russell (1966) used to study the stability of genotypes under different environments. Yij

= µi + bi Ij + ij

Where, Yij

=

mean of ith genotype in jth environment.

µi

=

mean of ith genotype over all the environments

bi

=

regression coefficient of the ith genotype on the environmental index which measures the response of this genotype to varying environments

Ij

=

environmental index which is defined as the deviation of the mean of all the genotypes at a given location from overall mean with Σj – Ij = 0

ij

=

The deviation from regression of the ith genotype at jth environment

(ii) Analysis of variance for stability The analysis of variance proposed by Eberhart and Russell (1966) is given below:

ANOVA to estimate stability parameters (Eberhart and Russell, 1966) Source 1. Total

d. f

S. S i j Y2ij – C.F

(ge -1)

2. Genotype

(g-1)

3. Environment

g(e-1)

4. Environment

1/e i Y2i – C.F

i j

I

1 ∑ (YjIj) ² / ∑ Ij ² g j

j

∑ ( ∑ Yij Ij) ² / ∑ Ij ²) -

5. Genotype x Environment

MS 1

∑ ∑ (Yij ² - ∑ Yi ² / e)

1

(Linear)

M. S. S

(g-1)

i j

(Linear)

i

Environment (linear) S. S

6. Pooled deviation

i (j 2ij)

g(e-2)

MS 2 MS 3

∑ Yij ² _ (Yi) ² _ (∑ Yij Ij) ² / 7. Deviation due to Genotype 1

i

(e-2)

e

j

∑ Ij ² = ∑ j  ij ² j

j

∑ Ygj ² _ (Yg) ² _ (∑ Ygj Ij) ² / Genotype g

j

(e-2)

j

∑ Ij ² = ∑ j  gj² j

8. Pooled error

e

j

e(r-1) (g-1)

g= genotype;

e= environment;

r= replications

(iii) Computation of regression coefficient (bi) for each genotype = ∑ j Yij Ij / ∑ Ij ²

bi

j Where, bi

= regression coefficient of ith genotype

∑ Ij ²

= the sum of squares of environmental indices which are common

j

to each value of bi.

∑ Yij ²

= (for each genotype) = the sum of products of environmental

j

index and the corresponding means (X) of that variety at each location.

(Ij)

These values may be obtained in the following manner. __ ∑ Yij Ij

( X ) (Ij) =

= (S)

j (Ij)

=

Vector for environmental index, and

(S)

=

Vector for sum of products i.e., ∑ Yij Ij

(iv) Computation of S²di: In a regression analysis, it is possible to partition the variance of dependent variable (Y) into two parts, the one which explains the linearity between dependent and independent variables (variance due to regression) and the other which explains the variance due to deviations from linearity symbolically.  Y ² =  ² regression +² deviation from regression The variance of means over different locations with regard to individual genotypes may be obtained in the following way. ² gi = ΣjYij-(Y ² i/g) The variance due to deviations from regression ( i  ij ²) for a genotype being:  ij  [  Y2 ij  Y2 i / g]  j

j

( YijIj) 2  Ij2 i

Where,

 Y2 ij  Y2 i / g  The var iance due to dependent var iable j

( Yij  ij) 2 / ( ij) 2  The var iance due to regression j

j

Because

(  YijIj) 2 j

 Ij

2

j



(  YijIj)(  YijIj) j

j 2

 Ij

 bi  YijIj

j

From

  2 ij  Values, the stability parameter , j

S ²di for each genotype is computed as follows:

S2 di    2 ij / (e  2)  (S2 e / r ) j

Mean square 

Deviation from regression Pooled error deviation  d. f . for environment Number of replications

The variance due to genotypes, environments and the pooled error were the same as those calculated in the pooled analysis of the data, except that the total sum of squares was mainly partitioned into three main components. i. Sum of squares due to genotypes ii. Sum of squares due to environments + (G x E) and iii.Pooled error Again sum of squares due to G x E was further partitioned into two parts namely i.

S.S due to G X E (linear) which is infact S.S due to regression and

ii. S.S due to deviation from linearity of response (i.e., due to pooled deviation). The different computational steps involved were as follows.

a) S.S. due to environment  (GxE)    Y2 ij  (  Y2 i / e) i

j

i

1 b) S.S. due to environment  (linear )   YjIj2 /  Ij2 j g j

c) S.S. due to GxE (linear )  S (S YjIj2 / S Ij2 )  environment (linear ) S.S. j

j

j

Where, (  YjIj2 ) /  Ij2  bi  YijIj for each var iety j

j

j

Test of Significance

The following tests of significance were carried out: 1.

To test the significance of the difference among genotype means namely: Ho

F

=

µ1 = µ2 = µ3 = …. µn

Mean square due to genotype

=

=

Mean square due to pooled deviation 2.

MS1 MS3

To test that the genotypes did not differ for their regression on environmental index

i.e., Ho = b1 = b2 = b3………. bn F

M.S. due to G x E (linear)

=

=

M.S. due to pooled deviation

F 3.

=

M.S due to G x E (linear)

Ms ²

Individual deviation from linear regression was tested as follows:

MS2 MS3

Against F table value at (e-2)(g-2), at 5% or 1% probability level.

4.

The hypothesis that any regression coefficient did not differ from unity or zero was tested by appropriate‘t’ test i.e.,

For ( b  0), t 

| b  0| for (g  2) df at 5% level of probability SE( bi)

For (1  b), t 

| b  1| for (g  2) df at 5% level of probability SE( bi)

Where,

SE bi    2 ij / (e  2) /  Ij2 j

j

Stable genotypes A genotype with unit regression coefficient (bi=1) and deviation not significantly different from zero (S2di=0) was taken to be a stable genotype with unit response. Mean and standard error of ‘b’ _

Mean of b  b   bi / g i

S. E. ( b) 

M.S. due to pooled deviation  Ij2 j

Population mean (µ) and standard error was calculated as Population mean (µ) =

S. E. ( mean) 

Grand total / No. of observations

M.S. due to pooled deviation Number of environments 1

CHAPTER-IV

RESULTS AND DISCUSSIONS

The results of the present investigation on “Genetic analysis of yield and yield contributing characters in hybrid rice (Oryza sativa L.)” are presented here under the following sub heads. 4.1 Variability, Heritability and Genetic advance 4.2 Combining ability and gene action 4.3 Heterosis 4.4 Stability 4.5 Grain quality 4.1.1 Variability Genotypic and phenotypic coefficient of variances for the twelve characters were studied and presented in Table 7. The genotypic coefficient of variance was high for the characters viz., number of unproductive tillers per plant, (30.12), flag leaf length (32.55), panicle weight (25.89) and grain yield per plant (46.52). For the characters plant height (11.38), number of productive tillers per plant (19.57), panicle length 911.9), flag leaf width (11.41), number of grains per panicle (10.48) and test weight (16.28) recorded moderate genotypic coefficient of variation values. And the characters days to 50% flowering (9.28) and spikelet fertility % (9.13) recorded low genotypic coefficient of variation and similar results were observer in case of phenotypic coefficient of variation. Similar kind of reports for low genotypic coefficient of variance for days to 50% flowering was reported by Shivani and Reddy (2000), Bisne and Motiramani (2006), Chandra et al. (2009), Jayasudha and Sharma (2010) and Ullah et al. (2011) and for the

characters spikelet fertility (%) Shivani and Reddy (2000), Bisne and Motiramani (2006), Jayasudha and Sharma (2010) and Nandan et al. (2010). Similar kind of reports for moderate genotypic coefficient of variance for plant height (Shivani and Reddy 2000; Bisne and Motiramani 2006; Chandra et al.

2009;

Jayasudha and Sharma 2010 and Selvaraj et al. 2011), number of productive tillers (Bisne and Motiramani 2006 and Chandra et al. 2009), panicle length (Jayasudha and Sharma 2010 and Nandan et al. 2010), number of grains per panicle (Selvaraj et al. 2011) and test weight (Shivani and Reddy 2000, Selvaraj et al. 2011 and Ullah et al. 2011) was reported. Similar kind of reports for high genotypic coefficient of variance for grain yield per plant was reported by Shivani and Reddy (2000), Bisne and Motiramani (2006), Yadav et al. (2010) and Selvaraj et al. (2011).

4.1.2 Heritability High heritability estimates was recorded for only one character test weight (78.15), the characters flag leaf length (30.23) and flag leaf width (32.71) were recorded moderate heritability and remaining nine characters days to 50 per cent flowering (11.15), plant height (26.26), number of productive tillers per plant (2.89), number of unproductive tillers per plant (6.90), panicle length (23.84), panicle weight (12.96), spikelet fertility (3.44), number of filled grains per panicle (4.43) and grain yield per plant (20.01) recorded low heritability estimates (Table 8). . 4.1.3 Genetic advance Genetic advance was low for all the characters under study. Genetic advance as percent of mean was moderate for grain yield per plant. And the remaining eleven characters days to 50 per flowering (1.30), plant height (3.73), number of productive tillers per plant (1.02), number of unproductive tillers per plant (3.72), panicle length (3.60), flag leaf length (7.03), flag leaf width (4.62), panicle weight (3.04), spikelet fertility (0.52), number of grains per panicle (3.78) and test weight (7.65) recorded low genetic advance as per cent of mean (Table 8).

From the above results high heritability coupled with moderate genetic advance as percent of mean was observed and similar kind of results were reported by Patil and Sarawgi (2005) and Chandra et al. (2009). For the characters panicle length, low heritability with low moderate genetic advance as percent of mean was observed and similar kind of results was reported by Singh and Chaudhary (1996) and for grain yield per plant, low heritability with low moderate genetic advance as percent of mean was observed and similar kind of results was reported by Bharadwaj et al. (2007).

4.2 Combining ability studies 4.2.1 Line x Tester analysis 4.2.1.1 Analysis of variance The data on yield and yield components viz., days to 50 percent flowering plant height, number of productive tillers per plant, number of unproductive tillers per plant, panicle length, flat leaf length, flat leaf, width, panicle width, spikelet fertility (%), number of filled grains per panicle, test weight and grain yield per plant were collected and analyzed. The line x tester analysis was utilized to derive the analysis of variance for combining ability. The analysis was carried out for three locations viz., Warangal, Kunaram and Kampasagar and also for pooled over the locations. The analysis of variance for line x tester is presented in Table 9. The pooled analysis of variance for combining ability over three locations revealed significant differences for locations for all the characters. Significant differences were also recorded for replications x locations for days to 50% flowering, number of unproductive tillers per plant, panicle length, flat leaf length, panicle weight and number of filled grains per panicle. Treatments and parents were significant for all the twelve characters. The

significant differences among parents and hybrids were observed for all twelve characters. Comparison of parents vs. hybrids found to be significant for all twelve characters. Partitioning of crosses into lines, testers and line x testers revealed that the variance differences of lines were significant, plant height, number of unproductive tillers per plant, panicle length, flag leaf length, flag leaf width, test weight and grain yield per plant. Testers were also exhibited Similar significant differences for the characters as lines except number of unproductive tillers per plant and the interaction of line x testers were significant for all the characters. Interaction effects of (parents vs. Crosses) x locations were significant for all the characters except panicle length and panicle weight. Significant variances for parents x locations interactions and crosses x locations were recorded for all the character under study except test weight. Further partitioning of crosses x locations indicated that the interaction of lines x locations recorded significant differences for only three characters plant height, number of unproductive tillers per plant and panicle length. Interaction effects of testers x locations were significant for days to 50 per cent flowering, plant height, flat leaf width, spikelet fertility, test weight and grain yield per plant, while interaction effects of lines x testers x locations recorded significant differences for all the characters except test weight. The pooled analysis of variance revealed significant differences due to environments for all the characters indicating significant diversity among the environments. The mean sum of squares due to parents and crosses were significant for all the characters indicating the wider variability among the parents used and hybrids developed. Comparison of parents vs. crosses recorded significant for all the characters indicating presence of heterosis. Variances due to lines and testers were significant for most of the characters and interactions of lines x tester, parents x locations, (parents vs. crosses) x locations, crosses x locations, lines x locations, testers x locations and line x testers x locations were significant

for most of the yield contributing traits. This indicates the existence of wide variability in the material under study and there is a good scope for identifying promising parents and hybrid combinations and improving the yield through yield contributing characters. Portioning crosses into lines, testes and lines x testers revealed that the variance differences among the lines and testes and interactions of line x testers were significant for most of the characters except days to 50 per cent flowering, number of productive tillers per plant, panicle weight, spikelet fertility (%) and number of grains per panicle for lines and same for tester except days to 50 percent flowering and including number of unproductive tillers per plant. interaction effects of (Parents x crosses) x locations were significant for all most all character except panicle length and panicle weight. Significant variances for parents x locations interactions and crosses x location were recorded for all the characters studied except test weight.

Study of mean performance The mean values of parents and hybrids on 12 characters in three locations and pooled over locations are presented character wise.

Days to 50% flowering The mean values of parents and hybrids for days to 50% flowering are presented in Table 10.1. At Warangal, the mean values of days to 50% flowering ranged from 84 to 100 days with an overall mean of 90.63. Among the lines, the range was from 93.50 days (IR58025A) to 99.50 days (IR-79128A). The range was from 87 days (R-32) to 100 days (R27 and R-21) among the testers and from 84 to 99.50 days among hybrids. The hybrid IR58025A x R-34 flowered earliest (84 days) followed by IR-68897A x R-53 (85.50). As

many as 14 hybrids were statistically superior to the earliest followed by check DRRH-2 (89 days) by recording less than 86 days for flowering. At Kunaram days to 50% flowering ranged from 77 to 97 days with an overall mean of 86.24 days. The lines flowered between 83.50 days (IR-68897A) and 93.50 days (IR58025A), whereas the testers flowered between 77.50 days (R-32) and 93.50 days (R-17). Among the hybrids, the days to 50% flowering ranged between 75 to 97 days. Two hybrids flowered earliest were IR-68897A x R-31 (75 days) and IR-79128A x R-19 (75 days). The five hybrids flowered significantly earlier than the best check Annada (80 days) At Kampasagar, the days to 50% flowering ranged from 82 to 101 days with an overall mean of 89-42 days. The lines flowered between 89.50 days (IR-68897A) and 99.50 days (IR-79156A) whereas, the testers flowered between 86.75 days (R-32, R-24 and R-36) and 98.25 days (R-31). Among hybrids, the day to 50% flowering ranged was from 82 to 101 days. Among hybrids, the hybrid IR-58025A x R-24 and IR-80155A x R-25 took least number of days (82 days) for days to 50% flowering followed by IR-58025A x R-25 (82.50) x IR-68897A x R-7 (82.75) and IR-80555A x R-21 (83.00 days). About 15 hybrids were significantly earlier than the best check Annada (86 days). Pooled analysis over three locations revealed that among all the genotypes tested the days to 50% flowering ranged from 82.83 to 99.00 days with an overall mean of 88.76 days. The range was from 90.67 days (IR-68897A) to 95.50 days (IR-79156A) among the lines. The testers showed a range of 83.75 days (R-32) to 96.00 days (R-27). The hybrids showed a range of 82.33 (IR-80155A x R-35) days to 99 days (IR-58025A x R-36). Only one hybrid IR-80155A x R-35 (82.83 days) flowered earlier than the best check Annada (85.17 days) and was statistically superior.

Plant height (cm) At Warangal, among the genotypes tested for plant height range between 75.30 cm to 106.10 cm with a general mean of 89.42 cm (Table 10.1). The plant height for lines ranged from 75.30 cm in IR-58025A to 90.40 cm in IR-79156A, while in testers the range was from 77 cm (R-21) to 97.10 cm (R-56). In case of hybrids, the mean plant height ranged from 79.90 cm in IR-80155A x R-21 to 106.10 cm in IR-79128A x R-56, while the check Annada recorded 84.28 cm. At Kunaram, plant height exhibited a range between 72.07 cm to 97.00 cm with a general mean of 81.20 cm. The range for plant height, among lines, was from 76.48 cm (IR-80555A) to 91.20 cm (IR-58025A). Among the testers, the plant height varied between 74.20 cm (R-21) to 97.40 cm (R-32). The plant height of hybrids varied from 72.07 cm in IR-79128A x R-31 to 93.70cm in IR-79128A x R-7 while the check PA-6201 exhibited mean plant height of 73.10 cm. At Kampasagar, plant height of the genotypes ranged from 83.30 cm (R-21) to 116.10 cm (IR-79156A x R-7) with a general mean of 101.75 cm. In lines, the plant height exhibited a ranged of 83.40 cm in IR-80555A to 109.60 cm in IR-80155A while in testes in ranged from 83.30 cm in R-21 to 114.90 cm in R-56. Among the hybrids, plant height ranged from 86.90 cm in IR-80555A x R-21 to 116.10 cm in IR-79156A x R-7, while the check, Jaya recorded mean plant height of 93.80 cm. Mean plant height among the genotypes over locations revealed that the line R-21 was the shortest 78.17 cm and the hybrid IR-79156A x R-7 was the tallest 102.40 cm one. General mean of the genotypes was 90.79 cm. Plant height among the lines varied between 78.73 cm (IR-80555A) to 95.10 cm (IR-80155A). Testers exhibited a range for plant height from 78.17 cm in R-21 to 101.17 cm in R-56. Plant height of the hybrids varied from 82.87

cm (IR-58025A x R-21) to 102.40 cm (IR-79156A x R-7), while the check PA-6201 recorded 88.93 cm plant height. For plant height, 80-100 cm of height is considered as ideal one and most of the hybrids fall in this category.

Number of productive tillers per plant Number of productive tillers per plant is one of the important yield contributing characters in hybrids. Overall mean for the character number of productive tillers per plant was 11.97 with a range of 7.50 to 17.70. At Warangal (Table 10.2), the number of productive tillers for lines ranged from 8.90 (IR-80155A) to 14.90 (IR-79156A) and among testers the range was from 9.60 (R-32) to 14.50 (R-7 and R-56). In hybrids, the number of productive tillers ranged from 7.50 (IR-68897A x R-32) to 17.70 (IR-80155A x R-35) with a mean of 11.76. Among the hybrids IR-80155A x R-35 recorded the maximum number of 17.70 productive tillers per plant followed by IR-80555A x R-27 (15.7), IR-58025A x R25(15.15) and IR-79156A x R-35(15.0). At Kunaram, the mean number of productive tillers per plant was 12.33 with a range of 7.50 to 17.50. Among the lines, the range was from 9.20 (IR-58025A) to 14.10 (IR68897A). Among the testers, R-27 recorded the lowest number of productive tillers (7.50) and R-32 recorded the highest number of productive tillers (15.60). Productive tillers among the hybrids range from 8.90 to 17.50 with a mean of 12.61. Maximum number of tillers was produced by the hybrid IR-58025A x R-56 (17.50) and only two hybrids were on par with it, whereas, none of the hybrids were significantly superior to the best check PA6201 which had 17.40 productive tillers per plant. The genotypes exhibited productive tillers ranged from 6.65 to 15.70 with an average of 10.87 at Kampasagar. The range for lines was from 7.15 (IR-79128A) to 13.20

(IR-79156A) and for testers from 7.40 (R-53) to 12.10 (R-27). Among the hybrids the range was from 6.65 to 15.70. the hybrids IR-58025A x R-24 recorded maximum number of productive tillers per plant (15.70) and as many as eight hybrids were statistically at par with it. But none of the hybrids were significantly superior to the best check, PA 6201 (10.80). Over the locations, the genotypes exhibited a general mean of 11.71 with a range of 8.83 to 14.53 for the number of productive tillers per plant. Among the lines, the productive tillers range was from 9.75 (IR-79128A) to 12.77 (IR-79156A) and among the testers the range was from 8.83 (R-53) to 13.37 (R-56). The hybrids recorded a mean productive tillers range of 9.28 to 14.53. Among the hybrids, IR-80155A x R-35(14.53) and IR-58025A x R32 (13.87) had the maximum number of productive tillers per plant and these two hybrids were statistically superior to the best check PA- 6201. And as many as 28 hybrids were on par with the best check. Number of unproductive tillers per plant At Warangal, the number of unproductive tillers per plant ranged between 1.50 to 4.10 with an overall mean of 2.62 (Table 10.2). The number of unproductive tillers for lines ranged from 1.60 (IR-79156A) to 2.20 (IR-80155A and IR-80555A) and among testers the range was from 1.60 (R-19) to 3.40 (R-32). In hybrids, the number of unproductive tillers ranged from 1.50 (IR-80155A x R-7) to 4.10 (IR-58025A x R-7) with a mean of 2.71. 26 hybrids were statistically on par with the best check IR-64 (1.90). But, none of the hybrids were statistically superior to the best check IR-64. At Kunaram, the mean number of unproductive tillers per plant was 3.20 with a range of 2.10 to 4.30. Among the lines, the range was from 2.40 (IR-80555A) to 3.80 (IR68897A). Among the testers, R-17 (3.90) recorded the highest number of unproductive tillers per plant and R-25 (2.30) recorded lowest number of unproductive tillers per plant

unproductive tillers among the hybrids ranged from 2.10 (IR-80155A x R-31) to 4.30 (IR68897A x R-19) with a mean of 3.22 and 18 hybrids were on par with the best check IR-64 (2.50). At Kampasagar, the genotype exhibited a range from 0.40 to 3.00 for the number of unproductive tillers per plant. The range for lines was from 1.30 (IR-68897A) to 2.10 (IR80155A) and for testers from 1.10 (R-24 and R-27) to 3.00 (R-21). Among the hybrids, the range was from 0.40 to 2.90. The hybrids IR-58025A x R-34 (0.40) recorded the lowest number of unproductive tillers per plant and as many as 55 hybrids were statistically superior or on par with the best check Annada and PA-6201 (1.90). Over the locations, the genotypes exhibited a general mean of 2.43 with a range of 1.73 to 3.03 for the character number of unproductive tillers per plant. Among the lines, the unproductive tillers range was from 2.13 (IR-79156A) to 2.67 (IR-80155A) and among the testers the range was from 2.03 (R-25 and R-27) to 3.00 (R-32). The hybrids recorded a mean unproductive tillers range of 1.73 to 3.03 with a mean of 2.45. The hybrid IR-80155A x R-7 (1.73) recorded significantly lowest number of unproductive tillers per plant and as many as 61 hybrids were statistically on par with the best check IR-64 (2.20).

Flag leaf length (cm) Flag leaf length of the genotypes at Warangal varied from 19.70 cm to 40.55 cm with a mean value of 28.00 cm. Among the lines, it varied from 24.46 cm (IR-80555A) to 31.70 cm (IR-79156A) and among testers it varied from 22.35 cm (IR-35) to 40.55 cm (R53). The hybrids exhibited a flag leaf length ranges from 21.45 cm (IR-80555A x R-19) to 38.45 cm (IR-79156A x R-56). Eight hybrids recorded significantly high flag leaf length than the best check KRH-2 (30.07cm).

At Kunaram, the genotypes registered a lower flag leaf length range from 14.20 cm to 30.18 cm with a general mean of 21.18 cm than at Warangal and Kampasagar. The lines exhibited a flag leaf length range from 14.40 cm (IR-80555A) to 21.80 cm (IR-79156A) and for tester is ranged from 19.87 cm (R-36) to 30.18 cm (R-53). Hybrids recorded flag leaf length ranged from 14.20 cm (IR-80155A x R-19) to 26.45 cm (IR-80155A x R-53) with a value of 21.03 cm. the maximum flag leaf length was recorded by the hybrid IR80155A x R-53 (26.45 cm) followed by IR-79156A x R-7(25.81cm) and IR-79128A x R53(25.23cm). Among the checks, PA-6201 recorded the maximum of 24.84 cm flag leaf length and twelve hybrids recorded significantly on par with the best check PA-6201. At Kampasagar the genotypes recorded flag leaf length range from 21.30 cm to 39.10 cm with a general mean of 28.09 cm. Among lines the flag leaf length ranged from 23.00 cm (IR-80555A) to 36.50 (IR-79156A) and among testers it ranged from 21.30 cm (R-35) to 39.10 (R-53). Among the hybrids, flag leaf length ranged from 22.80 cm (IR80155A x R-19) to 36.20 (IR-80155A x R-53). Two hybrids were recorded significantly superior flag leaf length than the best check PA-6201 (29.45 cm). In pooled analysis over locations, the genotypes recorded a flag leaf length range from 20.62 cm to 36.61 cm with a general mean 25.76 cm. Flag leaf length ranged from 20.62 cm (IR-80555A) to 30.00 (IR-79156A) among the line and from 21.75 cm (R-35) to 36.61 (R-53) among the testers. The hybrids recorded mean flag leaf length from 21.33 cm (IR-80155A x R-19) to 31.23 cm (IR-79128A x R-53). The highest flag leaf length was recorded by the hybrid IR-79128A x R-53 (31.23 cm) followed by IR-80155A x R53(31.02cm), IR-79156A x R-53(30.41 cm) and IR-79156A x R-56(30.02cm). Ten hybrids recorded more than 29.50 cm of flag leaf length and were statistically superior to the best check PA-6201 (27.51 cm).

Flag leaf width (cm) At Warangal, flag leaf width ranged from 1.01 cm to 1.53 cm with a general mean 1.30 cm. The flat leaf width ranged from 1.07 cm (IR-68897A) to 1.39 cm (IR-80155A) among lines and among testers it ranged from 1.05 cm (R-25) to 1.53 cm (R-53). And among hybrids it ranged from 1.01 cm (IR-80555A x R-32) to 1.53 cm (IR-80155a x R-7) with a general mean 1.31 cm. Five hybrids recorded significantly on par with the best check PA-6201 (1.41 cm) for the character flag leaf width. At Kunaram, the genotypes recorded flag leaf width ranged from 1.01 cm to 1.42 cm with a general mean 1.20 cm. Among lines, flat leaf width ranged from 1.17 cm (IR68897A) to 1.32 cm (IR-80155A) and among testers it ranged from 1.18 cm (R-24) to 1.42 cm (R-53). The hybrids recorded the flag leaf width which ranged from 1.01 cm to 1.35 cm. Among hybrids, IR-80155A x R-7(1.35 cm) recorded the highest flag leaf width. None of the hybrids recorded significantly superior to the best check Annada (1.42 cm) but few hybrids recorded on par with the best check for flag lead width. At Kampasagar, the genotypes recorded flag leaf width ranged from 1.10 cm to 1.64 cm with a general mean of 1.39 cm. Among the lines flag leaf width ranged from 1.16 (IR68897A) to 1.58 cm (IR-80155A) and among testers, it ranged from 1.10 cm (R-56) to 1.61 cm (R-53). The hybrids recorded flag leaf width ranged from 1.20 cm (IR-58025A x R-36) to 1.64 cm (IR-80555A x R-7). The hybrid IR-8055A x R-7 recorded the highest flag leaf width 1.64 cm which is significantly superior than the best check PA-6201 (1.51 cm), while most of the hybrids are on par with the best check. Mean flag leaf width over the locations ranged from 1.13 cm to 1.52 cm with a grand mean 1.30 cm. Among the lines it ranged between 1.13 cm (IR-68897A) and 1.43 cm (IR-80155A) and among testers it ranged between 1.18 cm (R-24) to 1.52 cm (R-53). The

hybrids recorded the flag leaf width ranged from 1.13 cm (IR-79156A x R-34) to 1.45 cm (IR-80555A x R-7). The hybrid IR-80555A x R-7 recorded the highest flag leaf width among hybrids and which is significantly superior than the best check IR-64 and Annada (1.34 cm). Few hybrids recorded flag leaf width on par with the best check.

Panicle length (cm) At Warangal, mean panicle length of the genotypes was 25.41 cm with a range of 22.11 cm to 31.56 cm (Table 10.3). Among the lines, the range of panicle length was from 22.75 cm (IR-80555A) to 26.55 cm (IR-58025A). The testers recorded panicle length ranging from 22.38 cm (R-31) to 28.62 cm (R-34). The range of panicle length among the hybrids was from 22.74 cm to 31.56 cm. the hybrid combination IR-79156A x R-53 recorded the highest panicle length of 31.56 cm followed by IR-79156A x R-7(30.23 cm) and IR-80155A x R-25(29.83 cm).As many as 12 hybrids recorded significantly higher panicle length than the best check Jaya (25.69 cm). The entries at Kunaram exhibited a mean panicle length of 23.20 cm with a range of 19.90 cm to 28.15 cm. Panicle length of the lines varied from 19.90 cm (IR-80555A) to 24.60 cm (IR-79156A). The testers exhibited a range of 21.49 cm (R-21) to 26.10 cm (R53). Among the hybrids, the mean panicle range was from 20.05 cm to 28.15 cm. Highest panicle length was recorded by the hybrid IR-79128A x R-53(28.15 cm) followed by IR79128A x R-56(27.6 cm) and IR-79153A x R-56(26.85 cm). Only one hybrid (IR-79128A x R-53) recorded significantly superior panicle length when compared to the best check KRH-2 (25.29cm). The genotypes evaluated at Kampasagar exhibited a mean panicle length of 25.31 cm with a range of 21.39 cm to 28.89cm. The lines exhibited a range of 22.55 cm (IR68897A) to 26.12 cm (IR-79156A) and the testers were in the range of 22.329 cm (R-21) to

28.16 cm (R-24). Panicle length among the hybrids was in the range of 21.369 cm to 28.89 cm. Among the hybrids, IR-80155A x R-53 was recorded highest panicle length 28.89 cm followed by IR-68897A x R-25(28.75 cm). Only two hybrids were significantly superior to the best check IR-64 (26.84 cm). Pooled analysis over locations revealed a mean panicle length of 24.64 cm with a range of 22.09 cm to 27.96 cm among the genotypes. The range varied from 22.24 cm (IR80555A) to 25.42 cm (IR-79156A) among the lines and among the testers it ranged from 22.09 cm (R-21) to 27.96 cm (IR-79128A x R-7). As many as ten hybrids were statistically on par with the best check KRH-2 (25.43 cm). Panicle weight (g) The genotypes at Warangal exhibited a panicle weight range from 2.04 g to 3.51 g with a general mean of 2.69 g. Panicle weight among the lines varied from 2.22 g (IR80155A) to 2.99 g (IR-58025A) and the testers exhibited a range from 2.05 g (R-35) to 3.36 g (R-53) (Table 4.2.2.1). Among the hybrids, the panicle weight ranged from 2.04 g (IR80155A x R-31) to 3.51 g (IR-80155A x R-7). Performance of 23 hybrids was on par with the best check Jaya (3.50 g). At Kunaram, the panicle weight ranged from 1.98 to 3.42 g and a general mean of 2.60 g were observed among the genotypes, like Warangal, here also the lowest panicle weight was recorded by IR-80155A (2.16 g) and highest panicle weight was recorded by IR-58025 A (3.01 g). Among the testers, R-35 (1.98 g) recorded the lowest and R-53 (3.28 g) recorded the highest panicle weights. Among the hybrids the panicle weight ranged from 2.09 g (IR-80155A x R-17) to 3.12 g IR-80155A x R-7). As many as four hybrids were on par with the best check Jaya (3.41 g). At Kampasagar, the range of panicle weight was from 2.05 g to 3.51 g with a general mean of 2.64 g among the genotypes. The panicle weight varied from 2.51 g (IR-

80155A) to 2.73 g (IR-79156A) among the lines and among testers it ranged from 2.05 g (R-35) to 2.87 g (R-17). Among the hybrids, the panicle weight ranged from 2.09 g to 3.51 g. The hybrid IR-80155A x R-7 (3.51g) recorded the maximum panicle weight and panicle weights of as many as ten hybrids were significantly superior to the best performing check Jaya which recorded 3.02 g of panicle weight. In pooled analysis over the locations, the range and general mean of panicle weight among the genotypes were 2.03 g to 3.48 g and 2.65 g, respectively. Among the lines, IR80155A (2.30 g) had the lowest and IR-58025A (2.87 g) had the highest mean panicle weights. The testers recorded a mean panicle weight ranging from 2.03 g (R-35) to 2.96 g (R-53). Panicle weights among the hybrids ranged from 2.14 g (IR-80155A x R-25 and IR80155A x R-31) to 3.48 g (IR-80155A x R-7). Performance of ten hybrids with more than 3.00 g of panicle weight was on par with the best hybrid IR-80155A x R-7. Eleven hybrids recorded more than 3.40 g of panicle weight and were significantly superior to the best performing check Jaya (3.31 g).

1000 grain weight (g) Among the genotypes AT Warangal the mean 1000 grain weight ranged from 15.79 g to 22.16 g with a general mean of 19.23 g (Table 10.4). The grain weight among lines ranged from 17.58 g (IR-79128A) to 19.04 g (IR-79156A) and it ranged from 15.79 g (IR35) to 21.82 g (R-32) among the testers. The hybrids possessed 1000 grain weight from 17.01 g (IR-58025A x R-25) to 22.16 g (IR-68897A x R-32). Thirteen hybrids were on par with IR-68897A x R-32. Five hybrids were significantly superior than the best check IR-64 (20.53). At Kunaram, 1000 grain weight of genotypes ranged from 14.40 g to 21.38 g with a general mean of 18.47 g. Among the six lines, IR-80155A recorded the least weight of

15.68 g and IR-79156A recorded the maximum test weight of 17.40 g. Among the testers the test weight from 14.40 g (R-17) to 21.04 g (R-32). The hybrid IR-58025A x R-25 recorded the minimum test weight of 16.86 g and IR-68897A x R-32 recorded the maximum test weight of 21.38 g. Four hybrids were significantly superior to the best check IR-64 (19.80g). The genotypes at Kampasagar exhibited test weight ranged from 15.46 g to 21.72 g with a general mean of 18.84 g. The lines ranged from 17.22 g (IR-79128A) to 18.65 g (IR79156A) and the testers ranged from 15.46 g (R-35) to 21.38 g (R-32). The hybrid IR58025A x R-25 recorded the least test weight of 16.66 g and IR-68897A x R-32 recorded the highest test weight 21.72 g. Two hybrids were significantly superior to the best check IR-64 (20.12g). The pooled analysis, the observed test weight of genotypes ranged from 15.49 g to 21.75 g with a general mean of 18.85g. The line IR-80155A recorded the least test weight of 16.94 g and IR-79156A recorded the highest test weight 18.36g. Among the testers the test weight ranged from 15.49 g (R-35) to 21.41 g (R-32). Among the hybrids, the test weight ranged from 16.84 g to0 21.75 g, the highest test weight was recorded by the hybrid IR-68897A x R-31 (21.75 g), which is significantly on par with the best check IR-64 (20.75g). Grain yield per plant (g) At Warangal, the genotypes exhibited a mean grain yield per plant ranged from 10.16 g to 27.79 g with a general mean of 17.49 g (Table 10.4). The grain yield ranged from 11.30 g (IR-79156A) to 19.43 g (IR-68897A) among the lines and among the testers it ranged from 10.16 g (R-32) to 18.69g (R-53 and R-56). The grain yield among the hybrids ranged from 12.85 g to 27.79 g. The highest grain yield per plant was recorded by the hybrid IR-79156A x R-7 (27.79 g) followed by IR-68897A x R-27(27.69g) and IR-79156A

x R-53(27.45g) and these hybrids were significantly superior to the best check KRH-2 (23.29g). The grain yield of the genotypes at Kunaram ranged from 10.43 g to 28.29 g with a general mean of 16.78 g. The lines exhibited a mean grain yield ranged from 10.43 (IR870155A) to 18.66 g (IR-68897A) and among testers, grain yield ranged from 11.59 g (R32) to 17.69 g (R-34). Among the hybrids, the yield range varied from 12.26 g to 28.29g. The highest grain yield per plant was recorded by the hybrid IR-68897A x R-27 (28.29g) and four hybrids recorded significantly superior to the best check KRH-2 (23.34g). At Kampasagar, the grain yield ranged from 9.66 g to 29.96 g with a general mean of 15.05 g was observed among the genotypes. The lines exhibited a grain yield range from 10.51 g (IR-80155A) to 18.88 g (IR-79156A) and among testers the grain yield ranged from 9.66 g (R-21) to 23.84 g (R-7). Among the hybrids, the grain yield ranged from 12.10 g to 29.96 g. The highest grain yield was recorded by the hybrid IR-79156A x R-7 (29.96 g) and 20 more hybrids were on par with it. Total 21 hybrids were significantly superior to the best check Jaya (16.62 g). In pooled analysis over the locations, the genotypes exhibited a grain yield per plant ranged from 10.77 g to 24.97 g with a general mean of 16.43 g. The lines recorded grain yield ranged from 11.23 g (IR-80155A) to 17.09 g (IR-68897A) and among the testers it ranged from 11.02 g (R-21) to 17.61 g (R-17). The grain yield among the hybrids ranged from 12.77 g to 24.97 g. The highest grain yield per plant was recorded by the hybrid IR79128A x R-56 (24.97 g) and five more hybrids were on par with it. Six hybrids recorded significantly superior with the best check KRH-2 (20.69 g).

4.2.2 Estimation of general and specific combining ability variances The variance components of combining ability for the twelve characters studied and were presented in Table 11. 4.2.2.1 Days to 50 per cent flowering For the character days to 50 per cent flowering, GCA variances for testers were higher than that of lines at all three locations and in pooled analysis. The combined GCA variances were higher at Warangal, Kunaram and Kampasagar, while the SCA variances were higher at Kunaram and Kampasagar. The ratio of GCA to SCA variances were 0.80, 0.32, 0.50 and 0.57 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. 4.2.2.2 Plant height (cm) For plant height, the GCA variances for testers were higher than that of lines at all three locations and in pooled analysis. The SCA variances were higher than the GCA variances at Kunaram and Kampasagar, while GCA variances were higher than SCA variances at Warangal and in pooled analysis. The ratio of GCA to SCA variances were 1.03, 0.39, 0.80 and 1.01 at Warangal, Kunaram, Kampasagar and in pooled analysis, respectively. 4.2.2.3 Number of productive tillers per plant For the character, number of productive tillers per plant, the GCA variances for testers were higher than that of lines at Warangal, Kampasagar and in pooled analysis, while in Kunaram GCA variances for lines is higher than that of testers. SCA variances were higher than GCA variances at all three locations and in pooled analysis. The ratio of

GCA to SCA variances were 0.47, 0.30, 0.22 and 0.28 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. 4.2.2.4 Number of unproductive tillers per plant For this character, the GCA variances of lines were higher than that of testers at Kunaram, Kampasagar and in pooled analysis except in Warangal. The SCA variances were higher than that of combined GCA variances at all three locations and in pooled analysis. The ratio of GCA to SCA variances were 0.54, 0.40, 0.33 and 0.43 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. 4.2.2.5 Panicle length (cm) For the character panicle length, the GCA variances for testers were higher than that of GCA variances for lines at all three locations and in pooled analysis. The SCA variances were higher than the combined GCA variances of lines and testers at all three locations and in pooled analysis. The ratio of GCA to SCA variances were 0.83, 0.82, 0.35 and 0.75 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. 4.2.2.6 Flag leaf length (cm) For the character flag leaf length GCA variances of testers were higher than GCA variances of lines in Warangal, Kampasagar and pooled analysis, while in Kunaram GCA variances of lines recorded higher than that of testers. The SCA variances were higher than that of testers. The SCA variances were higher than the combined GCA variances of lines and testers at all three locations and pooled analysis. The ratio of GCA to SCA variances were 0.66, 0.51, 0.95 and 0.99 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively.

4.2.2.7 Flag leaf width (cm) For this character, GCA variances of testers were higher than GCA lines at flag leaf length at Warangal, Kampasagar and pooled analysis, while in Kunaram, GCA variances were higher than that of testers. The combined GCA variances were higher than SCA variances at Warangal, Kunaram and pooled analysis, whereas in Kampasagar, SCA variances were higher than GCA variances. The ratio of GCA to SCA variances recorded at 1.13, 1.15, 0.79 and 1.41 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. 4.2.2.8 Panicle weight (g) For the character panicle weight, the GCA variances of testers were higher than GCA variances of lines at all three locations and in pooled analysis. The SCA variances were higher than that of combined GCA variances of lines and testers at all the three locations and in pooled analysis. The ratio of GCA to SCA variance is 0.33, 0.31, 0.32 and 0.31 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. 4.2.2.9 Spikelet fertility (%) For this character, GCA variances of testers were higher than that of lines at all three locations and in pooled analysis. The SCA variances were higher than that of combined GCA variances of lines and testers at all three locations and pooled analysis. The ratio of GCA to SCA variances were 0.38, 0.40, 0.30 and 0.29 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively.

4.2.2.10 Number of filled grains per panicle For the character number of filled grains per panicle, GCA variances of testers were higher than that of lines at Warangal, Kunaram and pooled analysis, whereas in Kampasagar GCA variances of lines is higher than that of testers. The SCA variances were higher than that of combined GCA variances of lines and testers at all three locations and pooled analysis. The ratio of GCA to SCA variances were 0.39, 0.61, 0.22 and 0.36 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. 4.2.2.11 Test weight (g) For the character test weight, the GCA variances of testers were higher than that of lines at all three locations and pooled analysis. The variances of combined GCA were higher than SCA variances at Warangal, Kunaram and Kampasagar, whereas in pooled analysis SCA variances recorded higher than GCA variances. The ratio of GCA to SCA variances were 1.23, 1.84, 1.21 and 0.90 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. 4.2.2.12 Grain yield per plant (g) For the character grain yield per plant, GCA variances of testers were higher than that of lines at all three locations and pooled analysis. The SCA variances were higher than combined GCA variances at all three locations and pooled analysis. The ratio of GCA to SCA variances were 0.64, 0.57, 0.32 and 0.54 at Warangal, Kunaram, Kampasagar and pooled analysis, respectively. Similar to the present findings, the role of non-additive gene action was documented by earlier researchers in rice for different traits such as days to 50 per cent flowering

(Manonmani and Ranganathan,1998; Babu et al.2000; Banumurthy et al.2003; Swain et al.2003; Bisne and Motiramani,2005; Panwar,2005; Venkatesan et al.2007; Shukla and Pandey,2008; Sharma and Mani,2008 and Pradhan and Singh,2008), plant height (Manonmani and Ranganathan,1998; Babu et al.2000; Satyanarayana et al.2000; Bhanumathy et al.2003; Bisne and Motiramani,2005;Panwar,2005; Venkatesan et al.2007; Pradhan and Singh,2008;Dalvi and Patel,2009:Salgotra et al.2009 and Nadali Bagheri and Nadali Jelodan 2010), panicle length (Ganesan et al.1997; Ramalingam et al.1997;Rogbell and

Subbaraman,1997;Ganesan

and

Rangaswamy,1998;

Manonmani

and

Ranganathan,1998; Babu et al.2000; Satyanarayana et al.2000; Roy and Mandal,2001; Banumathy et al.2003; Shanthi et al.2003; Bisne and Motiramani,2005 and Sanjeev Kumar et al.2007; Shukla and Pandey ,2008; Pradhan and Singh,2008;Dalvi and Patel,2009 and Salgotra et al.2009), panicle weight (Prakash et al.2003 and Swain et al. 2003), productive tillers per plant (Ganesan et al.1997; Babu et al.2000; Swain et al. ,2000; Panwar et al.2005 and Sarma et al.2007; Shukla and Pandey ,2008; Pradhan and Singh,2008 and Salgotra et al.2009),number of filled grains per panicle (Ganesan et al.1997; Ramalingam et al.1997;Rogbell and Subbaraman,1997; Manonmani and Ranganathan,1998; Babu et al.2000; Satyanarayana et al.2000; Roy and Mandal,2001; Banumathy et al.2003; Bisne and Motiramani,2005; Shukla and Pandey ,2008; Pradhan and Singh,2008; Dalvi and Patel,2009 and Salgotra et al.2009),spikelet fertility (Ghosh,1993; Lavanya,2000; Satyanarayana et al.2000; Kalaiyarasi et al.2002; Banumathy et al.2003 and Bisne and Motiramani,2005; Pradhan and Singh,2008; Dalvi and Patel,2009 and Salgotra et al.2009), 1000-seed weight (Dhaliwal and Sharma,1990;Ghosh,1993; Ramalingam et al.1997; Meenakshi and Devarathinam,1999; Bhanumathy et al.2003; Panwar,2005; Sarma et al.2007; Shukla and Pandey ,2008; Pradhan and Singh,2008;Dalvi and Patel,2009 and Salgotra et al.2009), single plant yield (Ganesan and Rangaswamy,1998; Manonmani and

Ranganathan,1998; Babu et al.2000 ; Satyanarayana et al.2000 ; Annadurai and Nadarajan 2001b; Reddy,2002 ; Banumathy et al.2003 ; Patil et al.2003 ; Swain et al.2003; Bisne and Motiramani,2005, Panwar,2005; Sarma et al.2007; Venkatesan et al.2007; Shukla and Pandey ,2008; Pradhan and Singh,2008;Dalvi and Patel,2009: Salgotra et al.2009 and Babu et al. 2010). However, contrary to the present findings certain workers reported the importance of additive components in rice for days to 50 per cent flowering, (Ghosh,1993; Chakraborthy et al.1994), Ram et al.1998; Ganesan and Rangaswamy,1998; Meenakshi and Devarathinam,1999; Roy and Mandal,2001; Patil et al.2003; Shanthi et al.2003; Bisne and Motiramani 2005; Malini et al. 2006; Sanjeev Kumar et al.2007; Dalvi and Patel,2009 and Salgotra et al.2009), plant height (Vijayakumar et al.1994; Dhanakodi and Subramanian,1994 and Ram et al.1998; Roy and Mandal,2001; Shanthi et al.2003; Bisne and Motiramani 2005; Sanjeevkumar et al.2007; Sarma et al.2007: Sharma and Mani,2008 and Muthuramu et al. (2010); panicle length (Banumathy and Prasad,1991; Ghosh,1993; Ram et al.1998, Swain et al.2003: Bisne and Motiramani 2005; Malini et al. 2006 and Sarma et al.2007), Number of productive tillers per plant (Banumathy and Prasad,1991;Vijay Kumar et al.1994; Dhanakodi and Subramanian,1994; Ram et al.1998; Bisne and Motiramani 2005; Gnana sekaran et al.2006 and Dalvi and Patel,2009), Number of filled grains per panicle (Chakraborthy et al.1994; Vijayakumar et al.1994; Ganesan and Rangaswamy ,1998; Swain et al.2003; Anand kumar et al.2006 and Malini et al. 2006), spikelet fertility percentage (Shanti et al.2003; Bisne and Motiramani 2005 and Babu et al. 2010), 1000-grain weight (Ram et al.1998; Reddy et al.2002; Swain et al.2003; Bisne and Motiramani 2005 and Sanjeev Kumar et al.2007), single plant yield (Vijayakumar et al.1994; Ganesan and Rangaswamy,1998; Meenakshi and Devarathinam,1999; Shanti et al.2003 and Bisne and Motiramani 2005and Malini et al. 2006). Additive gene action was

reported by above said workers for plan height, Flag leaf width and 1000-grain weight which was in agreement with the present study. 4.2.3 General and specific combining ability effects The estimates of general combining ability of six lines and fourteen testers and specific combining ability of 84 hybrids for 12 different characters at three locations and pooled analysis are presented character wise below: 4.2.3.1 Days to 50 per cent flowering GCA effects Among the six lines IR-58025A recorded significant negative gca effects were observed at Warangal, at Kunaram IR-78128A and IR-80155A, at Kampasagar IR-80155A and in pooled analysis over locations IR-80155A recorded significantly negative gca effects. The line IR-80155A recorded significantly negative gca effects in two locations and pooled analysis over the locations. (Table 12.1). Among the fourteen testers six testers were significant negative gca effects at Warangal, seven testers at Kampasagar and two testers at Kunaram and pooled analysis. Tester IR-27 recorded negative significant gca effects at three locations and pooled analysis and R-19, R-31, R-3 and R-53 recorded significant negative gca effects at least in two locations and in pooled analysis. The tester IR-56 recorded significant positive gca effects at two locations and pooled analysis. Similar kind of negative gca for days to 50% flowering was reported by Satyanarayana et al. (2000).

SCA effects Out of the 84 hybrids, significant negative specific combining ability effects which are desirable were exhibited by eight crosses at Warangal, 23 crosses at Kunaram, 18 crosses at Kampasagar and as many as 22 crosses in pooled analysis (Table 12.1). Significant positive sca effects were exhibited by seven crosses at Warangal, 28 crosses at Kunaram, 19 crosses at Kampasagar and 23 crosses in pooled analysis. Two cross combinations IR-58025A x R-56 and IR-80555A x R-36 recorded significant negative gca effects at three locations and pooled analysis. Only one hybrid IR-58025A x R-36 recorded significant positive sca effects at all locations and in pooled analysis. Other promising hybrids which recorded significant negative sca effects at two out of the three locations and over pooled analysis were IR-68897A x R-36, IR-79128A x R32, IR-80155A x R-35, IR-80155A x R-56 and IR-80555A x R-34. Similar kind of negative sca for days to 50% flowering was reported by Devaraj and Nadarajan (1996). 4.2.3.2 Plant height (cm) GCA effects Among the lines, significant negative gca effects were exhibited by IR-80555A at three locations and in pooled analysis. IR-80155A exhibited significant negative gca effects at Warangal and IR-79128A exhibited significant negative gca effects at Kunaram , while IR-79156A recorded significant positive gca effects were recorded at Warangal, Kunaram and in pooled analysis (Table 12.1). Among the testers, significant negative gca effects were recorded by R-21 at all three locations and in pooled analysis. Testers R-19 and R-25 recorded negative gca effects

at two locations out of three locations and the testers R-7 and R-56 recorded significant positive gca effects at three locations and pooled analysis. SCA effects Evaluation of the hybrids for sca effects for plant height recorded that eleven crosses at Warangal, 31 crosses at Kunaram, six crosses at Kampasagar and eleven crosses in pooled analysis were good with significant negative sca effects (Table 12.1) and 13 hybrids at Warangal, 29 hybrids at Kunaram, 6 hybrids at Kampasagar and 14 hybrids in pooled analysis were with significant positive sca effects for plant height. Desirable cross combinations with significant negative sca effects at two locations out of three were IR-79128A x R-27, IR-79128A x R-35, IR-79156A x R-34, IR-79156A x R-56, IR-80155A x R-17 and IR-80555A x R-27 and 12 hybrids recorded significant positive sca effects at two locations or in pooled analysis, while other hybrids were inconsistence in their performance at different locations. Similar kind of negative sca for plant height was reported by Devaraj and Nadarajan (1996).

4.2.3.3. Number of productive tillers per plant GCA effects Among the lines IR-58025A and IR-80555A recorded significant positive gca effect at Warangal and IR-58025A only recorded significant positive gca effect in pooled analysis (Table 12.3). Among the testers R-21, R-25 and R-32 recorded significant positive gca effects at two locations out of three and R-21 only recorded positive gca effects in pooled analysis.

SCA effects For the character number of productive tillers per plant, 15 hybrids at Warangal, 12 hybrids at Kunaram, 16 hybrids at Kampasagar and 16 hybrids in pooled analysis recorded significant positive sca effects, while 17 hybrids at Warangal, nine hybrids at Kunaram, 15 at Kampasagar and eleven at pooled analysis were recorded significant negative sca effects (Table 12.2). The hybrids, IR-58025A x R-32, IR-79128A x R-7, IR-79156A x R-34, IR-80155A x R-25, IR-80155A x R-35, IR-80555A x R-27 and IR-80555A x R-56 recorded significant positive sca effects at least two out of three locations and in pooled analysis. Similar kind of positive sca for Number of productive tillers per plant was reported by Devaraj and Nadarajan (1996), Raju et al. (2006), Hari prasanna et al. (2006) and Salgotra et al. (2009). 4.2.3.4 Number of unproductive tillers per plant GCA effects Among the lines IR-80155A recorded significant negative gca effects in all locations and in pooled analysis and IR-68897A recorded significant negative gca effects in two out of three locations. IR-58025A and IR-80555A recorded significant positive gca effects at two locations out of three. Among testers, R-35, R-53 and R-56 recorded significant negative gca effects at least in two locations out of three locations and in pooled analysis. R-25 recorded significant positive gca effect at two locations and pooled analysis.

SCA effects Out of 84 hybrids, only three cross combinations viz., IR-58025A x R-53, IR79128A x R-7 and IR-80155A x R-24 recorded significant negative sca effects at all three locations and in pooled analysis. Fourteen hybrids recorded significantly negative sca effect at least in two locations. The hybrids IR-58025A x R-19, IR-79128A x R-24, IR-80155A x R-35, IR-80155A x R-53 and IR-80155A x R-7 recorded significantly positive sca effects at all three locations and in pooled analysis. 4.2.3.5 Panicle length (cm) GCA effects Among the lines, IR-79156A recorded significant positive gca effects at Warangal and in pooled analysis, IR-79128A recorded positive gca effects Kunaram and IR-58025A recorded a positive gca effects Kampasagar. The line IR-80555A recorded significant negative gca effects at all three locations and in pooled analysis (Table 12.3). Among the testers R-7, R-53 and R-56 recorded significantly positive gca effects at all three locations and in pooled analysis. Tester R-21 recorded significant negative gca effects at all three locations and in pooled analysis. R-19 recorded significant negative gca effects at two locations. SCA effects For the character panicle length, ten hybrids at Warangal, six hybrids at Kunaram, 15 hybrids at Kampasagar and 15 hybrids in pooled analysis recorded significant positive sca effects. The hybrid IR-79128A x R-7 recorded significant positive sca effects for panicle length at all three locations and pooled analysis. IR-68897A x R-21, IR-79128A x

R-36 and IR-80155A x R-25 recorded positive significant sca effects at least in two locations out of three locations. Eleven hybrids at Warangal, five hybrids in Kunaram, 15 hybrids in Kampasagar and 17 hybrids in pooled analysis recorded significantly negative sca effects. IR-58025A x R-7, IR-68897A x R-53, IR-80155A x IR-19 and IR-80155A x R-21 recorded significant negative sca effects at least in two locations. Similar kind of positive sca for panicle length was reported by Devaraj and Nadarajan (1996) and Salgotra et al (2009). 4.2.3.6 Flag leaf length (cm) GCA effects Among lines, IR-79156A recorded significant positive gca effects at all three locations and in pooled analysis. The line IR-80555A recorded significant negative gca effects at least in two locations and in pooled analysis. (Table 12.4). Among the testers R-53 recorded significantly positive gca effects at all three locations and in pooled analysis and R-7 and R-36 recorded significant positive gca effects at one location out of three locations and in pooled analysis. The testers, R-19, R-27 and R35 recorded significant negative gca effects at least in two locations and in pooled analysis. SCA effects Among the 84 hybrids evaluated, eleven hybrids at Warangal, six hybrids at Kunaram, three hybrids at Kampasagar and ten hybrids in pooled analysis recorded significant positive sca effects. The hybrids, IR-79156A x R-53 and IR-80155A x R-53 recorded significant positive sca effects at least in two locations. Eleven hybrids at Warangal, six hybrids at Kunaram, three hybrids at Kampasagar and ten hybrids in pooled

analysis recorded significant negative sca effects and the hybrid IR-79156A x R-21 recorded significant negative sca effects in Warangal, Kunaram and in pooled analysis. 4.2.3.7 Flag leaf width (cm) GCA effects Among the lines IR-80155A and IR-80555A recorded significantly positive gca effects in two locations and in pooled analysis. IR-68897A and IR-79156A lines recorded significant negative gca effects at least in two and in pooled analysis (Table 12.4). Among the testers R-7 recorded significant positive gca effects in two locations and in pooled analysis. R-21 recorded significant positive gca effects at least in two out of three locations. SCA effect Among the hybrids evaluated for flag leaf width, five hybrids at Warangal, one hybrid at Kunaram, one hybrid at Kampasagar and one hybrids in pooled analysis recorded significant positive sca effects and four hybrids at Warangal, three hybrids at Kunaram, three hybrids at Kampasagar and five hybrids in pooled analysis recorded significant negative sca effects. None of the hybrids recorded significant positive sca effects at least in two locations. 4.2.3.8 Panicle weight (g) GCA effects

Among the lines for the character panicle weight IR-58025A recorded significant positive gca effects at Kampasagar and in pooled analysis. The lines IR-68897A and IR79128A recorded significant negative gca effects at least in one location. Among testers, R-7, R-53 and R-56 recorded significant positive gca effects at three locations and in pooled analysis. The testers R-19 and R-25recorded significant negative gca effects at three locations and in pooled analysis (Table 12.3). SCA effects For the character panicle weight, 12 hybrids and Warangal, 14 hybrids at Kunaram, 12 hybrids in Kampasagar and 22 hybrids in pooled analysis recorded significant positive sca effects. The hybrid IR-79128A x R-36, IR-80155A x R-7, IR-80155A x R-56 and IR8055A x R-19 recorded significant positive sca effects at three locations and in pooled analysis. Eight hybrids recorded significant positive sca effects any two locations out of three locations. The hybrids IR-68897A x R-21, IR-68897A x R-36, IR-79128A x R-7, IR79128A x R-32, IR-80155A x R-17, IR-80155A x R-31, IR-80555A x R-24 and IR80555A x R-56 recorded significant negative sca effects at three locations and in pooled analysis. About nine hybrids recorded significant negative sca effects at least in two locations. 4.2.3.9 Spikelet fertility (%) GCA effects Among the lines, IR-79128A, IR-79156A and IR-80155A positive gca effects at least in one location only. (Table 12.5).

recorded significant

Among the testers R-7 and R-17 recorded significant positive gca effects at least in two locations out of three locations and other testers varied in their gca effects according to locations. SCA effects For the character spikelet fertility, ten hybrids at Warangal, 15 hybrids at Kunaram, 19 hybrids at Kampasagar and 14 hybrids in pooled analysis recorded significant negative sca effects. Only one hybrid IR-80555A x R-27 recorded significant negative sca effects in all three locations and in pooled analysis. Eight hybrids recorded significant negative sca effects at least in two locations out of three locations and in pooled analysis. And eight hybrids recorded significant positive sca effects in any of the two locations out of three. 4.2.3.10 Number of grains per panicle GCA effects For the character number of grains per panicle, the line IR-80155A recorded significant negative gca effects at two locations and in pooled analysis and the lines IR80555A recorded significant positive gca effects at Warangal and in pooled analysis (Table 12.5). Among testers, R-32 recorded significant negative gca effects in two locations and in pooled analysis. R-17, R-27 and R-35 recorded significant positive gca effects at least in one location.

SCA effects Among the 84 hybrids evaluated, eleven hybrids at Warangal, five hybrids at Kunaram, four hybrids at Kampasagar and seven hybrids in pooled analysis recorded significant positive sca effects. And the hybrids, IR-68897A x R-31, IR-79128A x R-19 and IR-79156A x R-17, recorded significant positive sca effects at least in two locations and in pooled analysis. The hybrid IR-79128A x R-31 recorded significant negative sca effects in all locations and in pooled analysis and the hybrid IR-79156A x R-19 recorded significant negative sca effects in Warangal, Kunaram and in pooled analysis. Similar kind of positive sca for number of grain per panicle was reported by Devaraj and Nadarajan (1996). 4.2.3.11 Test weight (g) GCA effects Among the six lines, IR-68897A recorded significant positive gca effects at three locations and in pooled analysis. The lines, IR-58025A recorded significant negative gca effects at Kampasagar and in pooled analysis (Table 12.6). Among the testers, R-27, R-31 and R-32 recorded significant positive gca effects at three locations and in pooled analysis. The testers R-17, R-25 and R-35 recorded significant negative gca effects at three locations and in pooled analysis. SCA effects Among the 84 hybrids evaluated, five hybrids at Warangal, six hybrids at Kampasagar and 12 hybrids in pooled analysis recorded significant positive sca effects for test weight. The hybrids IR-79156A x R-7, IR-79156A x R-21, IR-80155A x R-53 and IR-

80555A x R-36 recorded significant sca effects in any two locations out of three locations and in pooled analysis. And three hybrids at Warangal, two hybrids at Kunaram, three hybrids at Kampasagar and 12 hybrids in pooled analysis recorded significant negative sca effects. The hybrids IR-80155A x R-21 and IR-80555A x R-53 recorded significant negative sca effects at all three locations and in pooled analysis. The hybrid IR-68897A x R-17 recorded significant negative sca effects at Warangal, Kampasagar and in pooled analysis. Similar results were reported by Raju et al. 2006 and Hari prasanna et al. 2006. 4.2.3.12 Grain yield per plant (g) GCA effects For the character grain yield per plant, line IR-68897A recorded significant positive gca effects at three locations and in pooled analysis and the line IR-79156A recorded significant gca effects at Warangal, Kunaram and in pooled analysis. The line IR-79128A recorded significant negative gca effects in two locations and in pooled analysis and the line IR-58025A recorded significant negative gca effects at Kunaram, Kampasagar and in pooled analysis (Table 12.6). Among the testers, R-17 and R-53 recorded significant positive gca effects at all three locations and in pooled analysis. The testers, R-24, R-27 and R-31 recorded significant positive gca effects in any of the two locations out of three locations and in pooled analysis. The testers R-21 and R-25 recorded significant negative gca effects at all three locations and in pooled analysis. The tester R-32 recorded significant negative gca effects in any of the two locations out of three locations and in pooled analysis. Similar kind of positive gca for grain yield per plant was reported by Satyanarayana et al. (2000) and Annadurai and Nadarajan (2001b).

SCA effects Among 84 hybrids evaluated, 18 hybrids at Warangal, 22 hybrids at Kunaram, 22 hybrids at Kampasagar and 23 hybrids at pooled analysis recorded significant positive sca effects. The hybrids IR-58025A x R-53, IR-79128A x R-19, IR-79128A x R56, IR-80555A x R-35 and IR-80555A x R-36 recorded significant positive sca effects at all three locations and in pooled analysis, and 23 hybrids recorded significant positive sca effects at least in two locations out of three locations. The hybrids IR-58025A x R-7, IR68897A x R-35, IR-79128A x R-17, IR-79128A x R-36, IR-79156A x R-19, IR-79156A x R-27, IR-80155A x R-35, IR-80555A x R-19, IR-80555A x R-53 and IR-80555A x R-53 recorded significant negative sca effects at all three locations and in pooled analysis and nine hybrids recorded significant negative sca effects at least in two locations out of three locations. Similar kind of positive sca for grain yield per plant was reported by Devaraj and Nadarajan (1996), Banumurty et al. 2003; Hari prasanna et al. 2006; Dalvi and Patel and Salgotra et al. 2009. 4.3 Heterosis Heterosis (di), heterobeltiosis (dii) and standard heterosis (diii) is the superior performance as desirable over the mid parent, better parent and the best check (PA6201/KRH-2) respectively was estimated in 84 hybrids for 12 characters (viz., days to 50 per cent flowering, plant height, number of productive tillers per plant, number of unproductive tillers per plant, panicle length, flag leaf length, flag leaf width, panicle weight, spikelet fertility (%), number of filled grains per panicle, test weight and grain yield per plant at three locations viz., Warangal, Kunaram, Kampasagar and pooled over the locations and presented character-wise. The negative heterotic values of days to 50 per cent flowering, plant height and number of unproductive tillers per plant indicates earliness,

short stature and less unproductive tillers which are desirable, while for other characters positive heterotic values were considered as desirable. 4.3.1 Days to 50 per cent flowering At Warangal, average heterosis ranged from -14.65 to 2.59 per cent (Table 13.1). Most of the hybrids (76) flowered earlier than their best parent by exhibiting significant negative heterobeltiosis ranging from -15.50 to 1.54 per cent. Thirty six hybrids were earlier than the earliest check PA-6201 as exhibited by significant negative standard heterosis ranging from

-7.18 to 9.94 per cent. With another check, KRH-2 significant

standard heterosis ranged from

-9.19 to 7.57 and 71 hybrids recorded significant

negative standard heterosis. At Kunaram, the observed range of average heterosis and heterobeltiosis was -13.90 to 13.94 and -15.51 to 10.18 per cent, respectively. Forty seven hybrids recorded significant negative heterobeltiosis ranging from -15.51 to -3.74 per cent. Standard heterosis ranged from -6.83 to 20.50 and -7.41 to 19.75 per cent over PA-6201 and KRH-2, respectively. 36 hybrids recorded significant negative standard heterosis over PA-6201 and KRH-2. At Kampasagar, the observed range of average heterosis and heterobeltiosis was -14.36 (IR-80155A x R-35) to 8.60 (IR-58025A x R-36) and -16.54 ((R-80155A x R-35) to 4.94 (IR-58025A x R-36) per cent, respectively. Seventy five hybrids recorded significant negative heterobeltiosis ranging from -16.54 to -2.75 per cent. Standard heterosis over PA6201 and KRH-2 ranged from -8.38 (IR-58025A x R-24) to 12.85 (IR-58025A x R-36) and -13.68 (IR-58025A x R-24) to 6.32 (IR-58025A x R-36). Thirty eight hybrids ranging from -8.38 to -2.79 per cent and 74 hybrids ranging from -13.68 to -3.16 per cent registered significant negative standard heterosis over PA-6201 and KRH-2, respectively.

In pooled analysis over the locations, the observed range of average heterosis and heterobeltiosis was -11.72 (IR-80155A x R-27) to 7.80 (IR-58025A x R-36) and -12.93 (IR-79128A x R-19) to 7.32 (IR-58025A x R-36) per cent, respectively. Eighty hybrids were exhibited significant negative heterobeltiosis ranging from -12.93 to -1.84 per cent. Standard heterosis over PA-6201 and KRH-2 ranging from -4.61 (IR-80155A x R-35) to 14.01 (IR-58025A x R-36) and -7.45 (IR-80155A x R-35) to 10.61 (IR-58025A x R-36). Twelve hybrids and 43 hybrids recorded significant standard heterosis over PA-6201 and KRH-2, respectively. Early maturing hybrids are desirable as their productivity per day is very high and they fit well in multiple cropping systems. Majority of the hybrids exhibited significant negative values of heterosis and heterobeltiosis imply early flowering in hybrids. Significant positive and negative heterosis and heterobeltiosis for this trait reported by Deoraj et al. (2007), Venkatesan et al.(2008), Roy et al. (2009) and Nadali Bagheri and Nadali Babaeian Jelodan (2010). However, positive mid-parental heterosis for this trait has also been reported by Singh et al. (2006a). Presence of both negative and positive standard heterosis of similar trend was observed in their studies by Mishra and Pandey (1998), Singh et al. (2006a), Deoraj et al. (2007), Rosamma and Vijay Kumar (2007) and Akarsh Parihar and Pathak (2008), Sandhyakishore et al. (2010) and Sanjeev Kumar et al. (2010). 4.3.2 Plant height (cm) At Warangal, almost all the hybrids found to be taller than their parents, no significant negative heterosis was observed over mid parent and only seven hybrids recorded significant negative heterosis over best parents (Table 13.3). Range of average heterosis and heterobeltiosis was -4.08 (IR-80155A x R-32) to 24.75 (IR-58025A x R-53)

and -10.09 (IR-80555A x R-32) to 18.18 (IR-79128A x R-7), respectively. Standard heterosis over PA-6201 and KRH-2 was ranged from -9.82 (IR-80155A x R-21) to 19.75 (IR-79128A x R-56) and -13.53 (IR-80155A x R-21) to 14.83 9IR-78128A x R-50), respectively. Eight hybrids recorded significant negative standard heterosis over PA-6201 and 29 hybrids over KRH-2. At Kunaram, average heterosis and heterobeltiosis was ranged from -18.35 (IR58025A x R-32) to 10.92 (IR-79156A x R-19) and -20.94 (IR-58025A x R-32) to 9.46 (IR79128A x R-7), respectively and 54 and 66 hybrids recorded significant negative heterosis for average heterosis and heterobeltiosis, respectively. Standard heterosis over PA-6201 and KRH-2 ranged from -1.42 (IR-79128A x R-31) to 28.18 (IR-79128A x R-7) and -7.53 (IR-79128A x R-31) to 20.24 (IR-79128A x R-7), while, none of the hybrids recorded significant standard heterosis over PA-6201 and sixteen hybrids recorded over KRH-2. At Kampasagar, range of average heterosis and heterobeltiosis was from -10.55 (IR80155A x R-24) to 23.49 (IR-80555A x R-7) and -14.60 (IR-80155A x R-21) to 14.76 (IR68897A x R-25), respectively and three hybrids registered significant average heterosis viz., IR-80155A x R-17, IR-80155A x R-24 and IR-80155A x R-34 and eleven hybrids registered significant negative heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from

-15.79 (IR-80555A x R-21) to 12.50 (IR-79156A x R-7) and -17.55 (IR-

80555A x R-21) to 10.15 (IR-79156A x R-7), respectively. Total eight and 12 hybrids registered negative standard heterosis over PA-6201 and KRH-2, respectively. In pooled analysis, average heterosis and heterobeltiosis ranged from -8.71

(IR-

80155A x R-24) to 12.08 (IR-79156A x R-7) and -12.79 (IR-80155A x R-21) to 10.98 (IR79156A x R-7), respectively. Nine and 26 hybrids recorded significant negative average

heterosis and heterobeltiosis, respectively. Standard heterosis over PA-6201 and KRH-2 ranged from -6.15 (IR-58025A x R-21) to 15.97 (IR-79156A x R-7) and -9.84 (IR-58025A x R-21) to 11.41 (IR-79156A x R-7), respectively. Total six and nineteen hybrids recorded significant negative standard heterosis over PA-6201 and KRH-2, respectively. Plant height type is an important yield contributing trait dwarf types can withstand lodging. And recently new plant type concept was proposed according to that plant should have moderate height to increase the height. Hence, heterosis for both negative and positive direction should be considered, for this trait. Both positive and negative heterosis was expressed over standard checks, and even over mid parent and better parent. Several rice researchers viz., Ghosh (2002), Alam et al. (2004), Deoraj et al. (2007), Hari ramakrishnan et al. (2009), Roy et al. (2009) and Nadali Bagheri and Nadali Babaeian Jelodan (2010) reported both positive and negative heterosis and heterobeltiosis. In case of standard heterosis, similar nature was reported by Singh (2005), Singh et al. (2006a and 2006b), Anju Chaudhry et al. (2007), Deoraj et al. (2007), Rosamma and Vijay Kumar (2007), Akarsh Parihar and Pathak (2008), Kumarbabu et al. (2010) and Sanjeev Kumar et al. (2010). 4.3.3 Number of productive tillers Heterosis for both positive and negative nature was exhibited by the hybrids with regard to productive tillers per plant (Table 13.5). At Warangal, the hybrids were in the range from -42.18 (IR-79156A x R-56) to 54.59 (IR-80155A x R-35) and -42.95 (IR79156A x R-56) to 32.85 (IR-58025A x R-25) per cent for average heterosis and heterobeltiosis, respectively. Four hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -34.78 (IR-68897A x R-32) to

53.91 (IR-80155A x R-35) and -35.34 (IR-68897A x R-32) to 52.59 (IR-80155A x R-35), respectively. Seventeen and sixteen hybrids recorded significantly positive standard heterosis over PA-6201 and KRH-2, respectively. At Kunaram, the range of average heterosis and heterobeltiosis from -34.80

(IR-

80155A x R-56) to 66.67 9IR-79128A x R-27) and -41.83 (IR-80155A x R-56) to 56.57 (IR-79128A x R-7), respectively. 38 and 22 hybrids registered significant positive average heterosis and heterobeltiosis, respectively. Standard heterosis over PA-6201 and KRH-2 ranged from -48.85 (IR-80155A x R-56) to 0.57 (IR-58025A x R-56) and -25.21 (IR80155A x R-56) to 47.06 (IR-58025A x R-56), respectively. None of the hybrid recorded significant positive standard heterosis over PA-6201, whereas, seventeen hybrids recorded significant positive heterosis over KRH-2. At Kampasagar, average heterosis and heterobeltiosis ranged from -26.92 (IR68897A x R-17) to 57.00 9IR-58025A x R-24) and -33.05 (IR-80555A x R-25) to 43.16 (IR-80555A x R-19), respectively. Eighteen hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -38.43 (IR68897A x R-17) to 45.37 (IR-58025A x R-24) and -11.33 (IR-68897A x R-17) to 109.33 (IR-58025A x R-24), respectively. Fourteen and 72 hybrids recorded significantly positive heterosis over PA-6201 and KRH-2. In pooled analysis, average heterosis and heterobeltiosis ranged from -22.96 (IR79156A x R-56) to 32.93 (IR-80155A x R-35) and -24.69 (IR-79156A x R-56) to 24.93 (IR-80155A x R-35), respectively. Only 19 hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -29.85 (IR-

80155A x R-17) to 9.82 (IR-80155A x R-35) and -10.16 (IR-80155A x R-17) to 40.65 (IR80155A x R-35), respectively.

Similar kind of results for mid parental heterosis of both positive and negative values was reported by Reddy and Nerkar (1995), Alam et al. (2004), Joshi et al. (2004), Shanthala et al. (2006), Deoraj et al. (2007), Venkatesan et al. (2008) and Hari ramakrishnan et al.(2009). Heterobeltiosis of positive nature was observed by Pandey et al. (1995), Jayamani et al. (1997), Verma et al. (2004) and Narasimman et al. (2007), whereas Mishra and Pandey (1998), Singh et al. (2006a), Deoraj et al. (2007), Akarsh Parihar and Pathak (2008), Roy et al. (2009), Kumar babu et al. (2010) and Sandhyakishore et al. (2010) reported both heterobeltiosis and standard heterosis in both

positive and negative directions. 4.3.4 Number of unproductive tillers per plant At Warangal, average heterosis and heterobeltiosis ranged from -33.33 (IR-80155A x R-7) to 142.42 (IR-58025A x R-19) and -36.00 (IR-80555A x R-53) to 135.29 ((R58025A x R-19), respectively. Only nine hybrids registered significant negative heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -40.00 (IR80155A x R-7) to 64.00 (IR-58025A x R-7) and -37.50 (IR-80155A x R-7) to 70.83 (IR58025A x R-7), respectively. Only nine hybrids were recorded significant negative standard heterosis over PA-6201 and three hybrids (IR-58025A x R-56, IR-80155A x R-7 and IR80555A x R-53) recorded significant negative heterosis over KRH-2. At Kunaram, average heterosis and heterobeltiosis ranged from -40.85 (IR-80155A x R-31) to 53.19 9IR-80555A x R-25) and -43.24 (IR-80155A x R-31) to 50.00 (IR-

80555A x R-25), respectively. 28 hybrids registered significant negative heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -36.36 (IR-80155A x R-31) to 30.30 (IR-68897A x R-19) and -38.24 (IR-80155A x R-31) to 26.47 (IR-68897A x R-19) respectively. Fifteen and seventeen hybrids recorded significant negative heterosis over PA-6201 and KRH-2, respectively. At Kampasagar, average heterosis and heterobeltiosis ranged from -78.72 (IR79156A x R-21) to 107.14 (IR-68897A x R-7) and -83.33 (IR-79156A x R-21(to 93.33 (IR68897A x R-7), respectively and 57 hybrids registered significant negative heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -78.95 (IR-58025A x R-34) to 52.63 (IR-68897A x R-7) and -85.71 (IR-58025A x R-34) to 3.57 9IR-68897A x R-7), respectively. 57 and 81 hybrids registered significant negative standard heterosis over PA 6201 and KRH-2. In pooled analysis over locations. The range of average heterosis and heterobeltiosis from -32.47 (IR-80155A x R-7) to 41.73 (IR-79128A x R-24) and -35.00 (IR-80155A x R7) to 38.46 9IR-79128A x R-24), respectively and 24 hybrids registered significant negative heterosis over the best parent. Standard heterosis over PA-6201 and KRH-2 ranged from 32.47 (IR-80155A x R-7) to 18.18 (IR-79128A x R-21) and -39.53 (IR-80155A x R-7) to 5.81 IR-79128A x R-21, respectively. 29 and 60 hybrids registered significant negative standard heterosis over PA-6201 and KRH-2, respectively. 4.3.5 Panicle length (cm) Few of the hybrids manifested positive heterosis with respect to panicle length at all three locations and in pooled analysis (Table 13.9). At Warangal, average heterosis and heterobeltiosis ranged from -11.80 (IR-58025A x R-34) to 28.63 (IR-80155A x R-25) and -

19.46 (IR-80155A x R-34) to 26.77 9IR-8955A x R-25) respectively and only twelve hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from 2.02 (IR-68897A x R-17) to 41.59 (IR-79156A x R-53) and -10.23 (IR-68897A x R-17) to 24.60 (IR-79156A x R-53), respectively. 64 and 13 hybrids registered significant positive standard heterosis over PA-6201 and KRH-2. At Kunaram, average heterosis and heterobeltiosis ranged from -9.72 (IR-80155A x R-21) to 17.40 (IR-79128A x R-56) and -13.30 (IR-68897A x R-53) to 15.58 (IR-79128A x R-56), respectively. Only four hybrids registered significant heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -9.28 (IR-80555A x R-25) to 27.38 (IR79128A x R-53) and

-20.72 (IR-80555A x R-25) to 11.31 (IR-79128A x R-53),

respectively. Only fourteen hybrids registered significant positive heterosis over PA-6201 and only one hybrid IR-79128A x R-53 (11.30) recorded significant positive heterosis over KRH-2. At Kampasagar, heterosis over mid parent and best parent was ranged from -17.98 (IR-79128A x R-24) to 21.36 (IR-68897A x R-21) and -24.04 (IR-79128Ax R-24) to 20.67 (IR-68897A x R-21), respectively and only four hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -7.20 (IR79128A x R-24) to 25.34 (IR-80155A x R-53) and -16.64 (IR-79128A x R-24) to 12.59 (IR-80155A x R-53) respectively 52 and twelve hybrids recorded significant positive standard heterosis over PA-6201 and KRH-2. In pooled analysis, average heterosis and heterobeltiosis ranged from -9.02 (IR79128A x R-36) to 15.74 (IR-89128A x R-7) and -10.97 (IR-79128A x R-34) to 13.03 (IR79128A x R-7), respectively and only 12 hybrids recorded significant positive

heterobeltiosis. Standard heterosis over PA 6201 and KRH 2 ranged from -0.59 (IR80155A x R-21) to 24.37 (IR-79128A x R-7), respectively. 70 and eight hybrids registered significant positive heterosis over PA-6201 and KRH-2.

Similar results for significant positive and negative heterosis was reported by Jayamani et al. (1997), Alam et al. (2004), Vanaja and Babu (2004), Venkatesan et al. (2008), Deoraj et al. (2007), Hari ramakrishnan et al. (2009), Roy et al. (2009) and Nadali Bagheri and Nadali Babaeian Jelodan (2010) . Standard heterosis of both positive

and negative nature was observed in their studies by Singh et al. (2006a), Deoraj et al. (2007), Singh et al. (2007), Akarsh Parihar and Pathak (2008), Amudha et al. (2010), Kumarbabu et al. (2010), Muthuramu et al. (2010), Sandhyakishore et al. (2010) and Sanjeev Kumar et al. (2010). 4.3.6 Flag leaf length For the character flag leaf length, the hybrids at Warangal expressed average heterosis and heterobeltiosis ranging from -22.55 (IR-80555A x R-53) to 37.55 (IR-58025A x R-25) and -41.92 (IR-80555A x R-53) to 27.89 (IR-58025A x R-25) respectively and only seven hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -24.07 (IR-80555A x R-19) to 36.11 (IR-79156A x R56) and -28.67 (IR-80555A x R-19) to 27.87 (IR-79156A x R-45), respectively only nine and four hybrids registered significant positive standard heterosis over PA-6201 and KRH2, respectively. At Kunaram, average heterosis and heterobeltiosis ranged from -33.03 (IR-80155A x R-19) to 16.43 (IR-80155A x R-24) and -33.33 (IR-80155A x R-19) to 15.30 (IR-80155A x R-24) respectively and none of the hybrids registered significant positive heterobeltiosis.

Standard heterosis over PA-6201 and KRH-2 ranged from -42.83 (IR-80155A x R-19) to 6.48 (IR-80155A x R-523) and -35.31 (IR-80155A x R-19) to 20.50 ((IR-80155A x R-53,), respectively. Only two hybrids viz., IR-79156A x R-7 (17.59) and IR-80155A x R-53 (20.50) recorded significant positive standard heterosis over KRH-2 and none of the hybrids recorded significant positive standard heterosis over PA-6201. At Kampasagar observed average heterosis and heterobeltiosis ranged from -23.92 (IR-58025A x R-53) to 31.12 (IR-68897A x R-36) respectively and only one hybrid (IR68987A x R-36) recorded significant positive heterobeltiosis. Standard heterosis over PA6201 and KRH-2 ranged from -22.58 (IR-80155A x R-19) to 22.92 (IR-80155A x R-53) respectively. Only two hybrids (IR-79156A x R-53 and IR-80155Ax R-53) and sixteen hybrids were registered significant positive heterosis over PA-6201 and KRH-2. In pooled analysis, observed average heterosis and heterobeltiosis ranged from 20.87 (IR-58025A x R-53) to 14.70 (IR-68897A x R-36) respectively and only one hybrid (IR-68897A x R-36) recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -22.46 (IR-80155A x R-19) to 13.50 (IR-79128A x R53), respectively. Five hybrids and fourteen hybrids recorded significant positive heterosis over PA-6201 and KRH-2, respectively.

Similar kind of results for flag leaf length heterobeltiosis of both positive and negative nature was reported by and Qi et al. (1990) Mishra and Pandey (1998). 4.3.7 Flag leaf width For the character flag leaf width at Warangal, average heterosis and heterobeltiosis ranged from -27.46 9IR-80155A x R-32) to 28.64 (IR-68897A x R-17) and -30.34 (IR-

80555A x R-32) to 28.04 (IR-68897A x R-17) respectively and only four hybrids recorded significant positive heterobeltiosis viz., IR-68897A x R-17 (28.04), IR-68897A x R-25 (16.82), IR-80555A x R-17 (16.4) and IR-80555A x R-36 (16.4). Standard heterosis over PA-6201 and KRH-2 ranged from -28.37 (IR-80555A x R-32) to 17.69 (IR-80155A x R-7), respectively. None of the hybrid registered significant positive heterosis over PA-6201 and seven hybrids recorded significant positive heterosis over KRH-2. At Kunaram, average heterosis and heterobeltiosis ranged from -18.92 (IR-68897A x R-53) to 12.50 (IR-80555A x R-19) and -26.06 (IR-68897A x R-53) to 10.83 (IR-80555A x R-25) respectively and none of the hybrid registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -2.88 (IR-79128A x R-19) to 29.81 (IR-80555A x R-19) 38 hybrids over PA-6201 registered significant positive heterosis and none of the hybrids registered significant positive heterosis over KRH-2. At Kampasagar, average heterosis and heterobeltiosis ranged from -14.59 (IR58025A x R-36) to 27.59 (IR-80555A x R-56) and -27.22 (IR-80155A x R-56) to 25.20 (IR-80555A x R-24) respectively and only three hybrids IR-80555A x R-24, IR-80555A x R-35 and IR-80555A x R-56 registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -23.84 (IR-80155A x R-56) to 11.26 (IR80155A x R-53) and -17.86 (IR-80155A x R-56) to 20.00 (IR-80155A x R-53) respectively. Only two hybrids viz., IR-80155A x R-53 (20.00) and IR-80555A x R-53 (15.71) recorded significant positive heterosis over KRH-2 and none of the hybrids were significantly positive over PA-6201. In pooled analysis for the character flag leaf width average heterosis and heterobeltiosis ranged from -11.50 (IR-58025A x R-53) to 15.95 (IR-80555A x R-24) and -

16.45 (IR-58025A x R-53) to 13.59 (IR-80555A x R-24) respectively and only two hybrids (IR-80555A x R-24 and IR-80555A x R-36) registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -12.37 (IR-79156A x R-34) to 12.88 (IR-80155A x R-53) and -11.25 (IR-79156A x R-34) to 14.32 (IR-80155A x R-53), respectively. Only four and six hybrids recorded significant positive heterosis over PA6201 and KRH-2 respectively. 4.3.8 Panicle weight For the character panicle weight, hybrids at Warangal registered a range of average heterosis and heterobeltiosis from -20.96 (IR-68897A R-24) to 43.10 (IR-80155A x R-56) and -28.33 (IR-68897A x R-24) to 35.77 (IR-79128A x R-21) respectively and only 13 hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -26.35 (IR-80155A x R-31) to 26.71 (IR-80155A x R-7) and -37.23 (IR-80155A x R-31) to 8.00 (IR-80155A x R-7) respectively. Seven hybrids registered significant positive heterosis over PA-6201 and none of the hybrids over KRH-2. At Kunaram, average heterosis and heterobeltiosis ranged from -12.16 (IR-79156A x R-53) to 44.47 (IR-80155A x R-56) and -29.57 (IR-79156A x R-53) to 35.92 (IR-80155A x R-56) respectively and 19 hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -22.88 (IR-80155A x R-17) to 26.20 (IR80155A x R-7) and -34.07 (IR-80155A x R-17) to 7.89 (IR-80155A x R-7) respectively. Eight hybrids registered significant positive heterosis over PA-6201 and none of the hybrids over KRH-2. At Kampasagar, average heterosis and heterobeltiosis ranged from -18.24 (IR80155A x R-25) to 36.84 (IR-80155A x R-7) and -21.47 (IR-80155A x R-17) to 33.97 (IR-

80155A x R-7) respectively and eleven hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -25.00 (IR-80155A x R25) to 26.26 (IR-80155A x R-7) and -13.13 (IR-80155A x R-25) to 46.25 (IR-80155A x R7), respectively. Two and 29 hybrids registered significant positive heterosis over PA-6201 and KRH-2. In pooled analysis over the three locations, average heterosis and heterobeltiosis ranged from -14.92 (IR-80555A x R-24) and 40.35 (IR-80155A x R-56) and -12.13 (IR80555A x R-24) to 33.84 (IR-80155A x R-56) respectively and 19 hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -22.34 (IR-80155A x R-25) to 26.39 (IR-80155A x R-7) and -27.27 (IR-80155A x R25) to 18.37 (IR-80155A x R-7), respectively. Ten hybrids registered significant positive heterosis over PA-6201 and only one hybrid IR-80155A x R-56 (15.25) over KRH-2.

Similar results for panicle weight heterosis and heterobeltiosis of both positive and negative nature in their studies were reported by Lokaprakash et al. (1992) and Ghosh (2002). 4.3.9. Spikelet fertility (%) For the character spikelet fertility, average heterosis and heterobeltiosis ranged from -14.76 (IR-58025A x R-32) to 27.95 (IR-79128A x R-7) and -17.72 (IR-58025A x R-32) to 25.09 (IR-79128A x R-7) respectively and seventeen hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -3.42 (IR58025A x R-21) to 39.57 (IR-68897A x R-27) and -7.55 (IR-58025A x R-21) to 33.60 (IR-

68897A x R-27) respectively. 57 and 46 hybrids registered significant positive heterosis over PA-6201 and KRH-2. At Kunaram, average heterosis and heterobeltiosis ranged from -7.80 (IR-79128A x R-3) to 22.70 (IR-80555A x R-21) and -13.96 (IR-68897A x R-56) to 20.91 (IR-58025A x R-27) respectively and about 26 hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from 8.55 (IR-58025A x R-7) to 39.20 (IR-58025A x R-27) and 3.93 (IR-58025A x R-7) to 33.28 (IR-58025A x R-27) respectively. All most all hybrids registered significant positive heterosis over PA-6201 and KRH-2 (except two hybrids). At Kampasagar, average heterosis and heterobeltiosis ranged from -16.56 (IR79156A x R-24) to 19.77 (IR-68897A x R-31) and -17.14 (IR-79156A x R-24) to 16.34 (IR-68897A x R-31) respectively and 28 hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from 6.40 (IR-68897A x R-53) to 37.96 (IR-68897A x R-17) respectively. Almost all hybrids recorded significant positive heterosis over PA-6201 and KRH-2 (except three hybrids). In pooled analysis for the character spikelet fertility average heterosis and heterobeltiosis ranged from -3.29 (IR-58025A x R-21) to 19.39 (IR-68897A x R-27) and 4.85 (IR-79156A x R-21) to 16.88 (IR-68897A x R-27) respectively and 33 hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from 11.81 (IR-58025A x R-21) to 29.47 (IR-68897A x R-27) respectively. All 84 hybrids registered significant positive heterosis over PA-6201 and KRH-2.

Similar kind of results for flag leaf width standard heterosis of both positive and negative nature was observed by Balasundara (2000), Panwar et al. (2002), Banumurty

et al. (2003), Muthuramu et al. (2010), Kumar babu et al. (2010) and Sandhyakishore et al. (2010) whereas; similar nature for mid-parental heterosis and heterobeltiosis was

reported by Hari ramakrishnan et al. (2009), Roy et al. (2009) and Nadali Bagheri and Nadali Babaeian Jelodan (2010). 4.3.10. Number of filled grains per panicle For the character filled grains per panicle at Warangal average heterosis and heterobeltiosis ranged from -33.27 (IR-58025A x R21) to 33.84 (IR-80555A x R-53) and -38.31 (IR-58025A x R-21) to 32.07 (IR-80555A x R-53) respectively and only eleven hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -38.19 (IR-58025A x R-21) to 4.28 (IR-80155A x R-36) and -29.26 (IR-58025A x R-21) to 19.34 (IR-80155A x R-36) respectively. None of the hybrid registered significant positive heterosis over PA-6201, whereas, nine hybrids recorded significant positive heterosis over KRH-2. At Kunaram, average heterosis and heterobeltiosis ranged from -14.52 (IR-68897A x R-32) to 36.49 (IR-58025A x R-53) and -23.01 (IR-68897A x R-32) to 30.96 (IR-58025A x R-53) respectively and only six hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -13.02 (IR-68897A x R-32) to 29.98 (IR-79156A x R-17) and -16.98 (IR-68897A x R-32) to 24.07 (IR-79156A x R-17) respectively. Thirteen and seven hybrids registered significant positive heterosis over PA6201 and KRH-2. At Kampasagar, average heterosis and heterobeltiosis ranged from -19.42 (IR68897A x R-35) to 43.88 (IR-79156A x R-32) and -22.36 9IR-68897A x R-35) to 37.05 (IR-79156A x R-32) respectively and only two hybrids viz., IR-79128A x R-19 (18.27) and

IR-79156A x R-32 (37.05) registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -24.60 (IR-68897A x R-35) to 19.69 (IR-79156A x R-32) and -13.71 (IR-68897A x R-35) to 36.98 (IR-79156A x R-32) respectively. Only one hybrid

(IR-79156A x R-32) recorded significant positive heterosis over PA-6201 and

two hybrids (IR-79156A x R-32 and IR-80555A x R-56) recorded significant positive heterosis over KRH-2. In pooled analysis over three locations for the character, average heterosis and heterobeltiosis ranged from -8.99 (IR-79156A x R-19) to 21.13 (IR-58025A x R-53) and -12.77 (IR-79156A x R-19) to 20.01 (IR-58025A x R-53) respectively and eight hybrids recorded significant positive heterobeltiosis for number of filled grains per plant. Standard heterosis over PA-6201 and KRH-2 ranged from -17.91 (IR-68897A x R-32) to 4.92 (IR58025A x R-53) and -11.38 (IR-68897A x R-32) to 13.77 (IR-58025A x R-53) respectively. None of the hybrids registered significant positive heterosis over PA-6201 and only four hybrids viz., IR-58025A x R-35 (11.24), IR-58025A x R-53 (13.27), IR-79128A x R-19 (13.23) and IR-79156A x R-17 (10.92) registered significant positive heterosis over KRH-2.

Similar kind of results for spikelet fertility heterosis and heterobeltiosis of both positive and negative nature was reported by Venkatesan et al. (2008), Hari ramakrishnan et al. (2009) and Roy et al. (2009). Earlier rice workers viz., Singh et al. (2006a), Rosamma and Vijay Kumar (2007), Singh et al. (2007), Akarsh Parihar and Pathak (2008) and Sandhyakishore et al. (2010) reported both positive and negative heterobeltiosis and standard heterosis valúes for this trait. 4.3.11 Test weight

For the character test weight at Warangal, average heterosis and heterobeltiosis ranged from -11.68 (IR-58025A x R-25) to 20.44 (IR-80155A x R-7) and -15.10 (IR58025A x R-25) to 18.36 (IR-80155A x R-53), respectively and only eleven hybrids recorded significant positive heterobeltiosis for the character test weight. The range of standard heterosis over PA-6201 and KRH-2 ranged from -11.45 (IR-58025A x R-25) to 25.69 (IR-68897A x R-32), respectively. 14 and 49 hybrids registered significant positive heterosis over PA-6201 and KRH-2 respectively. At Kunaram, the range of average heterosis and heterobeltiosis ranged from -5.60 (IR-58025A x R-25) to 27.83 (IR-80155A x R-7) and -12.80 (IR-58025A x R-25) to 27.42 (IR-80155A x R-7), respectively and thirteen hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -4.07 (IR58025A x R-25) to 21.68 (IR-68897A x R-32) and -0.97 (IR-58025A x R-25) to 25.62 (IR68897A x R-32), respectively. 21 and 31 hybrids registered significant positive heterosis over PA-6201 and KRH-2. At Kampasagar, average heterosis and heterobeltiosis ranged from -11.71 (IR58025A x R-25) to 20.53 (IR-80155A x R-7) and -15.15 (IR-58025A x R-25) to 18.46 (IR80155A x R-523) respectively and twelve hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -11.50 (IR58025A x R-25) to 15.41 (IR-68897A x R-32) and -3.53 (IR-58025A x R-25) to 25.80 (IR68897A x R-32), respectively. 14 and 49 hybrids registered significant positive heterosis over PA-6201 and KRH-2, respectively. In pooled analysis over the locations, average heterosis and heterobeltiosis ranged from -9.75 (IR-58025A x R-25) to 22.80 (IR-80155A x R-7) and -14.36 (IR-58025A x R-

25) to 20.02 (IR-80155A x R-7) respectively and 32 hybrids registered significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -9.14 (IR58025A x R-25) to 17.37 (IR-68897A x R-32) and -2.69 (IR-58025A x R-25) to 25.70 (IR68897A x R-32), respectively. 32 and 63 hybrids registered significant heterosis over both checks PA-6201 and KRH-2, respectively.

Similar results for significant positive and negative heterobeltiosis and standard heterosis were reported by Singh et al. (2006b), Deoraj et al. (2007), Narasimman et al. (2007), Akarsh Parihar and Pathak (2008), Kumarbabu et al. (2010), Sandhyakishore et al. (2010) and Sanjeev Kumar et al. (2010). whereas only positive nature of relative

heterosis was observed by Verma et al. (2004), Venkatesan et al. (2008), Hari ramakrishnan et al. (2009) and Roy et al. (2009). 4.3.12 Grain yield per plant For the character grain yield per plant at Warangal, average heterosis and heterobeltiosis ranged from -9.51 (IR-79128A x R-7) to 101.34 (IR-80155A x R-31) and 22.62 (IR-68897A x R-32) to 84.12 (IR-80555A x R-36) respectively and 41 hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -38.25 (IR-58025A x R-7) to 33.58 (IR-79156A x R-17) and -44.86 (IR58025A x R-7) to 19.27 (IR-79156A x R-17) respectively. 12 hybrids recorded significant positive heterosis over PA-6201 and two hybrids (IR-68897A x R-27 and IR-79156A x R53) over KRH-2 (Table 13.23). At Kunaram, average heterosis and heterobeltiosis ranged from -9.44 (IR-79128A x R-7) to 108.16 (IR-80555A x R-21) and -21.70 (IR-68897A x R-32) to 98.73 (IR-80555A x R-21) respectively and 41 hybrids registered significant positive heterobeltiosis. Standard

heterosis over PA-6201 and KRH-2 ranged from -42.31 (IR-58025A x R-7) to 33.13 (IR68897A x R-27) and -47.47 (IR-58025A x R-7) to 21.21 (IR-68897A x R-27), respectively. Ten hybrids registered significant positive heterosis over PA-6201 and only four hybrids viz., IR-68897A x R-27 (21.21), IR-79156A x R-17 914.27), IR-79156A x R-53 (13.75) and IR-80555A x R-21 (13.67) registered significant positive heterosis over KRH-2. At Kampasagar, average heterosis and heterobeltiosis ranged from -28.83 (IR58025A x R-7) to 122.44 (IR-80155A x R-32) and -42.39 (IR-58025A x R-7) to 115.21 (IR-80555A x R-27) respectively and 35 hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -17.97 (IR58025A x R-56) to 103.12 (IR-79156A x R-7) and -21.68 (IR-58025A x R-56) to 93.92 (IR-79156A x R-7), respectively. 28 and 27 hybrids recorded significant positive heterosis over PA-6201 and KRH-2. In pooled analysis, the hybrids exhibited a range of average heterosis and heterobeltiosis from -15.38 (IR-58025A x R-7) to 87.56 (IR-80555A x R-36) and -24.35 (IR-58025A x R-7) to 87.53 (IR-80555A x R-36), respectively and 52 hybrids recorded significant positive heterobeltiosis. Standard heterosis over PA-6201 and KRH-2 ranged from -32.54 (IR-80155A x R-21) to 31.89 (IR-79128A x R-56) and -38.29 (IR-80155A x R-21) to 20.67 (IR-79128A x R-56) respectively. 28 and 13 hybrids recorded significant positive heterosis over PA-6201 and KRH-2.

Similar results for heterosis and heterobeltiosis of both positive and negative nature was reported which was supported by Peng and Virmani (1991), Lokaprakash et al. (1992), Pandey et al. (1995), Jayamani et al. (1997), Ganesan et al. (1997), Alam et al. (2004) and Narasimman et al. (2007). Superiority of positive mid-parental hetrosis

was observed by Reddy and Nerkar (1995), Verma et al. (2004), Deoraj et al. (2007) and Roy et al. (2009). Standard heterosis of both positive and negative nature was observed by Ghosh (2002), Anand Kumar et al. (2006), Singh et al. (2006a), Deoraj et al. (2007), Eradasappa et al. (2007, Rosamma and Vijay Kumar (2007), Singh et al. (2007), Akarsh Parihar and Pathak (2008), Amudha et al. (2010), Kumarbabu et al. (2010), Sandhyakishore et al. (2010) and Sanjeev Kumar et al. (2010).

4.4 Stability analysis 4.4.1 Polled analysis of variance: 110 genotypes including 84 hybrids, 20 parents and six checks were subjected to pooled analysis of variance for 12 characters viz., days to 50% flowering, plant height, number of productive tillers per plant, number of unproductive tillers per plant, flag leaf length, flag leaf width, panicle length, number of filled grains per panicle, spikelet fertility, panicle weight, test weight and grain yield per plant over three diverse locations. The analysis revealed that the genotypes (except for characters productive tillers and unproductive tillers and environments were significant for all the characters, indicating diversity among the genotypes and environments studied. The G X E interactions were significant for five characters viz., days to 50% flowering, plant height, number of productive tillers per plant, test weight and grain yield per plant implying differential behaviour of genotypes under three locations for these characters. G X E interactions for remaining seven characters (viz., number of unproductive tillers per plant, flag leaf length, flag leaf width, panicle length, panicle weight, Spikelet fertility (%) and Number of grains for per panicle) were found to be non-significant. Therefore, further analysis of stability was not carried out for these seven characters (Table 14).

Similar reports were earlier made by Leenakumary (1994), Hegde and Vidyachandra (1998), Munisonnappa et al. (2004), Panwar et al. (2008), Umadevi et al. (2010), Saidaiah et al. (2011) and Sreedhar et al. (2011) Partitioning of sum of squares into that of varieties, Environments + (Genotypes X Environments) and pooled error revealed that mean squares due to Environments + (Genotypes X Environments) were significant for all the five characters viz., days to 50% flowering, plant height, number of productive tillers per plant, test weight and grain yield per plant re-emphasizing the existence of G X E interactions for these traits. (Similar reports were earlier made by Lavanya et al.2005 and Panwar et al.2008) Sum of the squares due to E + (G X E) was further partitioned into that of Environment (Linear), Genotype X Environment (Linear) and pooled deviation. Significant variation due to environment (Linear) for all the characters under study revealing the linear contribution of environmental effects and additive environmental variance on these characters. Similar results were reported earlier by Hegde and Vidyachandra (1998), Lohithaswa et al. (1999), Deshphande et al. (2003), Panwar et al. (2008). The linear component of G X E was non-significant for all the five characters suggesting that the genotypes did not differ for their linear response to environments. The mean sums of squares for pooled deviation were significant for all the seven characters indicating the non-linear responses and unpredictable nature of the genotypes by significantly differing for stability. As further stability analysis was not carried out for the traits viz., number of unproductive tillers per plant, flag leaf length, flag leaf width, panicle length, panicle weight, Spikelet fertility (%) and Number of grains for per panicle. Judgment of the promising hybrids is done based on their polled mean performance only.

Environmental indices: Environmental indices of the five characters viz., days to 50% flowering, plant height, number of productive tillers, test weight and grain yield per plant presented in Table 15. Warangal was found to be most suitable location for the characters viz., plant height, number of productive tillers per plant, test weight and grain yield per plant. Kunaram was found to be most favourable for days to 50% flowering, plant height, number of productive tillers per plant and grain yield per plant. Kampasagar location was found to be favourable for only plant height and days to 50% flowering. Stability parameters: According to Eberhart and Russell model (1966) the ideal genotype would be the one which has high mean, unit regression coefficient (bi=1) and minimum deviation for regression (S2di=0). The linear regression (bi) is treated as a measure of response of a genotype and deviation from regression (S2di) is considered as a measure of stability. In the present study regression coefficient (bi) values, if found non-significant: are treated as unity. Deviation from regression (S2di) values, if found non-significant, are considered to within the “minimum deviation” i.e. zero. Hence, the genotypes are considered to be stable. Then the measure of response or sensitivity to environmental changes is decided on regression coefficient (bi) and mean values of the genotypes. The genotypes with high mean values and regression coefficient mean (bi) equal to unity is considered to have “average stability” ( the performance of a genotype for a particular character does not change with the change in environment), If bi is more than unity, it is suggested to have “ less than average stability” ( sensitive to environmental changes but adaptable to favourable environments) and if bi is less than unity, it is reported to have “ more than average stability “ (adaptable to poor environments). The estimation of stability parameters i.e., mean (µ),

regression coefficient (bi) and deviation from regression (S2di) for five characters are furnished below character wise. Days to 50% flowering: Out of the 110 genotypes evaluated, only 60 genotypes which includes one line (IR8055A), eight testers (R-7, R-19, R-21, R-25, R-27, R-32, R-36 and R-56) and 51 hybrids recorded non-significant deviation from regression(S2di) values i.e., the genotypes are statistically within the range of “minimum deviation from regression” and whose performance can be predicted (Table 16.1). Among the parents, IR-80555A was only stable line, it recorded medium duration for days to 50% flowering (94.67 days) and exhibited less than the average stability ( more than one of bi values) and hence adaptable for favourable environments. The testers R-7, R19, R-21, R-27, R-36 and R-56 with medium duration and R-32 (83.75days) with mid early duration recorded more than one of bi value and considered to possess less than the average stability and are adaptable to favourable environments. R-25 (90.33 days) with medium duration recorded less than unity of bi value and considered to possess more than the average stability and are adaptable to poor environments. Among the stable hybrids, three hybrids viz., IR-80155A x R-21 (83.08 days), IR80155A x R-25 (84.50 days) and IR-68897A x R-35 (85.25 days) recorded significantly lower or on par flowering with the best check Annada (85.25 days) with unit regression values (bi). Hence these hybrids are considered to possess the average stability whose performance does not change with the change in environments. Eleven hybrids recorded significant lower or on par flowering duration with the best check Annada (85.25 days) recorded more than unit of bi values and thus possess “less than average stability” and are adaptable to favourable environments. Five hybrids viz., IR-58025A x R-35(84.83 days), IR-79128A x R-35(86.75 days ), IR-79156A x R-34(86.58 days ), IR-79156A x R-35(86.08

days ) and IR-8055A x

R-34(86 days ) recorded less than unit of bi values and thus

possesses “more than average stability” and are adaptable to poor environments. For Days to 50% flowering both linear and non-linear components of G X E interactions were significant in the present study. Similar results were reported by Hegde and Vidyachandra (1998), Deshpande et al. (2003) and Shanmuganathan and Ibrahim (2005), Umadevi et al. (2010) and Saidaiah et al. (2011). While significance of non-linear component was reported by Lohithaswa et al. (1999), Young and Virmani (1990).

Plant height: For plant height , 67 genotypes recorded non-significant deviation from regression (S2di) values, all most all genotypes fall within the ideal range of 80-100cm of plant height (Table 16.1). Among the parents, the lines IR-68897A (85.93cm) and IR-79156A (92.27cm) exhibited unit value and hence are widely adaptable, while IR-80555A (78.73cm) and tester R-32 (95.93cm) recorded less than one of bi values and hence are adaptable to poor environments. The tester R-56 (101.17 cm) with more than one of bi value and is adaptable to favourable environments. All the parents fall under the medium stature group. Among the hybrids six hybrids viz., IR-58025A x R-21 (82.87 cm), IR-68897A x R21 (85.10 cm), IR-68897A x R-32(88.20 cm), IR-80155A x R-21 (82.93 cm), IR-80155A x R-25(88.93 cm) and IR-80555A x R-31 (87.67 cm) recorded regression co-efficient values of unity and hence are considered to be widely adaptable to different environments with the average stability. Seven hybrids viz., IR-58025A x R-24(88.65 cm), IR-58025A x R25(84.88 cm), IR-58025A x R-35(93.47 cm), IR-68897A x R-31 (88.73 cm), IR-79128A x R-27 (89.70 cm), IR-80155A x R-27 (87.20 cm) and IR-80555A x R-19 (85.93 cm) recorded more than one of regression coefficient (bi) values and hence considered to have

less than average stability and adaptable to favourable environments. And none of the nonsignificant hybrids for S2di possesses less than unit value of regression coefficient. In respect of plant height in the present investigation, both linear and non linear components of G X E interactions were found to be significant. Similar results were observed by Young and Virmani (1990), Hegde and Vidyachandra (1998) and Shanmuganathan and Ibrahim (2005), Panwar et al. (2008) and Umadevi et al. (2010). While significance of non linear component was reported by Lohithaswa et al. (1999). Number of productive tillers: For the character number of productive tillers per plant, two lines, five testers, 51 hybrids and two checks recorded non-significant S2di values (table no.). All the stable parents found to posses lower or on par total number of productive tillers per plant, when compared with the best check PA 6201 (13.23), lines IR-80555A (12.10) and testers R-19 (10.77), R-34 (12.20) and R-56 (13.37) recorded more than unit value of bi and hence are adaptable to favourable environments. Line IR-58025A (10.40) and tester R-25 (11.60) and R-36 (10.60) recorded less than one of bi value and hence are adaptable to poor environments with more than average stability (Table 16.2). Among the hybrids, three hybrids viz., IR-68897A x R-21 (13.77), IR-68897A x R34 (12.13) and IR-80555A x R-21 (13.10) possessed significantly higher or on par number of productive tillers and recorded regression coefficient values equal to one. Hence they are considered to be stable hybrids and can be recommended for wider environments. Five hybrids viz., IR-58025A x R-56 (13.43), IR-68897A x R-56 (12.17), IR79128A x R-36 (12.23), IR-79156A x R-25 (13.07) and IR-79156A x R-34 (12.83) recorded more than one bi value and hence they are adaptable to favourable environments with average stability.

Six hybrids viz., IR-68897A x R-53 (10.97), IR-78156A x R-36 (11.17), IR-80155A x R-24 (12.73), IR-80155A x R-27 (12.37), IR-80155A x R-31 (11.13) and IR-80555A x R-35 (10.77) recorded less than one regression coefficient values. Hence they are adaptable to poor environments with less than average stability. Both linear and non linear components of GE interactions were found to be significant for number of productive tillers per plant. Similar results were observed by Gouri Shankar et al. (2008). Significance of linear component was reported by Munisonnappa et al. (2004), Shanmuganathan and Ibrahim (2005), Umadevi et al. (2010) and Sreedhar et al. (2011), while significance of non linear component was reported by Babu et al. (2005). Test Weight: For test weight, six lines, fourteen testers, 84 hybrids and six checks recorded nonsignificant S2di values (Table no.). Among the parents R-32 (21.41g) recorded significant higher test weight than the best check IR-64 (20.15g) with unit regression coefficient (bi) value and is rated as widely adaptable. The lines IR-58025A (17.66g), IR-68897A (18.30g), IR-79156A (18.36g), IR-80155A (16.94g) and IR-80555A (17.92g) and the testers R-7 (16.17g), R-17(15.64g), R-24(18.37g), R-31(20.25g), R-32(21.41g), R-34(18.02g) and R53(17.56g) recorded more than unit bi value, hence they are adaptable to favourable environments. The line IR-79128A (17.25g) and the testers R-19(16.72g), R-21(15.76g), R25(19.67g), R-27(19.56g), R-35(15.49g), R-36(17.87g) and R-56(18.29g) recorded near to unit bi values and hence are widely adaptable with average stability (Table 16.2). Among hybrids, fifteen hybrids with significantly higher or on par test weight than the best check IR-64 (20.15g) recorded unit regression coefficient (bi) values and hence possesses the average stability and are widely adaptable. The hybrids IR-58025A x R-32 (21.45g), IR-68897A x R-32 (21.75g), IR-79128A x R-32 (21.00g) and IR-79156A x R-32

(20.48g) with significant higher test weight than check IR-64 (20.15g) recorded more than unit values, hence these hybrids possesses more than average stability and are adaptable to favourable environments. The hybrids IR-68897A x R-7 (19.84g), IR-68897A x R-25 (17.64g), IR-79156A x R-25 (17.69g) and IR-80555A x R-25 (17.80g) recorded less than unit bi values and hence these hybrids adaptable to poor environments. The results showed that the GE interaction was mainly due to both linear and nonlinear components which are supported by for this trait. Significance of linear component was observed by Saidaiah et al. (2011) and Sreedhar et al. (2011). Grain yield per plant: For the character grain yield per plant, 73 hybrids, six lines and thirteen testers recorded non-significant S2di values whose performance could be predicted (Table 16.3.). Among the stable parents, none could register significantly higher grain yield per plant than the best check KRH-2 (20.69g). However lines IR-80555A (12.31g) and IR80155A (11.23g) exhibited average stability, lines IR-68897A (17.09g) and IR-79128A (15.84g) exhibited less than average stability and the lines IR-79156A (15.07g) and IR58025A (13.49g) exhibited more than average stability. Among testers R-17(17.61g), R-21(11.02g) and R-53(16.31g) exhibited average stability, testers R-24 (15.40g), R-27(12.63g),R-34(15.78g), R-35(14.94g) and R56(16.27g) exhibited less than average stability and the testers R-19 (13.90g),R-25 (12.81g), R-32(11.68g) and R-36 (13.51g) exhibited more than average stability. Among hybrids, only one hybrid IR-79156A x R-36 (22.67g) possessed significantly higher grain yield than the best check KRH-2 (20.69g) and recorded nearer to unit bi value, hence it is considered to be ideal and highly adaptable hybrid having average stability and expected to perform well in all the environments. Eleven hybrids recorded

significantly higher or on par yields and regression coefficient of more than one and hence are adaptable for favourable environments. The hybrids, IR-79128A x R-56 (24.97g), IR80555A x R-35 (23.91g), IR-79128A x R-17 (23.46g), IR-68897A x R-53 (22.42g) and IR80155A x R-19 (21.77g) recorded bi values of less than one and considered to be adaptable to poor environments. For single plant yield, both linear and non linear components of GE interaction were found to be significant in the present study. Similar results were reported by Young and Virmani (1990), Shanmuganathan and Ibrahim (2005), Gouri shankar et al. (2008), Panwar et al. (2008). Significance of non- linear component was reported by Hegde and Vidyachandra (1998), Lohithaswa et al. (1999), while non-linear component of the interaction was not significant reported by Deshpande and Dalvi (2006). Contradicting these results indicating significance of linear G x E was reported by Deshpande et al. (2003), Munisonnappa et al. (2004), Saidaiah et al. (2011) and Sreedhar et al. (2011). 4.5 Grain quality analysis 4.5.1 Hulling percentage The general mean of hulling percentage was 77.14 percent with a range of 64.29 to 87.48 per cent among all the genotypes (Table 17). The lines exhibited a range of 73.13 per cent (IR-79128A) to 77.54 percent (IR-80555A) and the testers recorded a range of 73.09 per cent (R-21) to 79.41 percent (R-27). Among the hybrids, the range varied from 64.29 per cent (IR-79156A x R-32) to 87.48 percent (IR-80155A x R-32) with a mean of 77.52 per cent. Twenty one hybrids were superior or on par when compared with the best check Jaya (79.77 per cent). The similar range of hulling percentage was also reported by Ashish et al. (2006), Singh and Singh (2006), Vanaja and Babu (2006), Asif et al. (2008) and Shilpa and Krishnan (2010).

4.5.2 Milling percentage Milling percentage ranged among the genotypes was from 45.99 per cent to 78.50 per cent with a mean of 64.97 per cent (Table 17). The lines recorded a range of 60.66 per cent (IR-68897A) to 69.22 per cent (IR-58025A) and among the testers it ranged from 50.55 per cent (R-21) to 72.15 per cent (R-31). Among hybrids milling percentage ranged from 45.99 per cent (IR-79128A x R-32) to 78.50 per cent (IR-80555A x R-19). Two hybrids viz., IR-80555A x R-17 (78.50%) and IR-80555A x R-7 (78.02%) were highly significant for milling percentage when compared with the best check, Jaya (73.27%) and two hybrids viz., IR-80555A x R-19 (72.63%) and IR-80155A x R-53 (72.60%) were significantly on par with the check Jaya. The similar range of milling percentage was reported by Ashish et al. (2006), Singh and Singh (2006), Vanaja and Babu (2006) and Babu et al. (2007). The results indicated that higher hulling percentage always will not give higher milling percentage. 4.5.3 Head rice recovery For the character head rice recovery, the genotypes recorded a mean value of 39.88 per cent with a range of 24.19 per cent to 55.38 per cent. The lines recorded a range of 32.97 per cent (IR-79128A) to 48.80 per cent (IR-80555A) and among the testers 34.91 per cent (R-19) to 48.73 per cent (R-17). The hybrids exhibited a range of 24.19 per cent (IR58025A x R-32) to 55.38 per cent (IR-79156A x R-53). Three hybrids, IR-79156A x R-53 (55.38%), IR-80155A x R-53 (54.85%) and IR-80555A x R-36 (52.69%) recorded significantly high or on par with the best check, Jaya (53.63 per cent). Similar results for the head rice recovery was reported by Ashish et al. (2006), Singh and Singh (2006) and Babu et al. (2007). 4.5.4 Kernel length For the character kernel length, the genotypes exhibited a range of 5.40 mm to 10.19 mm with a mean of 8.79 mm (Table 17). The lines exhibited a range of 8.04 mm (IR79128A) to 9.26 mm (IR-78156A) and among the testers 7.59 mm (R-19) to 9.30 mm (R7). The hybrids ranged from 7.77 mm (IR-80555A x R-7) to 10.19 mm (IR-79156A x R-

53). In the present study, all the genotypes are classified as long grain type according to Ramaiah (1969) rice grain classification. In the present study only one genotype, BPT-5204 recorded medium type grain length (5.40 mm) which was taken as one of the check for grain quality. Similar reports for kernel length was reported by Singh and Singh (2006), Babu et al. (2007), Shobha Rani et al. (2008), Hossain et al. (2009) and Anitha and Yogendra Singh (2010). 4.5.5 Kernel breadth All the genotypes for the character kernel breadth exhibited a range from 2.37 mm to 3.08 mm with a general mean of 2.72 mm (Table 17). The lines recorded a range from 2.37 mm (IR-79156A) to 2.92 mm (IR-80555A) and among the testers it ranged from 2.40 mm (R-35) to 2.83 mm (R-34). Among the hybrids, kernel breadth ranged from 2.49 mm (IR-79156A x R-53) to 3.08 mm (IR-80155A x R-7), whereas, the best check recorded the mean kernel breadth of 2.57 mm, when compared to the best check, eighteen hybrids were on par with it. Similar results were also reported by the researchers Sanjuktha Das et al. (2005), Babu et al. (2007), Asif et al. (2008) and Anitha and Yogendra Singh (2010). 4.5.6 L/B ratio The genotypes exhibited L/B ratio ranged from 2.58 to 4.10 with a general mean of 3.26 (Table 17). The lines recorded a range of 2.89 (IR-79156A) to 3.91 (IR-80555A) and among the testers it ranged from 2.90 (R-35) to 3.61 (R-34). Among the hybrids it ranged from 2.56 (IR-80555A x R-7) to 4.10 (IR-79156A x R-53). Grain type can be classified by taking consideration of both kernel length and L/B ratio, by taking both results of kernel length and L/B ratio all the genotypes were categorized as long slender, long bold and medium slender. Among the lines, IR-80555A recorded kernel length and L/B ratio as 8.43 and 2.89, respectively according to the Ramaiah classification, IR-80555A is categorized as long bold grain type and other five lines recorded a mean kernel length more than 6 mm above the L/B ratio more than 3

above. Thus, the five lines were categories as long slender. Among the testers, R-19 recorded a mean length and L/B ratio as 7.59 mm and 2.90 respectively. Thus, it is categorized as long bold grain type and other thirteen testers recorded a mean kernel length more than 6 mm and L/B ratio more than 3.0 thus classified as long slender grain type. All the hybrids recorded a mean kernel length more than 6 mm among them eleven hybrids exhibited a mean L/B ratio less than 3.0 thus these eleven hybrids were categories as long bold grain type and rest of the hybrids recorded a mean L/B ratio more than 3.0 and thus categorized as long slender grain type. Among the check only BPT-5204 categorized as medium slender as the kernel length and L/B ratio 5.40 mm and 2.88, respectively. Annada, Jaya and MTU-1010 recorded a mean kernel length more than 6.0 mm and L/B ratio less than 3.00 thus categorized as long bold grain type. And other four checks i.e., IR64, PA-62011, DRRH-2 and KRH-2 categorized as long slender as their kernel length more than 6.0 mm and L/B ratio more than 3.0. Srinivasulu et al. (2000), Singh and Singh (2006), Babu et al. (2007), Asif et al. (2008) and Hossain et al. (2009) reported similar kind of L/B ratios in their research. 4.5.7 Kernel length after cooking Kernel length after cooking among the genotypes ranged from 9.21 mm to 14.70 mm with a general mean of 12.06 mm (Table 17). Among the lines it ranged from 11.74 mm (IR-80155A) to 12.67 mm (IR-79156A) with a general mean of 12.17 mm and among testers it ranged from 10.10 mm (R-17) to 13.12 mm (R-32) with a general mean of 11.42 mm. Among the parents, IR-79156A and R-32 can be utilized to develop basmati type varieties or hybrids where kernel length after cooking is most important. Among the hybrids for kernel length after cooking ranged between 9.73 mm to 14.70 mm. Twenty four hybrids recorded significantly superior for the character kernel length after cooking when compared to the best check DRRH-2 (12.42). Among the hybrids, IR-80555A x R-35 (14.70 mm) recorded the highest kernel length after cooking followed by IR-80555A x R-32 (14.30 mm) and IR-80555A x R-34 (14.24 mm). Similar kind of results for kernel length after cooking was reported by Asif et al. (2008), Shobha Rani et al. (2008) and Anitha and Yogendra Singh (2010).

4.5.8 Alkali spreading value All the genotypes exhibited mean score ranged from 2.75 to 7.00. The lines recorded a mean score range from 6.58 to 7.00 and classified as high alkali spreading value by considering the alkali spreading value all the lines were categorized as low gelatinization temperature which implies all the lines requires less temperature to cook the grains. Among the testers alkali spreading value ranged from 3.00 (R-34 and R-53) to 4.83 (R-31). Among the testers R-19 and R-31 scored 4.25 and 4.83, respectively and according to these values the testers were categorized as intermediate gelatinization temperature and rest of the testers recorded a mean scoring value for alkali spreading value from 3.00 to 3.75 and categorized as low intermediate spreading value and according to these values these twelve testers were categorized as high intermediate gelatinization temperature. Among the hybrids, alkali spreading value score ranged from 2.75 to 6.83. Ten hybrids recorded a mean alkali spreading value ranged from 2.75 to 3.50 which were categorized as low intermediate alkali value and high intermediate gelatinization temperature. Sixty six hybrids recorded a mean alkali value ranged from 3.58 to 5.50 which were categorized as intermediate alkali spreading value and intermediate gelatinization temperature. And remaining eight hybrids recorded a mean alkali scoring value ranged from 5.67 to 6.83, which were categorized as high alkali value and low gelatinization temperature. Among checks MTU-1010 (3.08) recorded low intermediate alkali value with high intermediate gelatinization temperature. Jaya (6.75) and Annada (6.05) recorded high alkali spreading value with low gelatinization temperature. And DRRH-2 (4.17), DA-6201 (4.58), KRH-2 (4.67), IR-64 (4.83) and BPT-5204 (5.17) recorded intermediate alkali spreading value with intermediate gelatinization temperature. Similar kind of results on alkali spreading value were reported by the Latha et al. (2005), Singh and Singh (2006), Vanaja and Babu (2006), Babu et al. (2007), Asif et al. (2008) and Shobha Rani et al. (2008).

4.5.9 Aroma Aroma is a peculiar characteristic feature of fragrant rices. Among the lines IR80155A is non-aromatic and all other five lines were aromatic and among the testers six testers (R-17, R-19, R-21, R-24, R-27 and R-34) recorded as non-aromatic and other eight testers were recorded as aromatic. Among the hybrids, eight hybrids were non-aromatic and rests of 78 hybrids were aromatic. IR-58025A x R-21, IR-68897A x R-21, IR-79128A x R17, IR-79156A x R-19, IR-80155A x R-7, IR-80155A x R-21, IR-80155A x R-32 and IR80555A x R-17 were non-aromatic. Among the checks, Annada, Jaya, MTU-1010 and BPT-5204 were non-aromatic and IR-64, DRRH-2, PA-6201 and KRH-2 were aromatic. Similar results on aroma was reported by Singh and Singh (2006), Asif et al. (2008) and Anitha and Yogendra Singh (2010).

Table 17.

Grain quality analysis of parents and hybrids for nine characters

LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A Mean TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 Mean Parental Mean

Hulling (%)

Milling (%)

HRR

Kernel length

Kernel breadth

L/B ratio

KLAC

ASV

Aroma

75.37 73.17 73.13 77.43 75.49 77.54 75.35

69.22 60.66 63.08 66.79 64.36 68.71 65.47

34.03 33.47 32.97 41.32 44.91 48.86 39.26

8.96 9.21 8.04 9.26 8.05 8.43 8.66

2.39 2.64 2.55 2.37 2.60 2.92 2.58

3.76 3.50 3.15 3.91 3.10 2.89 3.39

11.97 12.34 12.49 12.67 11.74 11.82 12.17

6.67 6.58 6.75 6.83 7.00 6.58 6.73

3 3 3 3 1 3 2.67

75.98 76.78 73.12 73.09 74.67 74.59 79.41 78.98 75.78 77.38 74.51 78.01 75.25 78.18 76.12 75.89

69.83 69.11 54.44 50.55 63.66 61.19 70.94 72.15 64.48 65.90 68.95 70.03 67.18 69.51 65.57 65.54

44.18 48.73 34.91 36.57 41.38 44.69 43.94 41.70 39.97 37.87 36.52 38.34 46.81 46.29 41.56 40.87

9.30 8.75 7.59 8.54 8.00 8.35 8.32 8.39 8.98 8.50 8.29 8.65 8.33 8.85 8.49 8.54

2.63 2.79 2.62 2.64 2.44 2.77 2.65 2.76 2.49 2.83 2.40 2.60 2.68 2.79 2.65 2.63

3.54 3.13 2.90 3.24 3.28 3.01 3.15 3.04 3.61 3.01 3.45 3.33 3.12 3.17 3.21 3.26

10.64 10.10 12.16 11.07 10.92 11.32 12.10 12.67 13.12 11.27 11.28 11.81 11.28 10.20 11.42 11.65

3.75 3.75 4.25 3.50 3.08 3.08 3.42 4.83 3.58 3.00 3.75 3.00 3.17 3.00 3.51 4.48

3 1 1 1 1 3 1 3 3 1 3 3 3 3 2.14 2.3

Table 17 (cont.).

CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7

Hulling (%)

Milling (%)

HRR

Kernel length

Kernel breadth

L/B ratio

KLAC

ASV

Aroma

76.72 76.77 73.16 73.42 78.67 74.98 76.72 76.53 75.10 79.10 77.49 78.20 78.67 79.44 76.06 73.98 78.40 76.86 77.85 73.88 76.96 77.23 76.86 76.66 77.71 77.18 76.79 77.24 78.94

65.18 69.17 60.41 63.70 63.60 65.20 60.78 67.45 62.17 65.74 63.92 68.59 67.14 65.85 70.01 63.56 66.52 62.46 63.83 60.93 62.80 67.22 68.07 63.79 65.00 63.86 63.64 62.87 67.21

37.07 33.57 33.95 47.40 39.64 39.36 34.16 25.90 24.19 35.08 34.88 40.40 46.16 40.66 45.50 39.94 43.86 34.09 43.06 39.08 39.27 40.90 40.88 39.33 37.30 38.83 31.98 47.71 34.66

8.67 9.00 8.49 9.40 9.38 8.66 9.05 8.89 9.44 9.49 9.58 9.84 9.23 8.98 8.64 8.76 9.90 9.62 9.42 8.78 9.42 9.72 9.34 9.40 9.41 9.34 9.49 9.51 9.24

2.65 2.63 2.60 2.57 2.71 2.58 2.50 2.57 2.53 2.65 2.65 2.59 2.56 2.67 2.84 2.86 2.80 2.74 2.70 2.70 2.78 2.78 2.60 2.81 2.57 2.60 2.68 2.64 2.78

3.27 3.42 3.27 3.66 3.47 3.39 3.62 3.47 3.73 3.58 3.62 3.80 3.61 3.36 3.05 3.06 3.54 3.51 3.49 3.26 3.39 3.50 3.59 3.35 3.67 3.59 3.54 3.60 3.32

13.11 10.68 13.72 11.85 12.59 11.64 12.51 12.09 13.03 12.66 12.26 13.43 13.47 12.84 13.74 11.48 11.96 12.24 12.87 11.83 13.07 13.78 13.06 11.91 12.21 13.80 13.34 12.49 12.35

6.83 3.91 2.83 3.83 3.67 4.87 5.92 4.11 4.58 4.33 3.50 3.66 4.41 3.83 5.50 5.17 5.67 4.83 5.08 4.83 4.42 5.83 4.58 3.91 5.91 4.83 4.42 4.13 6.50

3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3

Table 17 (cont.).

CROSSES IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7

Hulling (%)

Milling (%)

HRR

Kernel length

Kernel breadth

L/B ratio

KLAC

ASV

Aroma

77.51 75.41 76.43 77.11 73.86 77.79 77.08 73.84 76.29 76.82 77.50 78.24 76.61 77.38 77.73 77.56 76.53 76.37 76.01 78.35 78.03 64.29 78.65 78.41 79.45 79.28 77.09 78.82

67.26 62.11 63.30 64.52 62.14 61.90 64.19 45.99 54.72 60.42 63.94 66.96 63.34 65.94 68.62 60.88 61.86 64.68 63.99 66.92 65.11 53.01 54.46 64.24 65.87 68.97 65.94 60.06

38.37 38.01 30.25 27.24 38.83 36.95 32.32 30.02 41.34 28.59 25.85 35.32 29.82 47.87 42.50 37.90 42.84 41.18 43.00 39.21 43.61 38.27 36.27 34.33 41.77 55.38 41.23 47.10

9.33 9.00 8.50 8.98 8.20 9.27 8.64 9.05 8.70 9.43 9.74 9.72 8.72 9.10 8.87 9.30 8.97 9.29 8.81 8.91 8.53 8.62 9.15 8.61 8.16 10.19 8.87 8.54

2.82 2.72 2.71 2.85 2.66 2.82 2.80 2.59 2.66 2.62 2.62 2.64 2.72 2.75 2.76 2.70 2.68 2.60 2.57 2.53 2.77 2.80 2.66 2.61 2.64 2.49 2.80 3.08

3.32 3.32 3.13 3.15 3.08 3.29 3.08 3.49 3.27 3.60 3.72 3.69 3.21 3.31 3.22 3.45 3.35 3.57 3.46 3.53 3.08 3.08 3.45 3.30 3.09 4.10 3.18 2.77

11.95 12.00 13.25 12.76 11.90 12.13 13.04 12.15 13.89 12.93 13.23 13.27 13.03 13.08 10.98 12.10 10.86 11.62 11.99 12.32 11.79 11.85 11.95 12.11 11.75 12.65 11.29 11.41

4.42 4.00 3.92 3.17 4.91 3.91 4.67 4.67 3.92 3.16 3.67 3.41 3.83 5.67 4.00 4.67 3.92 3.92 4.96 4.00 4.58 4.54 5.17 4.16 3.50 3.58 4.67 6.00

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 1

Table 17 (cont.). Hulling (%) IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

77.39 75.31 71.70 76.07 75.04 77.60 79.66 87.48 81.45 81.00 81.23 80.21 80.28 81.95 82.35 82.34 79.33 80.04 76.06 79.21 70.21 77.81 81.52 81.32 80.54 81.31 77.12

Milling (%) 67.27 65.17 51.16 65.62 62.78 66.12 62.60 59.01 68.18 72.16 59.22 72.60 69.97 78.02 78.50 72.63 67.48 69.01 64.95 56.13 55.63 65.20 70.39 71.69 69.67 69.92 66.75

HRR 39.36 34.53 33.84 39.72 44.80 42.80 29.57 32.56 34.81 43.26 33.12 54.85 44.77 49.22 34.53 48.20 33.30 39.87 46.77 45.36 32.41 44.81 38.98 43.08 52.69 43.56 43.65

Kernel length 8.60 8.26 8.55 8.80 8.20 8.92 8.54 8.59 8.70 8.25 8.06 9.46 8.12 7.77 7.93 8.81 8.43 9.18 8.39 8.46 8.42 9.13 8.55 8.58 8.67 8.82 8.90

Kernel breadth 2.86 2.80 2.77 2.82 2.68 2.91 2.72 2.74 2.83 2.86 2.66 2.82 2.95 3.01 2.85 2.90 2.95 2.89 2.84 2.84 2.84 2.64 2.70 2.65 2.80 2.57 2.97

L/B ratio 3.01 2.95 3.08 3.12 3.06 3.06 3.14 3.14 3.08 2.89 3.03 3.36 2.76 2.58 2.78 3.04 2.86 3.18 2.95 2.98 2.96 3.46 3.17 3.24 3.09 3.43 2.99

KLAC

ASV

Aroma

9.73 11.38 11.04 10.40 11.53 10.82 11.34 11.29 11.14 10.59 11.32 10.79 10.91 10.64 11.84 11.93 12.17 12.81 11.57 12.97 13.66 14.30 14.24 14.70 13.35 13.89 12.71

3.91 3.92 4.50 2.75 5.04 4.91 3.58 4.50 3.83 4.08 4.33 3.00 3.92 3.00 4.25 4.50 4.33 4.33 4.83 4.08 5.08 5.25 3.67 3.83 4.17 4.58 3.25

3 3 1 3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3

Table 17 (cont.). Hulling (%)

Milling (%)

HRR

Kernel length

Kernel breadth

L/B ratio

KLAC

ASV

Aroma

ANNADA

76.74

71.56

50.83

7.27

3.52

2.06

10.16

6.05

1

IR64

76.34

59.05

35.46

8.31

2.77

3.00

11.23

4.83

3

JAYA

79.77

73.27

53.63

7.64

3.19

2.40

11.67

6.75

1

MTU1010

76.55

63.52

38.58

8.32

3.04

2.74

10.46

3.08

1

DRRH2

76.47

70.11

45.92

9.40

2.78

3.39

12.42

4.17

3

KRH2

78.65

68.39

53.55

8.80

2.69

3.27

10.68

4.67

3

PA6201

76.52

65.06

40.85

8.68

2.74

3.17

10.28

4.58

3

BPT 5204

69.81

65.49

51.81

5.40

2.57

2.88

9.21

5.17

1

Mean

77.14

64.97

39.88

8.79

2.72

3.26

12.06

4.42

2.64

Range

64.29 to 87.48

45.99 to 78.50

24.19 to 55.38

5.40 to 10.19

2.37 to 3.08

2.58 to 4.10

9.21 to 14.70

2.75 to 7.00

1 to 3

S.Em.

0.465

0.42

0.368

0.316

0.249

0.236

0.283

0.218

0.221

C.D. (at p=0.05)

1.30

1.18

1.03

0.89

0.7

0.66

0.8

0.61

0.61

C.V. %

2.688

2.523

2.17

1.928

1.464

1.367

1.637

1.288

1.308

Checks

Table 7: genotypic and phenotypic coefficient of variance for yield and yield attributing characters

Character

Mean

GCV

PCV

Days to 50% flowering

88.7

9.28

9.42

Plant height

90.79

11.38

11.83

Productive tillers

11.71

19.57

21.43

Un productive tillers

2.44

30.12

31.21

Panicle length

24.66

11.9

12.63

Flag leaf length

25.84

32.55

33.45

Flag leaf width

1.3

11.41

13.32

Panicle weight

2.65

25.87

26.68

Spikelet fertility%

77.03

9.13

9.9

No. of grains per panicle

129.51

10.48

13.14

Test weight

18.84

16.28

16.89

Yield per panicle

17.94

46.52

47.21

Table 8: Heritability, GA and GA% mean for yield and yield contributing characters

Character

Heritability

Days to 50% flowering

11.53

Genetic advance 1.15

Genetic advance as % of mean 1.30

Plant height (cm)

26.26

3.39

3.73

Number of productive tillers

2.89

0.12

1.02

Number of unproductive tillers

6.90

0.09

3.72

Panicle length (cm)

23.84

0.89

3.60

Flag leaf length (cm)

30.23

1.82

7.03

Flag leaf width (cm)

32.71

0.06

4.62

Panicle weight (g)

12.96

0.08

3.04

Spikelet fertility (%)

3.44

0.40

0.52

Number of filled grains per panicle

4.43

1.13

3.78

Test weight (g)

78.15

1.44

7.65

Grain yield per plant (g)

20.01

1.82

10.11

Table 9: Pooled analysis of variance for combining ability (L X T) for yield and yield components in rice Mean Sum of Squares Source of variation d.f

Locations Replications x Locations Treatments Parents Parent vs. Crosses Crosses Lines Testers Lines x Testers Parents x Locations (Parent vs. Cross) x Locations Crosses x Locations Lines x Locations Testers x Locations Lines x Testers x Locations Error

Days to 50% flowering

2 930.75 ** 2 33.36** 103 69.76 ** 19 45.89 ** 1 2549.49 ** 83 45.34 ** 5 18.94 13 148.75** 65 26.69** 38 29.85 ** 2 581.15 ** 166 30.47** 10 35.38 26 43.98 * 130 27.39 ** 309 1.99

* Significant at 5% level; ** Significant at 1% level

Plant height

22331.79 ** 24.32 115.44 ** 185.68 ** 113.04** 99.39** 321.267** 317.00** 38.81** 38.45** 710.69** 48.32** 84.56* 80.46** 39.10** 8.70

Productive tillers/plant

89.75** 2.74 6.30** 7.72** 49.28** 5.45** 4.53 5.07 5.60** 6.93** 49.23** 6.35** 10.71 5.89 6.10** 1.05

Unproductiv Panicle e tillers/plant length 165.77** 1.18** 0.59** 0.42** 1.11** 0.62** 1.39* 0.61 0.56** 0.43** 3.76** 0.59** 1.36 ** 0.56 0.53** 0.04

346.79** 15.92** 9.70** 8.54** 7.65 ** 9.99** 19.48** 29.97** 5.27** 3.84** 0.88 3.74** 7.50 * 3.87 3.42** 1.09

Flag leaf length 3279.92** 12.89* 34.70** 78.47** 73.278** 24.21** 105.75** 57.36** 11.31** 12.83** 15.01 * 10.65** 11.91 15.15 9.66** 3.94

Table 9: Pooled analysis of variance for combining ability (L X T) for yield and yield components in rice Mean Sum of Squares Source of variation d.f

Locations Replications x Locations Treatments Parents Parent vs. Crosses Crosses Lines Testers Lines x Testers Parents x Locations (Parent vs. Cross) x Locations Crosses x Locations Lines x Locations Testers x Locations Lines x Testers x Locations Error

2 2 103 19 1 83 5 13 65 38 2 166 10 26 130 309

Flag leaf width

Panicle weight

1.95** 0.01 0.03** 0.05** 0.03 * 0.02** 0.12** 0.06** 0.01 * 0.02** 0.10** 0.01** 0.01 0.04** 0.01 ** 0.01

0.45** 0.22 ** 0.50** 0.45** 1.98** 0.49** 0.18 0.74 0.47** 0.08** 0.03 0.06** 0.09 0.06 0.06** 0.03

* Significant at 5% level ; ** Significant at 1% level

Spikelet fertility (%) 215.64** 8.92 58.14** 36.07** 1216.09** 49.24** 13.10 72.56 47.35** 37.24** 17.60 50.32** 62.17 75.87 * 44.29** 8.63

No. of filled grains /panicle 3248.22** 614.95** 289.39** 247.56** 1569.90** 283.54** 254.93 384.63 265.52** 211.20** 769.01** 292.64** 442.59 404.40 258.76** 105.01

Test weight

Grain yield/ plant

30.58** 0.19 10.13** 14.47** 140.19** 7.57** 7.62 * 31.32** 2.81** 0.29 4.49 ** 0.04 0.01 0.14** 0.02 0.72

290.58** 3.05 71.75** 28.47** 1914.24** 59.45** 108.67 * 131.12 ** 41.33** 10.75** 26.57** 18.66** 6.79 38.04** 15.69** 2.10

Table 10.1: Mean performance of parents and hybrids for Days to fifty per cent flowering, Plant height (cm) and Flag leaf length (cm) over locations and pooled LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A Mean TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 Mean Parental Mean

Days to fifty percent flowering WGL KUN KAMP POOLED 93.50 93.50 89.75 92.25 99.00 83.50 89.50 90.67 99.50 87.50 99.25 95.42 97.50 89.50 99.50 95.50 98.00 85.50 98.25 93.92 96.00 91.00 97.00 94.67 93.50 93.50 89.75 92.25 97.25 88.42 95.54 93.74 98.00 98.50 97.00 100.00 99.50 90.50 100.00 98.50 87.00 99.00 98.50 99.50 98.00 97.50 97.25 97.25

91.50 93.50 84.50 82.50 80.50 91.50 90.00 86.50 77.50 79.00 89.00 78.50 88.00 90.50 85.93 86.68

97.50 90.75 94.50 96.25 98.00 89.00 98.00 98.25 86.75 97.25 93.25 96.25 89.75 97.50 94.50 94.81

95.67 94.25 92.00 92.92 92.67 90.33 96.00 94.42 83.75 91.75 93.58 91.42 91.92 95.17 92.56 92.91

WGL 75.30 84.30 87.75 90.40 88.70 76.30 75.30 83.79 87.10 92.00 81.20 77.00 83.40 82.50 83.90 82.40 92.70 80.30 88.80 88.20 86.30 97.10 85.92 85.28

Plant height(cm) KUN KAMP 91.20 97.20 80.70 92.80 85.60 106.00 82.70 103.70 87.00 109.60 76.48 83.40 91.20 97.20 83.95 98.78 83.40 86.70 76.70 74.20 88.60 76.90 86.60 86.10 97.40 83.30 82.00 85.25 87.60 91.50 84.73 84.50

100.90 106.10 105.60 83.30 101.70 87.90 102.40 100.50 97.70 104.80 98.80 101.60 104.00 114.90 100.73 100.15

POOLED 87.90 85.93 93.12 92.27 95.10 78.73 87.90 88.84

WGL 30.03 25.21 27.75 31.70 27.98 24.46 30.03 27.85

90.47 94.93 87.83 78.17 91.23 82.43 90.97 89.67 95.93 89.47 89.87 91.68 92.63 101.17 90.46 89.97

37.55 31.40 28.00 28.45 28.31 25.89 26.25 23.00 27.58 23.31 22.35 25.25 40.55 28.20 28.29 28.16

Flag leaf length(cm) KUN KAMP POOLED 21.45 28.20 26.56 21.08 25.20 23.83 20.45 27.75 25.32 21.80 36.50 30.00 21.11 28.75 25.95 24.40 23.00 23.95 21.45 28.20 26.56 20.05 28.23 25.38 23.70 23.37 21.30 20.58 20.70 26.62 21.67 21.03 22.05 20.75 21.60 19.87 30.18 25.40 22.77 22.46

38.90 28.70 27.45 29.92 27.60 31.08 32.15 26.15 31.25 21.67 21.30 25.90 39.10 32.30 29.53 29.14

33.38 27.82 25.58 26.32 25.54 27.86 26.69 23.39 26.96 21.91 21.75 23.67 36.61 28.63 26.87 26.59

Table 10.1 contd… WGL CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24

Days to fifty percent flowering KUN KAMP POOLED

88.50 87.00 87.50 87.00 89.00 86.00 87.00 88.50 87.50 87.50 84.00 99.00 86.00 89.00 88.00 88.00 87.00 88.50 89.00 88.50 87.00 89.00 88.50 92.50 86.00 89.00 85.50 99.50 90.50 88.50 87.00 87.50 89.50

92.00 81.50 91.50 90.00 94.00 91.00 79.00 85.00 90.00 88.00 86.50 97.00 88.50 87.50 95.00 90.50 89.50 90.50 92.00 86.00 85.50 75.00 88.00 87.50 83.00 91.00 80.50 79.50 85.00 89.50 75.00 80.00 81.00

88.50 87.75 89.25 86.75 82.00 82.50 86.25 92.00 88.50 87.00 84.00 101.00 83.50 89.00 82.75 88.25 84.25 85.50 90.25 87.25 85.75 88.00 90.50 89.25 86.75 84.75 85.50 97.75 88.25 89.75 87.25 85.25 91.75

89.67 85.42 89.42 87.92 88.33 86.50 84.08 88.50 88.67 87.50 84.83 99.00 86.00 88.50 88.58 88.92 86.92 88.17 90.42 87.25 86.08 84.00 89.00 89.75 85.25 88.25 83.83 92.25 87.92 89.25 83.08 84.25 87.42

WGL 85.75 86.70 84.60 81.50 85.20 81.90 91.70 91.25 90.40 86.40 98.90 95.10 100.80 99.15 91.20 95.60 91.40 83.80 91.40 85.60 99.30 89.50 88.10 87.20 89.90 87.70 93.30 96.10 103.70 100.30 89.90 87.00 92.80

Plant height(cm) KUN KAMP 85.88 83.40 86.90 75.10 76.00 72.95 78.80 88.60 77.00 74.40 75.70 90.10 77.00 84.45 79.10 79.40 76.10 78.30 80.20 76.10 89.30 75.20 81.60 89.10 85.60 86.50 72.50 90.20 93.70 78.10 75.00 81.70 76.10

103.30 111.10 96.30 92.00 104.75 99.80 101.20 97.80 103.70 102.70 105.80 99.70 110.90 104.10 99.10 100.40 99.50 93.20 100.45 106.50 96.70 101.50 94.90 98.90 104.10 109.40 103.10 112.20 107.60 112.10 106.60 95.00 103.10

POOLED 91.64 93.73 89.27 82.87 88.65 84.88 90.57 92.55 90.37 87.83 93.47 94.97 96.23 95.90 89.80 91.80 89.00 85.10 90.68 89.40 95.10 88.73 88.20 91.73 93.20 94.53 89.63 99.50 101.67 96.83 90.50 87.90 90.67

WGL 29.04 26.63 25.13 22.36 26.35 38.40 27.02 28.25 27.60 24.32 24.57 27.65 26.95 30.29 26.11 28.50 29.25 27.30 25.90 29.75 24.17 25.55 27.33 24.29 26.45 28.70 27.65 30.40 30.85 30.60 28.20 27.65 29.05

Flag leaf length(cm) KUN KAMP POOLED 19.90 19.87 21.82 21.95 22.64 21.20 21.25 20.45 22.20 18.20 20.36 19.38 22.43 20.46 19.94 20.76 20.00 20.30 16.85 18.45 20.32 20.28 20.03 20.55 19.98 19.53 22.05 24.24 23.75 19.96 23.21 22.25 21.89

29.71 29.90 26.10 25.10 28.50 29.95 25.11 27.15 29.25 26.80 23.95 29.55 25.60 28.95 31.35 26.65 23.00 28.00 30.40 28.70 25.00 26.35 26.10 25.57 23.05 33.50 32.50 31.25 31.60 32.02 28.15 25.25 26.95

26.22 25.47 24.35 23.14 25.83 29.85 24.46 25.28 26.35 23.11 22.96 25.53 24.99 26.57 25.80 25.30 24.08 25.20 24.38 25.63 23.16 24.06 24.49 23.47 23.16 27.24 27.40 28.63 28.73 27.53 26.52 25.05 25.96

Table 10.1 contd… IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35

Days to fifty percent flowering WGL KUN KAMP POOLED 88.00 81.50 83.25 84.25 89.00 79.50 85.25 84.58 88.50 81.50 90.25 86.75 87.00 94.00 85.50 88.83 89.00 78.50 88.50 85.33 86.00 89.50 84.75 86.75 98.00 87.50 98.50 94.67 87.50 90.50 90.75 89.58 97.50 83.50 93.75 91.58 90.00 93.00 88.00 90.33 87.50 94.00 84.00 88.50 88.50 87.50 85.75 87.25 87.50 81.00 85.00 84.50 88.50 86.00 87.75 87.42 87.00 84.50 91.50 87.67 89.50 92.00 87.50 89.67 88.50 90.50 85.00 88.00 89.50 84.50 90.50 88.17 87.00 87.00 85.75 86.58 86.00 87.00 85.25 86.08 98.00 79.00 96.50 91.17 87.50 81.00 88.50 85.67 99.00 90.50 95.00 94.83 89.50 85.00 90.00 88.17 89.50 89.00 87.75 88.75 89.00 87.50 89.50 88.67 84.50 80.50 84.25 83.08 88.50 83.50 90.00 87.33 87.00 82.50 84.00 84.50 87.50 78.50 85.50 83.83 88.00 83.50 88.50 86.67 87.50 92.50 89.50 89.83 88.50 88.50 87.25 88.08 85.00 81.50 82.00 82.83

WGL 89.40 89.10 92.00 92.40 90.70 90.80 90.80 97.80 106.10 100.50 96.00 91.20 86.80 96.00 92.60 94.50 97.00 90.65 84.55 97.80 97.70 101.30 99.90 88.00 86.75 88.90 79.90 83.75 86.60 87.60 88.60 87.00 85.60 87.50

Plant height(cm) KUN KAMP 72.90 103.00 76.50 103.50 72.07 105.90 78.10 101.90 84.10 105.50 73.10 102.10 81.00 103.80 72.80 106.20 87.00 113.40 90.60 116.10 84.20 104.90 88.40 111.40 82.07 98.50 77.10 105.50 88.50 92.00 82.40 104.90 81.90 106.50 85.00 94.70 80.33 104.40 78.95 97.80 77.20 99.30 79.80 102.90 83.40 112.70 86.65 102.80 84.10 97.20 76.60 100.60 75.30 93.60 76.90 94.50 82.60 97.60 73.60 100.40 83.75 102.40 87.20 99.80 82.00 98.60 78.20 102.10

POOLED 88.43 89.70 89.99 90.80 93.43 88.67 91.87 92.27 102.17 102.40 95.03 97.00 89.12 92.87 91.03 93.93 95.13 90.12 89.76 91.52 91.40 94.67 98.67 92.48 89.35 88.70 82.93 85.05 88.93 87.20 91.58 91.33 88.73 89.27

WGL 29.84 25.14 27.05 24.90 25.05 22.11 27.10 32.60 29.23 31.95 32.95 27.80 26.41 28.05 34.22 28.25 29.73 32.39 24.17 27.06 29.58 35.90 38.45 32.50 29.20 27.00 30.10 28.65 31.03 27.55 26.36 26.89 27.58 26.20

Flag leaf length(cm) KUN KAMP POOLED 22.95 31.81 28.20 22.33 27.55 25.01 20.58 27.15 24.93 20.08 24.63 23.20 20.71 28.65 24.80 21.99 31.04 25.05 20.55 26.55 24.73 25.23 35.85 31.23 22.10 29.20 26.84 25.81 29.10 28.95 20.88 28.55 27.46 24.42 31.45 27.89 19.37 30.05 25.28 23.13 28.15 26.44 19.32 34.05 29.20 22.45 26.55 25.75 20.91 33.05 27.90 21.50 32.13 28.67 22.60 26.80 24.52 23.17 29.35 26.53 22.51 32.20 28.10 22.12 33.20 30.41 22.02 29.60 30.02 17.34 29.95 26.60 20.65 27.90 25.92 14.20 22.80 21.33 20.92 28.55 26.52 24.34 26.05 26.35 20.26 25.10 25.46 19.61 27.03 24.73 20.41 26.91 24.56 21.25 26.30 24.81 20.60 26.56 24.91 20.65 25.15 24.00

Table 10.1 contd… IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 Checks ANNADA IR64 JAYA DRRH2 KRH2 PA6201 General mean Range S.Em. C.D. (at p=0.05) C.V. %

Days to fifty percent flowering WGL KUN KAMP POOLED 99.00 80.50 96.25 91.92 86.00 91.00 84.75 87.25 87.50 91.00 84.00 87.50 85.50 90.50 87.00 87.67 89.50 88.00 90.50 89.33 88.50 83.50 87.25 86.42 85.50 91.50 83.00 86.67 89.50 83.50 86.00 86.33 86.00 89.00 90.50 88.50 88.50 87.00 86.50 87.33 86.50 89.00 83.75 86.42 91.00 78.50 95.25 88.25 84.50 90.00 83.50 86.00 90.00 87.50 91.25 89.58 92.50 81.00 94.25 89.25 87.50 86.00 85.75 86.42 98.50 84.50 99.50 94.17

WGL 85.80 96.30 96.70 90.00 86.80 80.80 86.80 88.60 82.80 82.50 85.60 83.35 84.00 90.40 88.80 83.40 87.90

Plant height(cm) KUN KAMP 79.10 102.10 73.30 111.70 82.05 116.00 73.80 113.80 74.00 109.40 72.20 104.80 80.20 86.90 83.60 99.90 80.20 98.40 82.10 88.72 79.70 97.70 81.70 89.60 78.40 100.60 81.90 100.20 84.30 92.50 75.50 104.20 82.70 106.60

POOLED 89.00 93.77 98.25 92.53 90.07 85.93 84.63 90.70 87.13 84.44 87.67 84.88 87.67 90.83 88.53 87.70 92.40

WGL 30.25 30.42 26.20 28.68 24.11 21.45 26.15 26.45 30.20 27.15 26.45 27.79 26.60 30.80 28.15 23.55 26.55

Flag leaf length(cm) KUN KAMP POOLED 18.38 29.15 25.93 26.45 36.20 31.02 20.97 28.80 25.32 19.17 25.15 24.33 19.91 23.55 22.52 20.52 24.62 22.20 22.44 25.40 24.66 19.66 26.69 24.27 20.52 28.80 26.51 24.87 24.55 25.52 21.10 29.20 25.58 21.50 24.55 24.61 16.89 28.10 23.86 17.85 23.35 24.00 21.37 23.03 24.18 22.49 28.15 24.73 18.64 29.10 24.76

89.50 93.00 91.00 89.00 92.50 90.50

80.00 88.00 81.00 82.00 81.00 80.50

86.00 92.00 87.00 87.75 95.00 89.50

85.17 91.00 86.33 86.25 89.50 86.83

89.50 93.00 91.00 89.00 92.50 90.50

81.70 74.20 85.00 86.00 77.93 73.10

95.80 107.90 93.80 98.70 105.40 103.20

89.00 91.70 89.93 91.23 91.94 88.93

29.31 25.55 29.76 26.85 30.07 28.25

17.62 22.41 22.05 17.26 21.95 24.84

25.60 23.30 23.55 26.85 25.30 29.45

24.18 23.75 25.12 23.65 25.77 27.51

90.53 84.00 to 100.00

86.18 75.00 to 97.00

89.40 82.00 to 101.00

88.70 82.83 to 99.00

89.45 75.30 to 106.10

101.77 83.30 to 116.10

90.79 78.17 to 102.40

28.08 19.70 to 40.55

21.29 14.20 to 30.18

28.14 21.30 to 39.10

25.84 20.62 to 36.61

0.94

1.21

0.83

1.05

1.60

81.15 72.07 to 97.00 0.87

3.15

2.12

1.02

1.17

1.86

1.41

3.14 1.75

3.30 1.93

2.35 1.32

2.93 1.68

4.70 2.65

2.46 1.53

8.81 4.37

5.92 3.31

2.86 5.16

3.32 7.91

5.23 9.40

3.93 7.76

Table 10.2: Mean performance of parents and hybrids for Flag leaf width (cm), Number of productive tillers per plant and Number of unproductive tillers per plant over locations and pooled

LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A Mean TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 Mean Parental Mean

WGL 1.31 1.07 1.34 1.22 1.39 1.28 1.31 1.27 1.38 1.06 1.30 1.31 1.12 1.05 1.39 1.20 1.45 1.33 1.47 1.12 1.53 1.29 1.29 1.28

Flag leaf width (cm) KUN KAMP POOLED 1.24 1.50 1.35 1.17 1.16 1.13 1.18 1.43 1.32 1.25 1.19 1.22 1.32 1.58 1.43 1.18 1.22 1.23 1.24 1.50 1.35 1.22 1.35 1.28 1.30 1.34 1.22 1.25 1.18 1.20 1.21 1.19 1.23 1.20 1.24 1.21 1.42 1.24 1.25 1.24

1.44 1.54 1.39 1.26 1.23 1.39 1.56 1.20 1.12 1.30 1.32 1.31 1.61 1.10 1.34 1.34

1.37 1.31 1.30 1.27 1.18 1.21 1.39 1.20 1.27 1.28 1.34 1.21 1.52 1.21 1.29 1.29

Number of productive tillers per plant WGL KUN KAMP POOLED 10.50 9.20 11.50 10.40 12.50 14.10 9.20 11.93 12.20 9.90 7.15 9.75 14.90 10.20 13.20 12.77 8.90 12.00 9.80 10.23 14.50 12.40 9.40 12.10 10.50 9.20 11.50 10.40 12.25 11.30 10.04 11.20 14.50 13.60 12.10 13.70 11.80 11.40 11.70 14.10 9.60 12.10 14.00 11.50 11.30 14.50 12.56 12.47

9.30 9.50 10.70 11.50 8.50 11.60 7.50 11.40 15.60 14.50 10.90 9.90 7.80 15.30 11.00 11.09

9.80 9.00 9.50 11.50 8.50 11.80 12.10 8.60 10.10 10.00 10.00 10.40 7.40 10.30 9.93 9.96

11.20 10.70 10.77 12.23 9.60 11.60 10.43 11.37 11.77 12.20 11.63 10.60 8.83 13.37 11.16 11.17

Number of unproductive tillers per plant WGL KUN KAMP POOLED

1.70 1.90 1.80 1.60 2.20 2.20 1.70

3.40 3.80 3.00 3.10 3.70 2.40 3.40

2.00 1.30 1.70 1.70 2.10 1.90 2.00

2.37 2.33 2.17 2.13 2.67 2.17 2.37

1.90

3.23

1.78

2.31

2.30 1.80 1.60 2.20 2.60 2.30 2.40 2.80 3.40 2.10 2.30 2.70 2.50 2.50 2.39 2.25

3.60 3.90 3.00 3.20 2.50 2.30 2.60 3.40 3.70 3.20 3.00 3.20 2.70 3.40 3.12 3.16

1.50 1.70 1.90 3.00 1.10 1.50 1.10 1.10 1.90 1.10 1.50 1.10 1.30 1.90 1.55 1.62

2.47 2.47 2.17 2.80 2.07 2.03 2.03 2.43 3.00 2.13 2.27 2.33 2.17 2.60 2.35 2.34

Table 10.2 contd… WGL CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24

1.28 1.22 1.35 1.42 1.32 1.30 1.24 1.27 1.03 1.24 1.40 1.34 1.28 1.36 1.42 1.37 1.20 1.26 1.16 1.25 1.17 1.31 1.08 1.12 1.25 1.19 1.36 1.33 1.42 1.34 1.35 1.41 1.28

Flag leaf width (cm) KUN KAMP POOLED 1.23 1.22 1.27 1.30 1.23 1.18 1.32 1.18 1.29 1.23 1.17 1.28 1.16 1.17 1.19 1.17 1.15 1.28 1.13 1.18 1.21 1.03 1.21 1.22 1.22 1.10 1.05 1.14 1.13 1.25 1.01 1.22 1.18

1.51 1.46 1.44 1.24 1.33 1.38 1.48 1.48 1.48 1.55 1.42 1.20 1.37 1.54 1.41 1.35 1.30 1.38 1.39 1.39 1.27 1.37 1.37 1.41 1.43 1.30 1.44 1.29 1.58 1.51 1.36 1.51 1.32

1.34 1.30 1.35 1.32 1.29 1.29 1.35 1.31 1.27 1.34 1.33 1.27 1.27 1.36 1.34 1.30 1.22 1.31 1.23 1.27 1.22 1.24 1.22 1.25 1.30 1.20 1.28 1.25 1.38 1.37 1.24 1.38 1.26

Number of productive tillers per plant WGL KUN KAMP POOLED 13.69 12.80 13.05 13.50 8.65 15.15 12.65 13.20 13.70 10.40 13.60 14.70 11.00 14.30 11.90 12.00 10.60 14.10 11.20 10.20 11.70 12.40 7.50 12.70 10.80 10.90 9.90 12.40 11.10 10.00 9.80 13.30 10.40

9.20 11.70 12.15 14.40 11.40 10.10 11.30 15.00 14.20 11.60 11.80 12.15 11.00 17.50 12.45 13.40 13.45 14.30 13.90 13.80 12.70 11.90 11.60 12.50 11.40 11.80 10.60 12.90 15.50 12.50 13.50 14.30 12.30

14.80 15.20 10.10 9.90 15.70 10.10 11.20 8.30 13.70 11.90 10.90 9.80 11.30 8.50 8.60 6.65 12.80 12.90 10.90 10.50 11.60 11.70 13.10 11.20 10.40 12.80 12.40 11.20 13.20 10.60 13.00 9.10 11.90

12.56 13.23 11.77 12.60 11.92 11.78 11.72 12.17 13.87 11.30 12.10 12.22 11.10 13.43 10.98 10.68 12.28 13.77 12.00 11.50 12.00 12.00 10.73 12.13 10.87 11.83 10.97 12.17 13.27 11.03 12.10 12.23 11.53

Number of unproductive tillers per plant WGL KUN KAMP POOLED 4.10 2.80 4.00 3.10 2.50 3.70 3.80 2.40 3.80 3.50 2.60 2.40 2.30 1.70 2.50 2.30 2.60 2.50 2.40 2.80 3.10 3.00 2.30 2.00 2.60 2.30 2.70 3.10 2.20 2.00 2.48 3.50 3.70

3.30 3.50 3.10 3.10 3.20 3.30 3.50 4.10 4.10 3.90 3.70 3.60 2.90 3.40 3.50 3.90 4.30 3.10 3.40 3.20 3.10 2.60 2.30 3.30 2.30 2.60 2.30 3.30 2.60 3.30 3.20 3.70 3.20

2.70 2.30 1.90 1.30 2.50 2.10 1.10 1.10 0.50 0.40 0.90 1.10 1.10 0.90 2.90 2.30 2.10 2.20 1.20 1.70 2.40 2.00 2.10 1.10 0.70 0.70 1.60 1.30 1.00 0.90 1.30 1.90 2.10

3.37 2.87 3.00 2.50 2.73 3.03 2.80 2.53 2.80 2.60 2.40 2.37 2.10 2.00 2.97 2.83 3.00 2.60 2.33 2.57 2.87 2.53 2.23 2.13 1.87 1.87 2.20 2.57 1.93 2.07 2.33 3.03 3.00

Table 10.2 contd…

IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35

WGL 1.28 1.35 1.38 1.02 1.30 1.22 1.16 1.52 1.35 1.24 1.33 1.30 1.38 1.24 1.26 1.29 1.28 1.14 1.06 1.25 1.45 1.36 1.34 1.53 1.51 1.34 1.39 1.23 1.36 1.34 1.32 1.03 1.40 1.33

Flag leaf width (cm) KUN KAMP POOLED 1.20 1.39 1.29 1.13 1.50 1.33 1.24 1.31 1.31 1.12 1.41 1.18 1.09 1.32 1.24 1.11 1.47 1.27 1.17 1.32 1.22 1.20 1.52 1.41 1.22 1.39 1.32 1.23 1.48 1.32 1.16 1.39 1.29 1.11 1.38 1.26 1.18 1.29 1.28 1.14 1.31 1.23 1.18 1.36 1.27 1.22 1.53 1.35 1.19 1.39 1.29 1.04 1.37 1.18 1.05 1.29 1.13 1.20 1.38 1.28 1.09 1.40 1.31 1.16 1.33 1.28 1.20 1.56 1.37 1.30 1.43 1.42 1.33 1.27 1.37 1.10 1.49 1.31 1.21 1.41 1.34 1.24 1.34 1.27 1.19 1.42 1.32 1.20 1.56 1.37 1.20 1.54 1.35 1.32 1.52 1.29 1.22 1.35 1.32 1.26 1.41 1.33

Number of productive tillers per plant WGL KUN KAMP POOLED 9.90 14.40 11.80 12.03 9.90 14.50 10.20 11.53 14.30 11.90 8.80 11.67 10.90 16.90 10.40 12.73 11.40 13.50 10.30 11.73 10.50 10.80 9.60 10.30 11.60 14.50 10.60 12.23 10.90 12.10 9.90 10.97 11.80 13.30 10.85 11.98 9.60 12.20 10.10 10.63 11.70 11.20 13.00 11.97 8.70 13.60 9.40 10.57 12.10 15.00 11.40 12.83 11.20 11.40 12.20 11.60 13.20 15.00 11.00 13.07 12.30 12.70 13.00 12.67 10.20 13.10 12.60 11.97 10.20 12.40 11.05 11.22 14.30 13.80 10.40 12.83 15.00 12.10 11.70 12.93 10.30 10.60 12.60 11.17 10.60 11.80 10.80 11.07 8.50 10.10 11.60 10.07 10.30 13.70 11.70 11.90 9.25 11.00 7.60 9.28 12.80 11.40 8.90 11.03 13.40 9.80 12.00 11.73 13.30 11.40 13.50 12.73 12.00 14.60 13.10 13.23 11.80 11.90 13.40 12.37 10.40 10.90 12.10 11.13 9.00 12.30 11.80 11.03 10.70 10.40 11.80 10.97 17.70 15.10 10.80 14.53

Number of unproductive tillers per plant WGL KUN KAMP POOLED 2.90 3.10 1.10 2.37 3.10 3.60 0.50 2.40 3.40 2.50 0.90 2.27 3.90 3.00 1.30 2.73 2.80 2.20 2.20 2.40 3.00 3.10 0.90 2.33 2.60 3.20 1.30 2.37 2.70 3.70 2.30 2.90 2.40 3.20 1.10 2.23 2.50 3.40 1.50 2.47 3.00 3.10 1.00 2.37 3.10 3.50 0.85 2.48 2.30 3.10 0.50 1.97 3.20 3.70 1.30 2.73 2.80 3.50 1.50 2.60 3.90 3.50 0.70 2.70 3.10 3.40 0.50 2.33 2.80 3.40 1.50 2.57 3.80 3.00 0.90 2.57 2.40 3.40 1.50 2.43 2.20 4.00 2.40 2.87 2.30 2.90 1.90 2.37 2.40 2.80 1.10 2.10 1.50 2.60 1.10 1.73 2.20 2.90 2.20 2.43 2.10 3.10 0.90 2.03 2.70 2.40 0.85 1.98 2.30 2.30 1.10 1.90 2.90 3.00 1.30 2.40 2.40 3.50 1.70 2.53 2.60 2.10 1.10 1.93 3.30 3.00 1.10 2.47 2.10 3.30 0.90 2.10 2.50 3.40 1.70 2.53

Table 10.2 contd.,

IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 Checks ANNADA IR64 JAYA DRRH2 KRH2 PA6201 General mean Range S.Em. C.D. (at p=0.05) C.V. %

WGL 1.32 1.50 1.45 1.40 1.49 1.29 1.39 1.36 1.27 1.48 1.33 1.01 1.33 1.33 1.49 1.39 1.33

Flag leaf width (cm) KUN KAMP POOLED 1.12 1.47 1.30 1.29 1.53 1.44 1.15 1.25 1.28 1.30 1.64 1.45 1.15 1.29 1.31 1.35 1.39 1.34 1.28 1.24 1.30 1.28 1.46 1.37 1.33 1.37 1.32 1.26 1.53 1.42 1.23 1.42 1.33 1.24 1.34 1.20 1.31 1.49 1.38 1.16 1.59 1.36 1.20 1.48 1.39 1.34 1.62 1.45 1.18 1.48 1.33

Number of productive tillers per plant WGL KUN KAMP POOLED 9.70 13.60 12.40 11.90 11.00 12.40 12.10 11.83 9.80 8.90 11.80 10.17 13.30 12.10 10.00 11.80 9.80 13.40 11.10 11.43 10.80 14.60 13.60 13.00 14.00 13.10 12.20 13.10 12.80 13.90 10.70 12.47 14.70 12.60 7.90 11.73 15.70 11.00 13.50 13.40 11.40 13.40 9.90 11.57 12.00 12.40 11.90 12.10 9.80 11.30 11.20 10.77 12.70 13.10 9.90 11.90 11.20 9.30 9.60 10.03 11.60 14.40 11.60 12.53 14.70 12.30 12.70 13.23

Number of unproductive tillers per plant WGL KUN KAMP POOLED 2.20 3.00 1.30 2.17 2.30 3.30 1.70 2.43 2.20 3.30 1.30 2.27 2.90 3.70 1.90 2.83 2.20 3.50 1.40 2.37 2.70 3.40 1.10 2.40 3.40 2.70 2.30 2.80 2.20 3.10 2.30 2.53 3.50 3.60 1.40 2.83 2.40 3.20 1.50 2.37 2.00 3.80 1.10 2.30 3.50 4.00 1.40 2.97 1.80 3.10 2.40 2.43 2.00 3.70 1.10 2.27 2.10 3.10 1.30 2.17 1.60 3.10 0.85 1.85 3.00 2.70 2.10 2.60

1.17 1.38 1.24 1.12 1.30 1.41

1.42 1.27 1.32 1.21 1.21 1.04

1.43 1.36 1.25 1.30 1.40 1.51

1.34 1.34 1.27 1.21 1.30 1.32

12.10 14.40 12.00 12.00 11.60 11.50

14.40 11.60 10.80 9.40 11.90 17.40

9.80 8.50 6.90 7.00 7.50 10.80

12.10 11.50 9.90 9.47 10.33 13.23

2.70 1.90 2.50 3.60 2.40 2.50

3.50 2.50 3.50 2.90 3.40 3.30

1.90 2.20 2.40 2.40 2.80 1.90

2.70 2.20 2.80 2.97 2.87 2.57

1.30 1.01 to 1.53 0.05 0.15 6.12

1.21 1.01 to 1.42 0.05 0.16 6.89

1.40 1.10 to 1.64 0.07 0.21 7.68

1.30 1.13 to 1.52 0.06 0.17 6.98

11.92 7.50 to 17.70 0.68 2.00 8.47

12.33 7.50 to 17.50 0.78 2.19 8.97

10.89 6.65 to 15.70 0.72 2.08 9.66

11.71 8.83 to 14.53 0.74 2.07 9.00

2.62 1.50 to 4.10 0.15 0.48 9.38

3.20 2.10 to 4.30 0.16 0.46 7.36

1.50 0.40 to 3.00 0.09 0.34 11.56

2.44 1.73 to 3.03 0.15 0.43 9.12

Table 10.3: Mean performance of parents and hybrids for Panicle length (cm), Plant weight (g) and Number of filled grains per panicle over locations and pooled WGL LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A Mean TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 Mean Parental Mean

Panicle length (cm) KUN KAMP POOLED

WGL

Panicle weight (g) KUN KAMP

POOLED

Number of filled grain per panicle WGL KUN KAMP POOLED

26.57 24.66 23.61 25.55 23.53 22.75 24.45

22.60 21.24 23.14 24.60 23.08 19.90 22.43

26.03 22.55 24.00 26.12 25.23 24.06 24.67

25.07 22.82 23.58 25.42 23.95 22.24 23.85

2.99 2.44 2.33 2.71 2.22 2.38 2.51

3.01 2.40 2.27 2.58 2.16 2.51 2.49

2.61 2.56 2.56 2.73 2.51 2.57 2.59

2.87 2.47 2.39 2.67 2.30 2.49 2.53

129.10 114.15 117.40 130.60 119.90 110.20 120.23

113.40 144.50 140.50 126.50 114.70 127.20 127.80

121.15 129.80 107.60 113.95 125.53 130.50 121.42

121.22 129.48 121.83 123.68 120.04 122.63 123.15

24.03 24.57 27.51 22.49 25.43 22.85 25.54 22.38 25.14 28.62 26.16 28.09 26.89 26.46 25.44 25.14

23.58 23.04 21.81 21.49 21.72 22.40 24.15 23.40 23.35 23.46 23.70 23.55 26.10 23.88 23.26 23.01

26.60 24.90 23.54 22.29 28.16 26.61 24.14 27.28 24.65 26.86 23.40 26.78 25.21 27.00 25.53 25.27

24.74 24.17 24.29 22.09 25.10 23.95 24.61 24.35 24.38 26.31 24.42 26.14 26.07 25.78 24.74 24.47

2.75 3.06 2.4 2.46 3 2.47 2.25 2.08 2.07 2.95 2.05 2.435 3.36 2.56 2.56 2.55

2.67 2.33 2.34 2.46 2.93 2.42 2.19 2.03 2.11 3.02 1.98 2.38 3.28 2.45 2.47 2.48

2.62 2.87 2.69 2.86 2.80 2.59 2.24 2.27 2.33 2.78 2.05 2.54 2.23 2.59 2.53 2.55

2.68 2.75 2.48 2.59 2.91 2.49 2.23 2.13 2.17 2.92 2.03 2.45 2.96 2.53 2.52 2.52

125.20 159.10 150.70 152.05 130.50 127.70 130.30 119.10 115.55 127.30 119.70 141.30 113.20 125.50 131.23 127.93

126.95 139.95 128.80 129.40 130.70 121.80 117.10 114.10 115.80 133.80 122.60 124.30 123.40 129.70 125.60 126.26

129.35 134.45 125.10 129.20 118.10 134.50 114.90 126.60 125.90 124.80 140.00 113.80 133.90 134.30 127.49 125.67

127.17 144.50 134.87 136.88 126.43 128.00 120.77 119.93 119.08 128.63 127.43 126.47 123.50 129.83 128.11 126.62

Table 10.3contd… WGL CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24

24.34 24.04 24.11 24.13 24.16 24.53 25.90 25.53 25.73 24.34 26.09 24.73 28.73 26.88 26.40 22.74 24.65 23.19 23.13 26.88 26.71 26.02 25.39 23.74 23.10 25.35 24.95 28.02 29.04 26.83 25.70 24.90 25.17

Panicle length (cm) KUN KAMP POOLED 22.41 24.03 23.86 21.89 23.23 24.28 23.32 23.65 23.59 22.25 22.56 22.31 23.61 25.28 24.70 23.36 23.57 24.22 21.95 22.80 23.75 23.93 22.68 22.66 23.71 21.56 22.63 25.53 26.79 24.34 21.27 22.37 23.28

27.85 25.89 25.48 23.81 27.52 24.71 26.27 27.78 27.14 24.49 26.91 25.18 27.81 23.99 26.72 24.95 23.90 27.21 22.78 28.75 25.85 25.90 24.88 25.15 25.99 24.96 27.08 26.20 28.06 24.97 25.70 24.17 21.39

24.87 24.65 24.48 23.28 24.97 24.51 25.16 25.65 25.49 23.69 25.19 24.07 26.72 25.38 25.94 23.68 24.04 24.87 22.62 26.14 25.44 25.28 24.32 23.85 24.27 23.96 24.89 26.58 27.96 25.38 24.22 23.81 23.28

WGL 2.65 2.77 2.53 2.68 2.7 2.36 2.73 2.57 2.65 2.95 3.29 2.87 3.17 3.13 3.24 2.44 2.51 2.32 2.15 2.32 3.08 3.08 3.04 2.78 2.38 2.21 3.04 3.03 2.23 3.12 2.28 3.34 2.73

Panicle weight (g) KUN KAMP 2.58 2.69 2.46 2.60 2.64 2.30 2.65 2.50 2.58 2.87 3.21 2.80 3.08 2.69 2.65 2.43 2.54 2.27 2.59 2.26 2.15 3.01 2.96 2.71 2.37 2.16 2.71 2.60 2.17 2.78 2.22 3.25 2.66

3.11 3.08 2.42 2.64 2.91 2.36 2.75 2.68 3.02 2.74 2.45 2.70 2.83 2.73 2.98 2.30 2.40 2.36 2.36 3.06 2.75 2.75 2.53 2.78 2.55 2.25 3.14 2.80 2.22 2.97 2.38 2.25 2.73

POOLED 2.78 2.85 2.47 2.64 2.75 2.34 2.71 2.58 2.75 2.85 2.98 2.79 3.03 2.85 2.96 2.39 2.48 2.32 2.37 2.55 2.66 2.95 2.84 2.76 2.43 2.21 2.96 2.81 2.21 2.96 2.29 2.95 2.71

Number of filled grain per panicle WGL KUN KAMP POOLED 128.00 135.30 127.00 93.80 119.25 129.20 140.85 117.70 120.80 116.90 152.40 120.65 145.85 140.05 146.80 122.60 126.60 139.60 124.70 119.00 144.00 143.00 123.85 112.10 125.40 128.75 139.85 120.40 137.10 126.95 139.75 125.50 133.80

114.35 138.25 145.40 141.25 146.30 125.81 128.86 139.25 130.25 160.10 154.00 130.20 161.60 139.80 151.40 146.30 160.80 133.80 158.25 119.20 126.20 160.10 111.25 146.90 157.50 128.15 139.40 150.20 119.55 128.75 156.80 154.85 128.80

142.50 122.05 111.70 131.00 113.03 126.30 142.20 122.90 130.95 111.25 130.30 118.45 137.20 111.40 118.45 128.75 125.60 122.40 135.10 118.80 119.70 111.50 112.80 111.40 108.70 133.10 123.10 127.10 147.40 131.20 147.95 118.60 133.90

128.28 131.87 128.03 122.02 126.19 127.10 137.30 126.62 127.33 129.42 145.57 123.10 148.22 130.42 138.88 132.55 137.67 131.93 139.35 119.00 129.97 138.20 115.97 123.47 130.53 130.00 134.12 132.57 134.68 128.97 148.17 132.98 132.17

Table 10.3 contd… IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35

WGL 26.09 25.86 25.53 23.30 24.58 26.10 27.56 27.34 26.55 30.23 24.41 26.68 25.23 26.67 27.70 24.62 25.89 25.89 25.45 27.66 24.85 31.56 27.13 26.68 24.85 23.43 24.80 25.63 29.83 25.82 24.19 25.00 23.05 24.80

Panicle length (cm) KUN KAMP POOLED 23.96 22.83 24.29 22.79 24.07 24.24 22.40 24.03 23.99 24.60 24.99 24.30 21.81 23.89 23.43 22.71 24.80 24.54 23.90 26.91 26.12 28.15 23.63 26.37 27.60 27.76 27.30 25.22 25.78 27.08 23.25 24.25 23.97 24.15 25.83 25.55 21.95 23.75 23.64 23.02 28.53 26.07 21.60 24.25 24.51 23.06 25.35 24.34 23.70 24.41 24.67 24.43 27.75 26.02 23.90 26.18 25.18 23.65 25.72 25.68 22.08 23.44 23.46 25.43 25.46 27.48 26.85 27.14 27.04 24.06 24.00 24.91 25.82 24.76 25.14 21.42 23.44 22.76 20.12 22.12 22.35 22.46 24.96 24.35 22.15 27.62 26.53 22.99 26.47 25.09 21.68 27.90 24.59 24.05 23.79 24.28 22.85 27.50 24.47 22.17 24.96 23.98

WGL 2.18 2.62 2.74 2.33 2.57 3.04 3.03 3.33 2.86 3.01 2.995 2.73 2.34 3.12 2.31 2.23 3.3 3.01 2.58 2.81 2.83 2.92 3.04 3.51 2.255 2.22 2.84 2.8 2.09 2.45 2.04 2.64 2.93 2.43

Panicle weight (g) KUN KAMP 2.16 2.41 2.55 2.45 2.67 2.62 2.27 2.39 2.50 2.31 2.96 2.76 3.05 2.73 3.23 2.75 2.94 2.55 2.51 2.79 2.77 2.70 2.64 2.77 2.28 2.42 3.03 2.78 2.21 2.51 2.18 2.38 3.21 2.52 2.52 2.76 2.51 2.58 2.60 2.81 2.76 2.83 2.31 2.91 2.92 3.03 3.42 3.51 2.09 2.25 2.17 2.22 2.80 2.84 2.89 2.80 2.24 2.09 2.38 2.45 2.19 2.19 2.57 2.64 2.88 2.93 2.37 2.43

POOLED 2.25 2.54 2.68 2.33 2.46 2.92 2.94 3.10 2.78 2.77 2.82 2.71 2.35 2.98 2.34 2.26 3.01 2.76 2.56 2.74 2.81 2.71 3.00 3.48 2.20 2.20 2.83 2.83 2.14 2.43 2.14 2.62 2.91 2.41

Number of filled grain per panicle WGL KUN KAMP POOLED 122.15 129.25 130.85 127.42 139.05 135.55 125.45 133.35 125.00 114.90 113.00 117.63 123.60 114.90 118.95 119.15 113.90 128.50 132.20 124.87 125.90 138.00 125.60 129.83 121.70 122.00 122.95 122.22 148.30 143.40 119.80 137.17 133.60 146.50 129.70 136.60 137.60 133.80 120.70 130.70 148.00 166.25 121.20 145.15 112.40 117.70 122.85 117.65 124.93 135.65 130.55 130.38 136.60 147.65 138.15 140.80 123.00 116.50 128.70 122.73 118.90 132.50 119.35 123.58 128.70 130.40 131.80 130.30 111.40 122.80 172.55 135.58 124.15 131.30 126.55 127.33 138.00 140.50 122.30 133.60 122.00 154.75 109.15 128.63 144.50 135.40 117.70 132.53 143.90 129.60 128.50 134.00 113.30 138.70 118.30 123.43 125.60 126.65 128.25 126.83 128.50 131.55 135.30 131.78 108.80 136.30 145.70 130.27 105.20 127.25 130.20 120.88 125.00 128.05 116.65 123.23 137.90 134.85 121.90 131.55 129.30 136.55 122.80 129.55 116.80 122.45 129.75 123.00 142.10 154.75 129.50 142.12 108.90 129.80 123.60 120.77

Table 10.3 contd., IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 Checks ANNADA IR64 JAYA DRRH2 KRH2 PA6201

WGL 24.63 28.42 29.54 26.54 22.96 23.82 23.56 24.78 25.31 23.79 23.39 23.20 24.64 23.73 26.01 27.20 28.87 25.04 24.11 25.69 23.29 25.33 22.29

Panicle length (cm) KUN KAMP POOLED 22.24 25.28 24.05 23.99 28.89 27.10 25.57 27.69 27.60 22.55 26.21 25.10 21.90 24.43 23.10 20.97 23.49 22.76 22.46 27.53 24.52 21.33 24.98 23.70 20.05 23.01 22.79 25.83 25.97 25.20 22.56 22.16 22.70 23.00 21.44 22.55 21.40 25.10 23.71 20.90 23.40 22.68 21.55 24.21 23.92 24.63 26.09 25.97 21.60 26.30 25.59 21.30 24.11 23.87 21.50 25.29 22.10

26.72 26.84 21.40 24.13 25.66 23.05

General mean

25.45

23.20

25.34

Range S.Em. C.D. (at p=0.05) C.V. %

22.11 to 31.56 0.67 1.89 3.76

19.90 to 28.15 0.82 2.65 5.76

21.39 to 28.89 0.65 1.83 3.66

24.35 25.02 23.65 22.97 25.43 22.48

WGL 2.27 2.94 3.42 2.99 2.99 3.07 2.73 2.33 2.41 2.61 2.79 2.42 2.9 2.87 2.71 2.49 2.12 3.2 2.96 3.5 2.04 3.25 2.77

Panicle weight (g) KUN KAMP 2.22 2.27 2.87 2.94 3.33 3.42 2.97 2.98 2.77 2.99 2.99 3.07 2.69 2.73 2.23 2.33 2.22 2.59 2.79 2.74 2.71 2.78 2.36 2.55 2.82 2.68 2.79 3.00 2.64 2.54 2.83 2.26 2.22 2.47 3.16 3.00 3.41 1.99 3.17 2.71

2.78 2.84 3.02 2.53 2.40 2.78

POOLED 2.25 2.92 3.39 2.98 2.92 3.04 2.72 2.30 2.41 2.71 2.76 2.44 2.80 2.89 2.63 2.53 2.27 3.05 2.93 3.31 2.19 2.94 2.75

24.66

2.70

2.61

2.64

2.65

22.09 to 27.96 0.76 2.13 4.41

2.04 to 3.51 0.15 0.42 7.89

1.98 to 3.42 0.11 0.32 6.20

2.05 to 3.51 0.15 0.44 8.57

2.03 to 3.48 0.14 0.39 7.62

Number of filled grain per panicle WGL KUN KAMP POOLED 158.25 129.00 114.25 133.83 126.65 134.50 118.75 126.63 128.85 124.00 117.05 123.30 131.70 129.10 142.80 134.53 150.80 138.85 121.00 136.88 156.70 129.35 119.35 135.13 153.10 148.85 117.15 139.70 119.50 138.40 120.50 126.13 139.90 121.60 129.20 130.23 136.50 127.60 136.90 133.67 128.00 128.10 129.75 128.62 121.25 121.90 122.65 121.93 137.40 134.85 126.25 132.83 126.90 150.30 134.05 137.08 132.30 132.35 138.25 134.30 149.50 129.40 128.20 135.70 129.00 126.68 153.35 136.34 112.20 124.60 118.70 117.00 132.60 151.75

118.20 126.60 128.90 107.00 134.00 127.90

106.59 118.37 112.77 111.15 125.97 144.16

112.33 123.19 120.12 111.72 130.86 141.27

129.25

133.46 107.00 to 166.25 8.21 23.06 8.70

125.81 106.59 to 172.55 7.90 22.18 8.88

129.51 111.72 to 148.22 4.37 12.27 4.77

93.80 to 159.10 4.80 13.49 5.26

Table 10.4: Mean performance of parents and hybrids for Spikelet fertility (%), 1000 seed weight (g) and Grain yield per plant (g) over locations and pooled WGL LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A Mean TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 Mean Parental Mean

Spikelet fertility (%) KUN KAMP POOLED

WGL

1000 seed weight (g) KUN KAMP POOLED

WGL

Grain yield per plant (g) KUN KAMP POOLED

73.11 70.61 65.95 77.71 70.37 78.16 72.65

72.63 74.78 77.17 76.51 74.40 71.31 74.46

78.06 68.00 75.27 81.96 70.52 70.24 74.01

74.60 71.13 72.79 78.72 71.76 73.24 73.71

18.49 18.97 17.58 19.04 17.75 18.59 18.40

16.38 17.34 16.96 17.40 15.68 16.96 16.79

18.11 18.59 17.22 18.65 17.38 18.21 18.02

17.66 18.30 17.25 18.36 16.94 17.92 17.74

13.46 19.43 18.39 15.80 11.30 12.75 14.25

12.24 18.66 17.63 15.02 10.43 13.35 14.56

14.76 13.19 14.09 18.88 10.51 10.82 13.71

13.49 17.09 16.70 16.57 10.75 12.31 14.17

69.05 76.05 75.55 75.38 71.73 74.49 74.72 74.87 78.59 77.77 69.78 70.70 65.65 76.62

74.52 82.05 72.78 68.56 75.17 73.94 73.51 82.30 72.08 80.23 72.61 72.36 79.99 89.06

79.80 77.93 68.73 77.40 81.31 74.62 74.52 72.14 70.09 72.51 71.93 73.46 72.90 71.40

74.45 78.67 72.35 73.78 76.07 74.35 74.25 76.44 73.59 76.84 71.44 72.17 72.85 79.02

16.64 16.44 17.04 16.06 19.37 20.04 19.93 20.96 21.82 18.85 15.79 18.21 18.06 18.67

15.58 14.40 16.44 15.50 16.75 19.33 19.22 19.25 21.04 16.75 15.22 17.57 16.94 17.92

16.30 16.09 16.69 15.73 18.98 19.63 19.52 20.54 21.38 18.47 15.46 17.83 17.68 18.29

16.17 15.64 16.72 15.76 18.37 19.67 19.56 20.25 21.41 18.02 15.49 17.87 17.56 18.29

14.63 18.20 13.47 11.27 17.84 11.23 13.90 14.76 10.16 18.19 17.02 12.37 15.97 18.69

12.87 17.01 12.73 12.14 14.97 12.90 13.14 15.45 11.59 17.69 15.21 11.68 15.09 17.65

23.84 17.61 15.50 9.66 13.38 14.31 10.85 14.70 13.29 11.47 12.59 12.89 14.60 12.46

17.11 17.61 13.90 11.02 15.40 12.81 12.63 14.97 11.68 15.78 14.94 12.31 15.22 16.27

73.64 73.34

76.37 75.79

74.19 74.14

74.73 74.43

18.72 18.41

17.28 17.13

18.04 18.04

17.91 17.86

15.29 14.94

14.29 14.37

14.08 13.97

14.55 14.43

Table 10.4contd… WGL CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24

80.06 82.21 86.27 63.56 75.85 77.47 73.00 91.20 64.66 77.92 88.71 72.99 67.24 73.95 88.19 84.05 74.66 68.61 72.96 66.74 91.86 75.70 81.27 77.08 72.44 64.97 83.26 78.91 86.37 81.08 82.76 71.53 82.72

Spikelet fertility (%) KUN KAMP POOLED 69.31 77.66 86.98 76.61 79.76 72.87 88.88 81.53 75.09 75.61 82.88 75.23 85.47 76.70 82.35 79.71 73.73 81.70 85.18 77.52 84.21 77.67 77.50 77.59 77.22 79.78 80.45 76.63 69.93 74.56 77.01 83.82 81.15

85.40 77.90 76.05 75.08 75.81 74.05 74.55 72.45 80.65 73.78 73.62 76.78 77.73 76.40 79.48 86.71 73.21 72.36 73.99 77.92 84.28 83.93 77.24 74.63 82.88 79.02 66.88 74.68 73.05 84.20 70.66 80.58 75.94

78.25 79.26 83.10 71.75 77.14 74.79 78.81 81.73 73.47 75.77 81.73 75.00 76.81 75.68 83.34 83.49 73.86 74.22 77.37 74.06 86.78 79.10 78.67 76.43 77.51 74.59 76.86 76.74 76.45 79.94 76.81 78.64 79.94

WGL 18.61 17.77 18.74 18.94 18.84 17.01 20.24 19.62 21.86 19.29 18.38 19.15 19.44 19.30 19.89 17.63 19.30 20.60 18.99 17.73 21.72 21.27 22.16 20.28 18.80 19.18 19.58 20.50 19.04 18.62 18.22 19.88 18.58

1000 seed weight (g) KUN KAMP POOLED 16.98 17.14 18.08 18.27 18.18 16.86 19.53 18.91 21.06 18.61 17.72 18.48 18.75 18.62 20.14 17.00 18.61 19.87 18.32 17.83 20.95 20.53 21.38 19.56 18.14 18.51 18.89 19.78 18.36 17.97 17.58 19.18 17.92

18.23 17.40 18.35 18.06 18.45 16.66 19.83 19.22 21.42 18.90 18.00 18.76 19.05 18.91 19.48 17.27 18.91 20.19 18.60 17.37 21.29 20.85 21.72 19.87 18.42 18.79 19.19 20.09 18.65 18.24 17.85 19.48 18.20

17.94 17.44 18.39 18.42 18.49 16.84 19.87 19.25 21.45 18.93 18.03 18.80 19.08 18.94 19.84 17.30 18.94 20.22 18.64 17.64 21.32 20.88 21.75 19.90 18.45 18.83 19.22 20.12 18.68 18.28 17.88 19.51 18.23

WGL 12.85 17.14 24.06 13.41 21.79 14.59 24.14 18.41 14.85 17.35 21.14 15.06 25.18 19.39 17.94 23.20 20.45 20.74 24.01 15.53 27.69 25.39 15.03 22.21 20.20 24.68 22.70 23.37 14.94 17.95 22.54 20.43 20.84

Grain yield per plant (g) KUN KAMP POOLED 12.26 16.30 22.71 12.77 20.27 13.57 23.62 17.50 14.45 16.49 20.09 14.65 23.89 17.49 17.07 21.81 19.43 18.74 23.92 16.78 28.29 24.09 14.61 21.09 19.01 23.43 21.56 23.26 13.81 16.64 21.71 19.11 19.26

13.74 23.75 16.99 13.74 14.16 15.82 14.11 14.91 16.06 16.18 15.31 13.25 19.80 12.10 15.36 22.47 26.90 14.30 14.75 19.93 16.76 22.13 25.07 17.01 13.70 18.85 23.00 13.85 15.87 15.14 26.12 12.77 20.42

12.95 19.06 21.25 13.31 18.74 14.66 20.62 16.94 15.12 16.67 18.85 14.32 22.96 16.33 16.79 22.49 22.26 17.93 20.89 17.41 24.25 23.87 18.24 20.10 17.64 22.32 22.42 20.16 14.87 16.58 23.46 17.44 20.17

Table 10.4 contd… IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35

WGL 69.98 82.18 78.62 79.73 82.97 86.66 82.65 79.74 76.81 80.26 86.68 72.79 70.05 89.00 73.14 75.93 77.03 69.65 67.43 82.01 78.34 85.35 87.15 83.75 84.25 73.01 72.28 75.30 72.65 78.16 76.39 84.47 82.82 86.79

Spikelet fertility (%) KUN KAMP POOLED 75.94 77.76 74.56 71.83 70.50 74.83 74.76 73.30 75.56 79.58 77.63 78.98 79.13 71.73 77.94 73.26 74.30 78.07 80.23 79.60 80.82 79.28 84.52 81.18 85.64 84.48 82.31 81.60 76.60 79.49 86.89 75.76 83.11 75.58 77.81 75.39 79.80 74.86 74.90 80.36 68.12 79.16 77.48 78.70 76.44 84.65 72.45 77.68 83.70 78.62 79.78 74.20 82.15 75.33 82.03 77.30 75.58 82.68 79.87 81.52 80.57 77.69 78.86 87.43 76.21 82.99 80.25 67.91 78.43 80.09 79.06 80.96 76.25 82.22 80.90 79.12 80.10 77.41 74.13 75.70 74.04 77.96 74.05 75.77 73.26 75.79 73.90 81.82 76.31 78.76 73.10 79.08 76.19 77.75 79.02 80.41 84.82 74.85 80.83 78.45 77.08 80.77

WGL 18.30 20.74 20.34 21.40 19.61 17.99 18.42 19.88 19.22 20.60 17.95 18.65 20.13 17.96 17.78 20.84 20.50 21.03 19.17 18.37 18.48 19.77 18.05 20.71 18.65 19.49 17.48 19.09 17.64 20.79 20.58 21.20 19.50 19.20

1000 seed weight (g) KUN KAMP POOLED 18.02 17.93 18.08 20.02 20.33 20.36 19.63 19.94 19.97 20.62 20.97 21.00 18.92 19.21 19.25 17.36 17.62 17.66 17.77 18.04 18.07 19.18 19.48 19.51 18.54 18.84 18.87 19.86 20.18 20.21 17.32 17.58 17.61 17.99 18.27 18.30 19.40 19.72 19.75 17.33 17.59 17.62 17.88 17.42 17.69 20.11 20.42 20.46 19.77 20.09 20.12 19.80 20.61 20.48 18.49 18.78 18.81 17.73 18.00 18.03 17.83 18.10 18.14 19.07 19.37 19.40 17.41 17.67 17.71 19.98 20.30 20.33 17.99 18.28 18.31 18.81 19.10 19.13 16.88 17.13 17.16 18.42 18.70 18.74 17.51 17.28 17.48 20.05 20.37 20.40 19.85 20.16 20.20 20.45 20.77 20.81 18.82 19.12 19.15 18.52 18.81 18.84

WGL 16.59 16.35 18.17 14.74 17.76 20.76 17.07 24.12 24.12 19.35 27.79 16.06 19.17 26.52 14.28 20.93 24.74 14.58 16.91 22.72 22.92 27.45 22.52 22.82 23.68 17.77 13.06 18.20 14.01 25.20 26.24 13.31 25.84 18.04

Grain yield per plant (g) KUN KAMP POOLED 16.26 15.14 16.00 15.56 16.03 15.98 17.28 14.83 16.76 14.34 13.24 14.11 16.90 14.84 16.50 17.40 12.35 16.84 16.23 13.29 15.53 23.08 18.73 21.98 23.99 26.80 24.97 18.40 29.96 22.57 26.67 14.44 22.97 13.88 12.25 14.06 17.35 13.92 16.81 25.47 14.87 22.29 14.21 12.82 13.77 20.51 13.79 18.41 23.80 14.50 21.01 14.17 14.29 14.35 16.09 18.94 17.31 21.62 22.25 22.20 23.41 21.68 22.67 26.55 17.03 23.68 22.81 17.14 20.82 21.36 14.77 19.65 24.65 15.90 21.41 21.93 25.61 21.77 12.45 12.81 12.77 16.37 16.28 16.95 14.15 15.73 14.63 23.93 13.31 20.81 20.14 15.54 20.64 14.98 26.47 18.25 24.09 18.37 22.77 17.26 15.60 16.97

Table 10.4 contd… IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 Checks ANNADA IR64 JAYA DRRH2 KRH2 PA6201 General mean Range S.Em. C.D. (at p=0.05) C.V. %

WGL 73.17 70.10 78.30 73.20 75.15 75.77 78.92 76.92 78.89 73.38 71.95 74.55 73.47 78.74 79.57 71.80 80.25

Spikelet fertility (%) KUN KAMP POOLED 71.98 83.45 76.20 74.68 78.42 74.40 81.03 76.98 78.77 73.51 77.68 74.79 78.65 76.29 76.70 82.24 74.39 77.47 85.81 72.82 79.18 80.61 77.41 78.31 79.79 81.85 80.17 79.06 72.20 74.88 73.73 80.23 75.30 77.33 76.86 76.25 82.00 79.51 78.32 83.92 81.05 81.24 80.75 79.20 79.84 84.24 75.87 77.30 77.43 79.96 79.21

WGL 20.20 21.37 19.87 19.29 19.04 19.41 18.34 20.13 17.81 20.64 20.00 20.80 19.20 18.56 20.82 18.04 18.40

1000 seed weight (g) KUN KAMP POOLED 19.49 19.79 19.83 20.14 20.95 20.82 19.66 19.47 19.66 18.61 18.90 18.93 18.37 18.65 18.69 18.73 19.02 19.05 17.69 17.97 18.00 19.42 19.73 19.76 18.15 17.44 17.80 19.92 20.23 20.26 19.30 19.60 19.63 20.07 20.38 20.41 18.53 18.82 18.85 17.91 18.18 18.21 20.07 20.40 20.43 17.40 17.67 17.70 17.76 18.02 18.06

WGL 19.67 24.77 17.73 16.43 20.87 16.59 21.98 23.15 14.00 18.54 19.83 16.26 20.05 23.75 23.48 21.13 18.97

Grain yield per plant (g) KUN KAMP POOLED 18.66 19.52 19.28 23.50 24.26 24.18 16.86 15.95 16.85 15.65 16.11 16.07 19.39 17.67 19.31 17.29 16.26 16.71 26.53 13.45 20.65 20.07 16.31 19.84 15.39 18.69 16.03 19.12 23.35 20.34 18.94 16.04 18.27 14.36 19.06 16.56 19.05 16.61 18.57 23.33 24.65 23.91 22.78 23.00 23.09 20.37 14.98 18.83 18.04 15.59 17.53

84.28 82.13 73.99 71.65 68.75 65.82

81.75 79.66 71.77 69.50 66.69 63.84

80.47 78.43 70.67 68.46 65.65 62.85

82.17 80.07 72.14 69.87 67.03 64.17

19.21 20.53 19.97 20.06 17.63 19.21

18.96 19.80 19.26 19.35 17.02 17.57

18.82 20.12 19.56 19.66 17.27 18.82

19.00 20.15 19.60 19.69 17.31 18.53

16.23 15.37 20.81 11.02 23.29 20.80

13.94 14.52 21.06 10.41 23.34 21.25

11.62 16.62 16.12 13.55 15.45 14.75

13.93 15.50 19.33 11.66 20.69 18.94

76.74 63.56 to 91.86 2.91 8.18 5.37

78.10 63.84 to 89.06 1.80 5.06 3.26

76.24 62.85 to 86.71 1.51 4.24 2.80

77.03 64.17 to 86.78 1.43 4.03 2.64

19.23 15.79 to 22.16 0.51 1.44 3.78

18.46 14.40 to 21.38 0.73 2.05 5.61

18.84 15.46 to 21.72 0.50 1.39 3.74

18.84 15.49 to 21.75 0.59 1.64 4.43

18.97 10.16 to 27.79 1.17 3.28 8.72

18.26 10.41 to 28.89 0.96 2.71 7.48

16.61 9.66 to 29.96 0.93 2.63 7.99

17.94 10.75 to 24.97 1.03 2.87 8.88

Table 11: Estimates of general and specific Combining ability variances and proportionate gene action in rice for twelve characters in rice Character

Days to 50% flowering

Plant height (cm)

Number of productive tillers/plant Number of unproductive tillers/plant

Panicle length (cm)

Flag leaf length (cm)

Flag leaf width (cm)

Panicle weight (g)

Spikelet fertility %

Number of filled grains/panicle

Test weight (g)

Grain yield / plant (g)

Location

Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled Warangal Kunaram Kampasagar Pooled

Source of variation 2gca ( Lines) 0.29 2.34 0.34 0.20 11.46 2.14 2.97 3.72 0.50 0.23 0.07 0.04 0.06 0.03 0.04 0.01 0.46 0.34 0.29 0.21 1.73 0.59 1.87 1.21 0.001 0.001 0.001 0.001 0.003 0.002 0.003 0.001 1.65 1.86 0.46 0.04 12.46 11.81 5.18 1.66 0.06 0.06 0.06 0.08 1.35 1.63 1.15 1.26

2gca (Testers) 8.48 2.60 8.14 4.07 12.87 6.94 17.83 8.56 0.72 0.15 0.25 0.11 0.08 0.01 0.03 0.01 1.62 0.91 0.33 0.80 3.42 0.52 2.37 1.49 0.007 0.00 0.002 0.001 0.02 0.02 0.01 0.01 10.06 3.18 3.28 1.76 32.04 42.76 -1.60 7.49 0.91 0.64 0.89 0.85 7.66 6.07 3.00 3.58

2gca

2sca

2gca/ 2sca

Degree of dominance √2gca/ 2sca

2.75 2.42 2.68 1.36 11.88 3.58 7.43 5.17 0.568 0.21 0.12 0.06 0.07 0.03 0.03 0.01 0.81 0.51 0.31 0.39 2.24 0.57 2.02 1.30 0.003 0.001 0.001 0.001 0.01 0.008 0.006 0.007 4.17 2.26 1.30 0.56 18.34 21.09 3.14 3.41 0.31 0.23 0.31 0.31 3.24 2.96 1.70 1.96

4.26 23.026 10.46 4.12 11.14 22.95 11.34 5.01 2.55 2.25 2.52 0.75 0.24 0.18 0.32 0.08 1.17 0.75 2.49 0.70 5.07 2.12 2.20 1.31 0.002 0.001 0.002 0.001 0.09 0.08 0.06 0.07 27.52 13.61 13.88 6.37 117.14 55.31 61.53 25.12 0.20 -0.07 0.21 0.38 7.70 9.10 16.39 6.52

0.64 0.10 0.2564 0.33 1.06 0.15 0.65 1.03 0.22 0.09 0.05 0.08 0.29 0.16 0.11 0.18 0.69 0.68 0.12 0.56 0.44 0.26 0.91 0.99 1.28 1.33 0.63 2.00 0.11 0.09 0.10 0.09 0.15 0.16 0.09 0.08 0.15 0.38 0.05 0.13 1.53 3.40 1.48 0.82 0.42 0.32 0.10 0.30

0.80 0.32 0.50 0.57 1.03 0.39 0.80 1.01 0.47 0.30 0.22 0.28 0.54 0.40 0.33 0.43 0.83 0.82 0.35 0.75 0.66 0.51 0.95 0.99 1.13 1.15 0.79 1.41 0.33 0.31 0.32 0.31 0.38 0.40 0.30 0.29 0.39 0.61 0.22 0.36 1.23 1.84 1.21 0.90 0.64 0.57 0.32 0.54

Table 12.1: Estimates of general and specific combining ability effects for days to 50 % flowering and plant height at Warangal, Kunaram and Kampasagar and over locations in rice PARENT/CROSS LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A S E(Lines) TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 S E(Testers) CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31

Days to 50 % flowering

Plant height

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.79* 0.10 0.64* 0.67* -0.54 -0.08 0.24

2.33** 0.33 -2.32** 0.61 -0.99* 0.04 0.31

-0.39 -0.49 0.67* 0.18 -0.73* 0.76* 0.22

0.38 -0.02 -0.33 0.49* -0.75** 0.24 0.15

-0.51 0.25 3.30** 4.28** -2.68** -4.63** 0.42

-0.02 0.91* -1.74** 2.38** -0.37 -1.16** 0.23

0.14 -0.80 2.75* 1.46 -0.84 -2.70* 0.83

-0.13 0.11 1.43** 2.70** -1.29* -2.83** 0.32

-0.23 -0.57 -0.98* -2.15** 0.10 -1.82** -0.82* -0.73 -0.40 -0.73 -2.73** 7.02** -2.23** 6.27** 0.37

3.73** 2.40** -0.60 -0.77 0.32 -0.60 -2.77** -2.27** 1.57** 0.23 -0.52 -0.35 -0.10 -0.27 0.48

-0.68 -0.10 -0.89* -3.14** -0.14 -1.60** -1.98** -0.18 1.86** -1.23** -2.43** 7.11** -1.64** 5.07** 0.34

0.93** 0.57* -0.82** -2.02** 0.09 -1.33** -1.85** -1.06** 1.00** -0.57* -1.89** 4.59** -1.32** 3.68** 0.23

2.72** 1.55* -2.67** -6.17** -0.85 -3.99** 0.31 0.19 -1.82* -4.06** 2.08** 0.51 5.01** 7.17** 0.64

4.49** 0.07 -1.27** -1.69** -2.15** -1.59** -0.02 -0.26 1.30** 0.92* -1.56** 2.57** -5.32** 4.50** 0.33

4.89** 3.62** 0.97 -9.03** -0.86 -2.68 -2.99* -0.26 -4.79** -0.44 -0.21 -1.09 4.27** 8.61** 1.28

4.03** 1.74** -0.98 -5.62** -1.28* -2.75** -0.89 -0.11 -1.77** -1.19* 0.10 0.66 1.32* 6.75** 0.49

0.63 -0.54 0.38 1.04 0.79 -0.29 -0.29 1.13 -0.21 0.13 -1.38 3.88** 0.13 -5.38** -0.77 -0.43 -1.02 1.65 -0.10 1.32 -1.18 0.73

-0.41 -9.58** 3.42** 2.09 5.01** 2.92* -6.91** -1.41 -0.24 -0.91 -1.66 8.67** -0.08 -0.91 4.59** 1.42 3.42** 4.59** 5.01** -0.08 1.59 -9.41**

1.47 0.14 2.43** 2.18* -5.57** -3.61** 0.51 4.47** -1.07 0.51 -1.28 6.18** -2.57** -3.78** -4.17** 0.74 -2.46** 1.04 2.79** 1.24 0.12 0.58

0.56 -3.33** 2.08** 1.77** 0.08 -0.33 -2.23** 1.39* -0.51 -0.09 -1.44* 6.24** -0.84 -3.36** -0.12 0.58 -0.02 2.42** 2.56** 0.83 0.17 -2.70**

-6.93** -4.81** -2.68 -2.28 -3.91 -4.07 1.43 1.11 2.27 0.51 6.87** 4.63** 5.83** 2.03 -2.24 3.32* 3.35* -0.75 1.52 -1.13 8.27** -1.41

0.94 2.88** 7.72** -3.66** -2.30* -5.91** -1.63 8.42** -4.75** -6.97** -3.19** 7.08** 1.87* -0.50 -6.76** -2.04* -4.01** -1.38 0.98 -3.68** 7.94** -5.91**

-3.96 5.11 -7.04* -1.34 3.24 0.11 1.82 -4.31 6.13 0.78 3.64 -1.57 4.26 -6.87* -7.21* -4.65 -2.90 0.80 -0.11 7.75* -1.73 0.34

-3.31** 1.06 -0.67 -2.43* -0.99 -3.29** 0.54 1.74 1.21 -1.90 2.44* 3.38** 3.99** -1.78 -5.41** -1.12 -1.18 -0.44 0.80 0.98 4.83** -2.33

Table 12.1 contd… PARENT/CROSS IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24

Days to 50 % flowering

Plant height

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.10 4.23** -0.27 -7.02** -1.27 4.23** 1.20 -0.47 -1.55 0.11 -0.14 0.28 0.28 -0.30 -2.14* 0.20 -0.80 1.45 0.20 1.70 0.66 -1.51 -0.09 0.08 -1.17 -0.76 0.74 -0.34 0.33 -1.84* -0.84 1.41 0.16 3.16 1.38 1.71 1.63 -1.71 0.04

-0.24 0.59 -3.16** 4.67** -6.08** -6.91** -2.77* 3.07* -8.43** -3.27** -3.35** -1.93 -1.77 -0.27 8.40** -5.77** 5.98** 3.82** 6.57** -0.27 2.30 4.64** 1.14 -5.20** -1.28 -1.86 7.80** 5.80** -4.03** -0.20 0.55 -7.61** -5.86** 3.80** -4.09** 1.24 2.74* -4.09** -2.17

1.04 2.87** 1.58 -9.96** -0.46 5.08** 0.17 1.08 -0.63 -0.38 3.13** -3.92** -1.54 1.67 -5.13** 0.96 -1.58 2.63** 3.63** -0.08 0.40 -4.18** -1.64 -0.14 -0.39 4.82** 1.19 -3.10** 0.36 -1.31 -0.60 1.11 1.86* 1.65 3.31** 0.48 3.02** 0.02 2.77**

0.23 2.56** -0.62 -4.10** -2.60** 0.80 -0.47 1.23* -3.54** -1.18* -0.12 -1.86** -1.01 0.37 0.38 -1.54** 1.20* 2.63** 3.46** 0.45 1.12 -0.35 -0.20 -1.75** -0.95 0.73 3.25** 0.79 -1.12 -1.12 -0.30 -1.70** -1.28* 2.87** 0.20 1.14* 2.46** -1.93** 0.21

-0.80 0.54 -2.90 -3.53* -2.43 -1.79 7.21** 4.97** -1.20 -0.60 -0.13 -0.38 -4.98** -1.96 0.45 0.99 -5.05** -3.48* -0.98 5.16** 3.03 -0.30 -0.88 -1.78 2.10 1.84 -0.56 2.06 -2.28 -6.14** 0.97 2.44 1.54 -2.02 -2.51 -2.59 3.78* -1.72 -3.19*

-1.07 6.81** 5.79** 2.56** -3.56** 4.33** 10.49** -0.69 -2.46** 4.66** -0.48 -4.24** -2.21* -6.40** -1.93 4.45** -4.07** -0.29 -0.61 3.77** 3.27** 1.29 6.82** 0.91 -3.60** 7.25** -0.43 -0.68 0.85 -3.44** -2.34** -8.21** 2.27* -3.95** 2.07* 3.94** -2.23* -3.11** -1.05

-1.73 -2.08 2.89 9.07* -2.60 2.17 -2.27 3.50 0.65 -0.95 -1.02 0.70 1.51 1.18 1.72 0.97 -2.67 -0.08 -3.05 -0.18 7.53* -2.41 6.74* 3.84 2.68 -9.01** 4.21 3.08 -4.19 1.16 -5.67 -3.29 -5.06 0.41 -3.47 -7.81* -1.76 1.24 -6.02

-1.20 1.76 1.92 2.70* -2.86* 1.57 5.14** 2.59* -1.00 1.04 -0.54 -1.31 -1.89 -2.39* 0.08 2.14 -3.93** -1.29 -1.55 2.92* 4.61** -0.48 4.23** 0.99 0.39 0.02 1.07 1.48 -1.87 -2.81 -2.35 -3.02* -0.42 -1.85 -1.31 -2.15 -0.07 -1.19 -3.42**

Table 12.1 contd… PARENT/CROSS IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 SE(Crosses)

Days to 50 % flowering

Plant height

WGL

KUN

KAMP

POOLED

WGL

KUN

0.46 -0.04 0.38 -0.46 0.88 -0.63 3.63** -0.13 -7.13** -3.09** 1.24 0.66 -1.17 0.58 -1.01 0.49 -1.59 2.58** -3.59** 3.91** -3.34** 0.91 3.41** 0.92

-2.26 -4.09** 0.41 5.58** 2.91* -3.34** -4.51** 5.74** 5.91** 0.38 -0.79 -2.29 5.88** -3.21** 3.21** 3.38** 4.88** -9.46** 3.38** 1.63 -5.04** -0.29 -1.63 1.19

-1.77* 0.10 1.31 0.27 1.10 -2.94** 1.77* -0.98 -8.44** -1.17 1.74* -0.71 -2.71** -2.71** 3.24** -0.38 -4.92** 4.54** -4.13** 4.83** -1.71* -1.46 5.58 0.84

-1.19* -1.34* 0.70 1.80** 1.63** -2.30** 0.30 1.55** -3.22** -1.30* 0.73 -0.78 0.66 -1.78** 1.82** 1.16* -0.55 -0.78 -1.45* 3.45** -3.37** -0.28 2.45** 0.57

2.80 -0.50 0.63 1.03 1.88 -2.37 -2.50 3.50* 1.74 1.44 -0.59 -2.37 7.13** 3.61* 0.95 -3.65* -0.43 -0.67 2.22 2.48 2.45 -7.45** -5.11** 1.57

4.09** -6.48** 3.92** 5.80** 0.98 -0.34 -3.56** -1.48 -2.55** -10.00** -5.37** -5.84** 2.58** 6.44** 2.48** 2.81** 0.66 1.09 -1.83* 4.15** 2.43** 1.51 -1.11 0.87

KAMP

-1.11 2.01 1.28 3.21 -2.34 0.93 1.81 6.04 6.01 9.39** 6.25* 4.30 -3.60 1.24 1.55 -7.81* -1.56 -5.13 1.52 0.89 -5.93 0.40 -1.53 3.13

POOLED

1.93 -1.66 1.94 3.35** 0.17 -0.59 -1.42 2.69* 1.73 0.28 0.10 -1.30 2.04 3.76** 1.66 -2.89* -0.44 -1.57 0.64 2.51* -0.35 -1.85 -2.58* 1.20

Table 12.2: Estimates of general and specific combining ability effects for no. of productive tillers/plant and no. of unproductive tillers/plant at Warangal, Kunaram and Kampasagar and over locations in rice PARENT/CROSS LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A S E(Lines) TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 S E(Testers) CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31

No. of productive tillers/plant

No. of unproductive tillers/plant

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

1.12** -0.46* -0.63* -0.48* -0.25 0.70** 0.17

-0.22 0.01 0.96** -0.11 -0.66* 0.02 0.20

0.24 -0.09 -0.55* 0.20 0.36 -0.16 0.19

0.38* -0.17 -0.07 -0.13 -0.18 0.18 0.11

0.34** -0.13* 0.19** 0.13* -0.34** -0.19** 0.04

0.26** -0.13* -0.10 0.12* -0.27** 0.12* 0.04

-0.13** 0.32** -0.07* -0.19** -0.11** 0.17** 0.02

0.15** 0.02 0.01 0.02 -0.23** 0.03 0.02

-0.11 -0.84** -0.80* 1.64** -0.50 0.76* 0.58 0.22 -1.21** -0.21 1.62** -0.36 -0.93** 0.15 0.27

-0.09 -0.41 0.50 0.87* -0.23 0.80* -0.26 0.09 0.69* -0.43 -0.23 -0.62 -0.56 -0.11 0.31

0.11 -0.59 0.01 -0.04 1.20** -0.55 0.86* -0.72* 0.71* -0.15 -0.74* 0.01 0.06 -0.18 0.29

-0.02 -0.61** -0.09 0.82** 0.15 0.33 0.39* -0.13 0.06 -0.26 0.21 -0.32 -0.47* -0.04 0.17

-0.01 -0.30** 0.12 0.20** 0.00 0.39** 0.40** 0.04 0.55** -0.05 -0.20** -0.41** -0.40** -0.25** 0.06

-0.03 0.15* 0.22** -0.20** -0.07 0.07 0.18* -0.13* 0.08 -0.08 0.05 0.03 -0.18* -0.10 0.06

0.11** 0.27** -0.05 0.10** 0.34** 0.11** -0.09* -0.29** -0.09* -0.09* -0.28** -0.06 0.16** -0.11** 0.03

-0.01 0.04 0.09* 0.03 0.09* 0.18** 0.16** -0.13** 0.18** -0.07* -0.14** -0.14** -0.13** -0.15** 0.03

0.92 0.75 0.97 -1.02 -3.73** 1.50* -0.81 0.09 2.03** -2.27** -0.91 2.18** -0.96 1.26 0.71 1.53* 0.10 1.16 0.40 -1.87** -0.19 0.87

-3.10** -0.28 -0.75 1.14 -0.76 -3.10** -0.83 2.52** 1.12 -0.36 -0.36 0.38 -0.83 5.22** -0.08 1.19 0.32 0.81 1.51 0.38 0.34 -0.81

3.16** 4.27** -1.44 -1.59* 2.97** -0.88 -1.19 -2.51** 1.47* 0.52 0.11 -1.74* -0.29 -2.85** -2.71** -3.95** 1.59* 1.74* -1.49* -0.14 -0.46 1.22

0.32 1.58** -0.41 -0.49 -0.51 -0.82 -0.95* 0.04 1.54** -0.70 -0.39 0.27 -0.69 1.21** -0.70 -0.41 0.67 1.23** 0.14 -0.55 -0.10 0.43

1.15** 0.05 0.83** -0.15 -0.55** 0.26 0.35* -0.69** 0.20 0.50** -0.25 -0.24 -0.35* -1.10** 0.01 0.01 -0.10 -0.29 -0.19 -0.17 0.11 0.38*

-0.15 -0.13 -0.60** -0.18 -0.21 -0.25 -0.16 0.75** 0.54** 0.50** 0.17 0.09 -0.40* 0.02 0.45** 0.66** 1.00** 0.21 0.38* 0.05 -0.17 -0.35*

-0.68** 0.75** 0.67** -0.08 0.88** 0.72** -0.08 0.12 -0.68** -0.78** -0.10 -0.12 -0.34** -0.27** 1.06** 0.29** 0.42** 0.37** -0.87** -0.14 0.76** 0.56**

0.11 0.22** 0.30** -0.14 0.04 0.24** 0.03 0.06 0.02 0.07 -0.06 -0.09 -0.36** -0.45** 0.51** 0.32** 0.44** 0.10 -0.23** -0.09 0.23** 0.19*

Table 12.2 Contd…. PARENT/CROSS IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24

No. of productive tillers/plant

No. of unproductive tillers/plant

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-2.59** 1.61* -2.13** -0.04 -0.48 0.94 0.09 -0.29 -0.52 0.53 -0.22 -1.99** -1.81** 2.95** 0.98 0.48 -2.25** 0.83 0.70 0.52 -1.56* 1.26 -1.77** -0.82 0.43 1.16 0.44 -1.30 0.13 3.23** 2.10** -0.62 0.25 -2.93** -1.10 -1.42* 2.09** 0.25 2.29**

-1.71* 0.31 -0.99 -0.20 -1.46 0.39 2.02* -0.66 -0.57 -0.14 -1.04 0.02 1.19 -1.76* 2.64** 0.36 -2.54** 1.55 -0.91 -0.16 -0.21 -0.89 0.60 1.63* -0.87 1.70* 0.46 0.51 -0.79 1.73* -0.17 -1.28 -0.14 -2.29** 1.83* -0.54 -1.06 -3.03** -0.33

1.20 0.16 -0.06 1.59* 1.14 0.18 2.35** 0.46 2.25** -1.60* -0.03 1.62* -1.40 -1.21 -1.04 -0.28 -0.40 -0.15 -0.90 0.30 -1.50* 2.11** -2.10** -0.05 -0.49 0.06 0.65 1.83* -1.14 -0.94 0.95 1.10 -0.75 0.29 -0.06 -3.45** -2.76** 0.39 0.66

-1.03* 0.69 -1.06* 0.45 -0.27 0.50 1.49** -0.16 0.38 -0.40 -0.43 -0.11 -0.67 -0.01 0.86* 0.19 -1.73** 0.75 -0.37 0.22 -1.09* 0.83 -1.09* 0.25 -0.31 0.97* 0.52 0.35 -0.60 1.34** 0.96* -0.27 -0.21 -1.64** 0.23 -1.81** -0.57 -0.79 0.88*

-0.84** -0.54** 0.21 0.13 0.51** 0.76** -0.61** -0.61** -0.53** 0.39* 0.79** -0.39* -0.21 0.46** 0.44** -0.06 0.29 0.11 0.19 -0.26 -0.25 0.45** 0.14 -0.75** 0.35* -0.43** 0.65** 0.22 -0.60** 1.00** -0.25 -0.23 -0.15 -0.20 -0.78** 0.12 -0.40* 0.12 -0.08

-0.87** 0.30 -0.84** -0.52** -0.60** 0.31 -0.48** 0.03 -0.13 0.78** 0.15 -0.08 0.30 -0.48** -0.20 -0.83** -0.07 0.05 0.77** 0.18 0.10 -0.39* -0.05 -0.04 0.43* 0.10 -0.02 0.20 -0.02 -0.25 0.01 0.63** -0.25 -0.44** -0.31 -0.19 -0.06 -0.34* -0.58**

0.46** -0.54** -0.76** -0.97** -0.30** -0.32** -0.45** -0.71** 0.01 0.46** 0.42** -0.35** -0.75** -0.15 0.05 0.95** -0.16 0.02 0.79** -0.13 0.17 -0.50** -0.32** -0.82** -0.26** 0.17 -0.43** -0.43** 0.37** -0.23* 0.55** 1.24** 0.51** -0.01 -0.31** 0.62** -0.35** -0.55** -0.54**

-0.42** -0.26** -0.46** -0.46** -0.13 0.25** -0.51** -0.43** -0.22** 0.55** 0.45** -0.27** -0.22** -0.06 0.10 0.02 0.02 0.06 0.58** -0.07 0.01 -0.14 -0.08 -0.53** 0.17* -0.05 0.07 0.00 -0.08 0.17* 0.11 0.55** 0.04 -0.22* -0.47** 0.18* -0.27** -0.26** -0.40**

Table 12.2 Contd…. PARENT/CROSS IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 SE(Crosses)

No. of productive tillers/plant

No. of unproductive tillers/plant

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.27 -0.29 -1.33* -1.30 -0.60 4.57** -1.45* 0.42 -1.87** 0.95 -1.83** -0.86 -0.10 0.84 1.47* 2.66** -1.29 0.75 -2.45** -1.39* -0.90 0.06 2.08** 0.66

1.84* 0.21 -1.14 -0.34 -1.13 3.37** 2.26** 1.01 -2.94** -0.45 1.18 1.46 -0.41 1.49 -0.84 -1.37 0.68 -0.92 -0.91 0.69 -2.71** 2.33** -0.22 0.78

2.01** 0.89 1.18 -0.55 0.31 -0.11 0.74 0.39 0.34 -1.24 0.57 2.46** 1.11 -1.63* -2.68** 1.51* -0.51 0.07 0.22 -0.49 -1.54* 0.41 1.75* 0.72

1.19** 0.27 -0.43 -0.73 -0.47 2.61** 0.52 0.61 -1.49** -0.25 -0.03 1.02* 0.20 0.24 -0.68 0.93* -0.37 -0.04 -1.04* -0.39 -1.72** 0.93* 1.20** 0.42

0.14 -0.38* 0.19 0.37* -0.23 0.32* 0.24 0.32* 0.07 0.48** -0.02 0.06 0.68** -0.32* 0.59** -0.52** -0.56** 0.43** -0.67** -0.32* -0.01 -0.52** 0.73** 0.16

-0.01 0.37* -0.71** -0.03 0.44** 0.41* 0.02 0.54** 0.46** 0.40* 0.01 -0.15 -0.44** -0.17 0.20 -0.32 0.60** 0.58** -0.15 0.31 -0.27 -0.05 -0.54** 0.16

-0.11 0.49** 0.09 -0.11 -0.31** 0.67** 0.06 0.23* 0.11 0.21* -0.45** -0.43** 0.62** 0.38** -0.29** 0.01 -0.19* -0.09 0.91** -0.20* -0.22* -0.90** 0.63** 0.09

0.01 0.16 -0.14 0.08 -0.03 0.47** 0.11 0.36** 0.21* 0.36** -0.15 -0.17* 0.29** -0.04 0.17* -0.28** -0.05 0.31** 0.03 -0.07 -0.17* -0.49** 0.27** 0.08

Table 12.3: Estimates of general and specific combining ability effects for panicle length and panicle weight at Warangal, Kunaram and Kampasagar and over locations in rice PARENT/CROSS LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A S E(Lines) TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 S E(Testers) CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31

Panicle length

Panicle weight

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.37 -0.58* 0.44 1.11** 0.16 -0.76* 0.18

0.04 0.10 0.74* 0.47 -0.29 -1.06** 0.22

0.66* 0.33 -0.60* 0.16 0.27 -0.81** 0.17

0.11 -0.04 0.19 0.58** 0.04 -0.87** 0.11

0.07 -0.03 0.02 0.08 -0.09 -0.05 0.04

0.07 -0.09* 0.05 -0.02 -0.02 0.02 0.03

0.08* -0.02 -0.12* 0.04 -0.02 0.03 0.03

0.07** -0.04* -0.01 0.03* -0.04* 0.002 0.01

1.60** -1.30** -0.87** -1.30** -0.68* 1.12** -0.15 -0.51 -0.85** -1.30** -0.35 -0.08 2.43** 2.23** 0.28

1.03** 0.52 -0.72 -1.09** -0.71 -0.79* 0.36 -0.27 0.47 -0.78 -0.64 -0.99* 1.48** 2.14** 0.34

1.03** -0.53 -0.76* -0.64* -0.38 -0.21 0.26 -0.04 -0.41 -0.02 -0.11 -0.41 1.09** 1.11** 0.27

1.22** -0.43* -0.78** -1.01** -0.59** 0.04 0.15 -0.27 -0.26 -0.70** -0.36 -0.49* 1.66** 1.82** 0.17

0.22** 0.04 -0.16* -0.01 -0.08 -0.44** -0.10 0.03 -0.04 0.06 0.08 -0.07 0.26** 0.21** 0.06

0.09* -0.04 -0.12* 0.02 0.05 -0.39** -0.17** 0.09* -0.08 0.09* 0.09* -0.02 0.21** 0.16** 0.04

0.27** 0.06 -0.11* -0.12* -0.01 -0.16** -0.07 -0.07 -0.01 0.01 0.01 -0.11* 0.15* 0.17** 0.05

0.19** 0.02 -0.13** -0.03 -0.01 -0.33** -0.11** 0.01 -0.04 0.05 0.06 -0.06 0.20** 0.18** 0.03

-2.50** 0.10 -0.25 0.20 -0.39 -1.82** 0.82 0.81 1.35 0.41 1.21 -0.42 1.07 -0.58 -0.22 -0.98 0.50 -0.53 -1.21 0.74 1.84** 1.51*

-1.92* 0.20 1.28 -0.32 0.64 1.76* -0.35 0.62 -0.18 -0.27 -0.10 -0.01 -1.17 -0.17 0.31 -0.52 0.93 1.95* -0.70 0.23 0.03 0.84

0.76 0.36 0.18 -1.61* 1.84** -1.14 -0.05 1.76** 1.49* -1.55* 0.96 -0.47 0.66 -3.18** -0.05 -0.26 -1.07 2.11** -2.58** 3.22** -0.15 0.20

-1.22** 0.22 0.40 -0.58 0.69 -0.40 0.14 1.06* 0.89* -0.47 0.69 -0.30 0.18 -1.31** 0.01 -0.59 0.12 1.18** -1.50** 1.40** 0.57 0.85*

-0.36* -0.06 -0.10 -0.10 -0.01 0.01 0.04 -0.25 -0.10 0.10 0.42** 0.15 0.12 0.13 0.34* -0.29 -0.01 -0.35* -0.45** 0.08 0.49** 0.36*

-0.20 0.04 -0.11 -0.11 -0.10 0.00 0.13 -0.28* -0.03 0.09 0.43** 0.13 0.18 -0.16 0.03 -0.06 0.13 -0.28* 0.01 0.12 -0.21 0.39**

0.09 0.28* -0.21 0.01 0.18 -0.23 0.08 0.00 0.29* -0.01 -0.30* 0.06 -0.06 -0.19 0.07 -0.40* -0.13 -0.16 -0.27* 0.57** 0.18 0.17

-0.16* 0.09 -0.14 -0.07 0.02 -0.07 0.08 -0.18* 0.05 0.06 0.18* 0.11 0.08 -0.07 0.14 -0.25** 0.00 -0.27** -0.24** 0.26** 0.16* 0.31**

PARENT/CROSS IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24

Panicle length

Panicle weight

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

1.22 0.02 -1.56* 0.41 -2.50** 0.77 1.40* 2.09** 0.53 0.16 -0.19 -1.07 -0.03 0.00 -1.89** -0.16 0.42 1.60** -1.13 -1.72* 1.91** -1.01 0.84 -0.18 0.64 -0.14 -1.94** -0.31 0.02 0.04 1.30 -1.78* 2.42** -1.81* -0.69 0.38 -1.46* 0.34 0.55

-1.15 0.08 0.99 -0.81 -2.21* 0.03 1.76* -0.18 -2.01* -0.54 0.00 0.75 -1.57 -1.32 0.14 -1.41 -0.64 0.89 2.67** 1.46 0.46 -1.01 1.14 -0.69 0.00 -1.35 -1.04 0.24 0.23 0.95 0.56 -0.67 0.21 0.97 0.06 2.32** -0.83 -1.76* 0.21

-0.45 -0.57 0.36 -0.37 0.25 -0.65 2.23** 0.70 1.66* 0.01 -3.03** -1.76* -0.99 -0.73 0.60 -0.89 0.11 2.52** -2.26** 1.85** -0.81 -0.78 1.03 -1.17 3.35** -1.11 -0.47 -1.11 2.59** 0.64 0.27 -1.71* -1.19 0.47 -2.70** -0.38 -1.47* -2.91** -0.33

-0.13 -0.16 -0.07 -0.26 -1.49** 0.05 1.80** 0.87* 0.06 -0.12 -1.08* -0.69 -0.86* -0.68 -0.39 -0.82 -0.04 1.67** -0.24 0.53 0.52 -0.93* 1.00* -0.68 1.33** -0.86* -1.15** -0.39 0.95* 0.54 0.71 -1.39** 0.48 -0.12 -1.11** 0.78 -1.25** -1.44** 0.14

0.39* 0.03 -0.39* -0.41** 0.09 0.13 -0.73** 0.34* -0.30 0.61** 0.07 -0.12 -0.02 -0.04 -0.37* -0.24 0.21 0.35* 0.33* -0.10 -0.01 0.15 0.09 -0.45** 0.40* -0.05 -0.47** 0.47** 0.25 -0.29 -0.07 0.10 -0.14 0.03 0.66** -0.42** -0.25 0.22 0.25

0.51** 0.09 -0.25* -0.35** -0.03 -0.09 -0.60** 0.14 -0.33** 0.55** -0.06 -0.12 0.05 -0.09 -0.32** -0.26* 0.19 0.40** 0.34** 0.11 -0.19 0.20 0.16 -0.35** 0.38** 0.00 -0.25* 0.51** 0.00 -0.19 -0.10 0.17 -0.51** 0.16 0.73** -0.48** -0.31** 0.17 0.24*

-0.10 0.12 -0.10 -0.28* 0.35** -0.02 -0.59** 0.38** -0.04 -0.17 0.20 0.03 -0.02 0.15 -0.13 -0.24 0.21 0.30* 0.07 -0.16 -0.18 -0.06 0.19 -0.16 0.09 -0.03 -0.25 -0.11 0.07 -0.13 0.10 0.24 0.07 0.16 0.60** -0.44** -0.31* 0.32* 0.16

0.27** 0.08 -0.25** -0.35** 0.14 0.01 -0.64** 0.28** -0.22** 0.33** 0.07 -0.07 0.00 0.01 -0.28** -0.25** 0.21** 0.35** 0.25** -0.05 -0.13 0.10 0.15 -0.32** 0.29** -0.03 -0.32** 0.29** 0.10 -0.20** -0.02 0.17* -0.19** 0.11 0.66** -0.45** -0.29** 0.24** 0.22**

PARENT/CROSS IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 SE(Crosses)

Panicle length

Panicle weight

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

2.95** 0.21 -1.06 0.09 -1.41* -0.61 -1.05 0.23 1.55* 0.09 -0.59 -0.15 0.02 0.61 -0.65 -0.90 -0.94 -0.79 1.10 -0.76 1.25 -0.08 1.80* 0.69

-0.03 -0.34 -1.02 0.62 0.66 -0.15 0.26 -0.46 0.46 -0.67 -0.82 -0.50 1.36 -0.15 -1.36 3.27** 0.64 0.34 -0.01 -0.65 0.34 0.96 -2.74** 0.84

2.16** 0.54 2.27** -1.47* 1.85** -0.60 0.02 2.13** 0.91 0.58 0.36 -0.34 3.57** 0.76 -1.38* 1.12 -2.39** -2.75** 0.52 -1.09 0.02 0.41 0.60 0.66

1.69** 0.14 0.06 -0.26 0.37 -0.46 -0.26 0.63 0.97* 0.00 -0.35 -0.33 1.65** 0.41 -1.13** 1.16** -0.90* -1.07* 0.54 -0.83* 0.54 0.43 -0.12 0.42

-0.10 -0.08 -0.62** 0.05 0.23 -0.28 -0.29 0.05 0.58** 0.10 0.28 0.56** 0.07 -0.26 0.18 0.04 0.08 -0.21 0.16 0.11 0.10 -0.44** -0.77** 0.15

0.03 -0.05 -0.50** 0.05 0.19 -0.32** -0.36** 0.05 0.57** 0.23* 0.16 0.47** 0.02 -0.46** -0.03 0.32** -0.03 -0.20 0.08 0.05 0.01 -0.03 -0.58** 0.11

-0.40** -0.11 -0.38** 0.01 0.28* -0.22 -0.27* 0.15 0.60** 0.02 0.24 0.49** 0.16 -0.36** 0.06 0.12 0.16 -0.13 -0.03 0.30* -0.05 -0.58** -0.40** 0.12

-0.16* -0.08 -0.50** 0.04 0.23** -0.28** -0.31** 0.08 0.58** 0.12 0.23** 0.51** 0.08 -0.36** 0.07 0.16* 0.07 -0.18* 0.07 0.16* 0.02 -0.35** -0.58** 0.07

Table 12.4: Estimates of general and specific combining ability effects for Flag leaf length (cm) and Flag leaf width (cm) at Warangal, Kunaram and Kampasagar and over locations in rice PARENT/CROSS LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A S E(Lines) TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 S E(Testers) CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31

Flag leaf length (cm )

Flag leaf width (cm )

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.58 -0.81* -0.24 2.44** 0.52 -1.33** 0.27

-0.16 -0.79 0.94* 1.13* -0.59 -0.53 0.31

-0.53 -0.12 0.95 2.23** -0.47 -2.06** 0.49

-0.42 -0.57* 0.55* 1.93** -0.18 -1.30** 0.20

-0.02 -0.06** 0.01 -0.03* 0.05** 0.04* 0.01

0.03* -0.04* -0.04* -0.05** 0.03* 0.06** 0.01

0.01 -0.05 0.01 -0.03 0.02 0.05 0.02

0.01 -0.04* -0.01 -0.03* 0.03* 0.04* 0.01

1.80** 0.62 -1.58** -1.39** -0.64 4.19** -1.50** -0.82 -0.23 -2.71** -1.85** 0.52 1.46** 2.14** 0.41

-0.04 -0.69 -0.33 0.18 0.39 -0.58 0.78 -0.40 0.07 -1.10* -0.36 -0.74** 2.44** 0.38 0.48

1.40 0.02 -2.06** -1.02 -0.29 1.66 -2.11** 0.23 -0.92 -1.00 -2.09** 0.92 3.84** 1.41 0.76

1.05** -0.01 -1.32** -0.74* -0.17 1.75** -0.94** -0.33 -0.36 -1.60** -1.43** 0.23 2.58** 1.30** 0.30

0.08** 0.07** 0.00 0.07** -0.04 -0.02 0.01 0.01 -0.25** -0.06* -0.01 0.02 0.01 0.05* 0.02

0.03 0.01 -0.03 0.05* 0.00 0.01 0.02 -0.02 0.00 -0.01 -0.01 -0.04 0.00 -0.02 0.02

0.11** 0.00 -0.05 -0.05 -0.05 -0.04 0.07* 0.02 -0.01 0.03 0.02 -0.08* 0.10** -0.05 0.03

0.07** 0.02 -0.02 0.02 -0.03* -0.01 0.03* 0.00 -0.09** -0.01 0.00 -0.03* 0.06** -0.01 0.01

-0.23 -1.45 -0.76 -3.72** -0.48 6.74** 1.05 1.60 0.37 -0.43 -1.05 -0.34 -1.98 0.68 -2.93** 0.65 3.59** 1.45 -0.70 -1.68 -1.57 -0.87

-0.92 -0.31 1.29 0.91 1.38 0.91 -0.39 -0.01 1.27 -1.56 -0.15 -0.75 -0.87 -0.78 -0.25 1.21 0.10 -0.11 -3.78** -1.21 -0.69 0.45

0.76 2.34 0.61 -1.43 1.24 0.75 -0.32 -0.62 2.62 0.25 -1.50 1.08 -5.79** 0.00 1.99 -1.33 -2.90 1.06 2.73 -0.92 -0.85 -1.83

-0.13 0.19 0.38 -1.41 0.72 2.80** 0.11 0.32 1.42 -0.58 -0.90 0.00 -2.88** -0.04 -0.40 0.18 0.26 0.80 -0.58 -1.27 -1.04 -0.75

-0.08 -0.14* 0.06 0.06 0.07 0.03 -0.05 -0.03 0.00 0.02 0.12* 0.03 -0.10 0.02 0.10 0.05 -0.05 -0.06 -0.05 0.02 -0.08 0.05

-0.03 -0.03 0.07 0.02 0.00 -0.06 0.06 -0.03 0.05 0.01 -0.05 0.09 -0.07 -0.04 0.00 -0.01 0.02 0.07 -0.03 0.01 0.02 -0.11

-0.02 0.04 0.07 -0.13 -0.04 0.00 -0.01 0.04 0.07 0.10 -0.02 -0.14 -0.15 0.17* -0.06 -0.01 -0.01 0.07 0.07 0.06 -0.16* -0.01

-0.05 -0.04 0.07 -0.01 0.01 -0.01 0.00 0.00 0.04 0.04 0.02 -0.01 -0.11** 0.05 0.01 0.01 -0.01 0.03 0.00 0.03 -0.07* -0.02

Table 12.4 Contd…. PARENT/CROSS IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24

WGL

KUN

0.32 -0.23 1.06 0.94 -1.05 1.02 1.23 2.17* 1.97 1.23 1.88 -2.16* -1.17 0.06 -2.68 -0.05 -3.85** -1.23 3.33** -0.72 -0.35 1.84 -1.11 -2.69** -1.80 -0.47 -0.74 0.06 2.13* -3.61** -1.58 -1.43 3.95** 5.82** 2.13* 0.02 0.01 2.92** 0.73

-0.27 1.42 0.10 0.03 -0.62 3.63** 1.82 -1.32 1.57 0.10 -0.47 1.56 -0.42 -0.99 -1.96 -0.16 0.38 -0.68 0.82 -0.25 3.69** -0.59 2.59* -2.97* 0.58 -2.26 -0.49 -0.84 -0.73 1.54 1.37 1.09 -2.47* -0.52 -3.05* 0.91 -5.90** 0.31 3.52**

KAMP

-0.94 -1.39 -2.81 4.62* 0.70 1.88 1.17 2.97 1.18 -2.76 -1.79 1.12 0.63 -2.10 -3.48 0.62 4.10* -3.40 2.98 -1.24 -2.60 -1.77 3.20 0.77 -1.87 2.09 -1.64 2.52 2.74 -2.51 1.14 0.98 -0.94 -2.11 0.95 0.28 -2.75 1.96 -1.27

POOLED

WGL

KUN

-0.30 -0.07 -0.55 1.86* -0.32 2.18** 1.41 1.27 1.57* -0.48 -0.13 0.17 -0.32 -1.01 -2.71** 0.14 0.21 -1.77* 2.38** -0.73 0.25 -0.17 1.56* -1.63* -1.03 -0.21 -0.96 0.58 1.38 -1.52* 0.31 0.21 0.18 1.06 0.01 0.40 -2.88** 1.73* 0.99

0.09 -0.06 0.01 -0.08 0.02 0.03 0.03 -0.04 0.04 0.03 0.01 -0.01 0.03 0.06 -0.04 0.05 -0.08 -0.17** 0.11 -0.02 -0.12* -0.02 0.02 0.03 0.00 0.00 0.00 -0.01 0.11* -0.16** -0.02 0.15** -0.02 0.01 0.09 0.08 -0.02 -0.04 -0.09

0.04 0.07 0.07 -0.02 -0.11 0.00 -0.06 0.07 -0.12* 0.01 0.02 0.03 -0.06 0.10 -0.05 -0.06 -0.04 0.05 0.04 0.08 0.05 -0.01 -0.01 -0.02 -0.01 0.02 0.04 0.06 -0.12* -0.09 0.06 -0.02 0.00 0.07 0.04 0.09 -0.09 -0.06 0.01

KAMP

0.02 0.02 0.05 0.02 -0.02 -0.02 0.05 0.09 -0.01 0.14 -0.05 0.01 0.01 -0.13 0.00 -0.13 0.03 -0.02 0.00 0.02 -0.01 0.01 0.05 -0.03 -0.02 0.02 0.09 0.00 -0.01 -0.05 -0.04 0.03 -0.04 0.00 0.05 -0.10 -0.06 0.14 -0.09

POOLED

0.05 0.01 0.04 -0.03 -0.04 0.00 0.01 0.04 -0.03 0.06 -0.01 0.01 0.00 0.01 -0.03 -0.05 -0.03 -0.05 0.05 0.03 -0.03 -0.01 0.02 -0.01 -0.01 0.01 0.04 0.01 0.00 -0.10** 0.00 0.05 -0.02 0.03 0.06 0.03 -0.06 0.01 -0.05

Table 12.4 Contd…. PARENT/CROSS IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 SE(Crosses)

WGL

KUN

-1.73 0.49 -1.39 -1.44 1.73 -0.51 1.16 0.39 -4.50** 0.15 -3.23** -3.69** 0.82 0.37 -0.71 1.93 0.55 1.30 2.59* 5.93** 0.91 -4.63** -2.31* 1.01

0.40 -1.60 0.38 0.75 1.27 0.58 -1.31 3.58** 0.16 -1.28 0.10 0.36 1.77 -1.23 0.60 3.60** 1.01 0.94 -2.50* -2.29 1.61 -0.44 -2.23 1.18

KAMP

-4.16* 1.54 -0.92 -0.39 -0.05 -0.36 0.63 4.76* -0.21 -2.27 -2.49 0.66 0.40 0.96 1.12 0.64 2.96 -0.55 3.08 -0.57 -3.91* -1.71 1.68 1.86

POOLED

WGL

KUN

KAMP

POOLED

-1.83* 0.14 -0.64 -0.36 0.98 -0.10 0.16 2.91** -1.52* -1.13 -1.87* -0.89 0.99 0.03 0.34 2.06** 1.50* 0.56 1.06 1.02 -0.46 -2.26** -0.96 0.75

0.02 -0.03 -0.05 -0.08 0.10 -0.02 -0.06 0.04 0.04 -0.02 0.07 -0.06 -0.03 0.05 -0.06 0.13* -0.03 -0.08 0.05 -0.01 0.12* -0.05 -0.07 0.05

-0.05 -0.05 0.00 0.09 0.01 0.05 -0.07 0.07 -0.05 0.01 -0.12* 0.13* -0.02 0.02 0.06 -0.02 -0.01 -0.02 0.06 -0.09 -0.02 0.08 -0.06 0.05

-0.04 0.06 0.15 0.03 0.06 -0.14 0.02 0.15 -0.24** -0.01 -0.03 -0.04 -0.19* 0.13 -0.05 0.01 -0.05 -0.11 0.00 0.11 0.10 0.06 0.07 0.07

-0.02 0.00 0.03 0.02 0.06 -0.04 -0.04 0.09* -0.08* -0.01 -0.03 0.01 -0.08* 0.07 -0.02 0.04 -0.03 -0.07 0.04 0.01 0.07 0.03 -0.02 0.03

Table 12.5: Estimates of general and specific combining ability effects for Spikelet fertility (%) and Number of grains per panicle at Warangal, Kunaram and Kampasagar and over locations in rice PARENT/CROSS LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A S E(Lines) TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 S E(Testers) CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31

Spikelet fertility (%)

Number of grains per panicle

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.93 -0.53 2.55* 0.48 0.24 -1.82 0.77

-0.18 0.30 -1.50* 2.15** -1.62* 0.85 0.44

-0.66 0.55 -0.09 -1.11* 0.90* 0.41 0.35

-0.59 0.10 0.32 0.50 -0.16 -0.18 0.32

-2.09 -0.03 -0.06 -0.21 -4.42* 6.82** 1.27

3.80 6.23 -2.89 -0.53 -3.41 -3.20 2.22

-1.18** -5.09** 2.13 1.59 -1.13** 3.69 2.15

0.17 0.37 -0.27 0.28 -2.98* 2.43* 1.16

4.25** 4.52** -0.17 -6.89** 1.07 -4.57** 1.37 0.76 -2.00 -0.77 4.84** -2.44 -1.47 1.51 1.17

-2.95** -0.13 0.03 1.23 1.76* -2.94** 2.66* -1.67* -2.17** 1.12 0.66 -0.99 2.85** 0.53 0.68

1.44* 3.40** -1.74** -1.88** -2.89** 0.57 -2.06** 0.83 1.82** -1.81** 1.02 2.18** -0.51 -0.38 0.54

0.91 2.59** -0.62 -2.51** -0.02 -2.31** 0.65 -0.02 -0.78 -0.48 2.17** -0.41 0.29 0.55 0.50

2.63 5.08* 2.03 -5.50* -6.62** -3.42 6.41** -1.17 -10.17** -5.37* -0.21 0.82 12.65 2.84 1.95

-4.72 4.97 4.40 5.91 5.24 -12.47** -4.94 -0.99 -15.28** 6.86 9.15* -3.13 4.75 0.26 3.40

5.42 -0.86 0.85 1.30 2.21 -1.19 1.31 -4.31 5.00 -3.41 -2.18 -3.58 -2.15 1.58 3.29

1.10 3.06 2.42 0.56 0.27 -5.69** 0.92 -2.15 -6.81** -0.63 2.25 -1.96 5.08* 1.56 1.78

-0.99 0.90 9.66** -6.33* -2.02 5.25 -5.15 13.65** -10.14** 1.89 7.07* -1.37 -8.08** -4.35 6.74* 2.34 -2.36 -1.69 -5.30 -5.88* 13.30** -2.26

-6.64** -1.11 8.05** -3.52* -0.90 -3.09 7.32** 4.30* -1.63 -4.41* 3.32 -2.68 3.73* -2.73 5.92** 0.46 -5.68** 1.09 4.05* 1.08 2.18 -0.04

7.52** -1.95 1.34 0.51 2.26 -2.97* 0.17 -4.82** 2.39 -0.86 -3.85** -1.85 1.79 0.33 0.38 5.65** -2.71* -3.42* -0.78 -0.30 8.69** 5.44**

-0.04 -0.72 6.35** -3.12* -0.22 -0.27 0.78 4.37** -3.13* -1.12 2.18 -1.97 -0.86 -2.25 4.35** 2.81* -3.58** -1.34 -0.68 -1.70 8.05** 1.05

-2.32 2.52 -2.73 -28.39** -1.83 4.92 6.74 -8.82 3.28 -5.43 24.91** -7.86 5.50 9.51 14.41** -12.24* -5.19 15.34** 1.56 -7.34 7.83 14.41**

-20.60* -6.39 1.33 -4.33 1.39 -1.40 -5.87 0.57 5.86 13.57 5.18 -6.34 17.18* -0.13 14.02 -0.77 14.30 -14.22 10.91 -10.43 -10.96 18.98*

11.99 -2.18 -14.24 4.62 -14.27 2.40 15.80 2.12 0.86 -10.43 7.39 -3.06 14.26 -15.27 -8.15 8.43 3.57 -0.07 11.71 -1.19 -2.79 -5.37

-3.64 -2.02 -5.21 -9.37* -4.90 1.97 5.56 -2.04 3.33 -0.76 12.49** -5.76 12.31** -1.96 6.76 -1.53 4.22 0.35 8.06 -6.32 -1.97 9.34*

Table 12.5 Contd…. PARENT/CROSS IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24

Spikelet fertility (%)

Number of grains per panicle

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

6.07* 0.66 -9.59** -9.78** 7.53* 0.21 1.84 -3.71 2.67 -1.85 1.38 -5.71 0.54 -2.41 1.46 3.47 1.55 4.82 0.94 -4.98 -2.19 3.96 -5.24 -1.26 9.73** -0.49 -3.64 -1.93 -6.55* -10.00** -1.03 2.58 8.62** 7.44* 1.54 1.77 -4.78 1.22 -3.74

0.30 -2.90 -2.81 1.40 -1.77 -3.28 -4.70** -2.89 -0.60 5.01** 1.82 1.30 -8.41** -1.16 4.17* 0.43 -4.97** 3.64* -1.15 7.53** 3.32 5.79** -5.68** -2.66 -2.63 -0.82 0.76 4.14* -4.86** -0.32 0.79 0.33 3.35* -1.52 5.58** -1.08 1.63 -4.56** -1.26

-2.23 -1.22 4.20** -0.82 -10.27** -2.60 -5.40** 3.78** -4.62** 5.44** 1.81 0.17 -4.46** -4.54** -1.21 -3.48* -3.74** 0.40 8.01** 7.83** -0.84 -3.65** 3.54* 0.73 -5.00** 2.13 -1.49 1.79 4.33** 3.11* 2.84* -0.50 0.71 -7.72** -0.39 0.81 3.83** -0.43 -1.07

1.38 -1.15 -2.73* -3.07* -1.50 -1.89 -2.75* -0.94 -0.85 2.87* 1.67 -1.41 -4.11** -2.70* 1.47 0.14 -2.39 2.95* 2.60* 3.46** 0.10 2.03 -2.46* -1.06 0.70 0.28 -1.46 1.33 -2.36 -2.40 0.87 0.80 4.23** -0.60 2.24 0.50 0.23 -1.26 -2.02

4.26 -12.29* -4.15 -1.83 -2.56 -12.20* 4.74 -7.87 7.98 1.27 10.68* -4.17 2.91 -3.56 4.04 -10.47* -3.63 -8.85 5.91 1.02 5.40 13.34** -19.21** 0.85 13.64** -3.16 -17.09** 0.30 -8.00 -0.06 8.63 -8.39 2.27 11.48* -14.69** -4.85 1.10 -11.06* -13.55**

-15.57 -2.07 6.25 -10.82 -7.45 7.84 -8.71 -9.20 19.42* 15.96 -9.42 8.74 7.51 -17.09* -2.80 -11.34 -4.13 -7.85 5.67 13.26 3.18 25.94** -22.04** -5.61 7.07 -6.37 2.10 -3.96 2.74 -10.91 -3.99 22.54** -4.69 -6.00 10.96 -10.78 -5.30 -2.07 -10.44

-13.38 -6.37 -10.30 15.50 4.07 4.34 13.58 3.67 18.70* -11.09 3.29 3.64 -4.26 -11.08 -14.45 7.22 -0.62 -1.87 -6.45 -0.28 -12.58 -5.80 -5.87 1.39 8.08 2.03 -9.82 8.25 39.68** 2.10 -3.38 -15.13 -8.02 -0.94 -12.26 3.97 9.30 19.26* 2.85

-8.23 -6.91 -2.73 0.95 -1.98 -0.01 3.20 -4.47 15.37** 2.04 1.52 2.74 2.05 -10.58* -4.41 -4.87 -2.79 -6.19 1.71 4.67 -1.34 11.16* -15.70** -1.12 9.60* -2.50 -8.27 1.53 11.47** -2.95 0.42 -0.33 -3.48 1.51 -5.33 -3.89 1.70 2.04 -7.05

Table 12.5 Contd…. PARENT/CROSS IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 SE(Crosses)

Spikelet fertility (%)

Number of grains per panicle

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.73 -1.17 -2.33 8.51** 5.63 3.99 -2.35 -6.39* -1.17 -6.95* -5.26 0.05 9.92** -0.05 7.56* -3.88 -4.71 0.65 -1.66 -1.99 6.11* -2.63 2.84 2.88

-1.26 1.69 -2.70 2.46 6.25** 0.33 -4.49** -5.63** 3.03 -3.48* -1.16 2.28 4.64** -1.08 2.79 -3.53* -4.54** -0.43 0.95 3.33 1.81 1.46 -3.04 1.67

-2.79* 0.36 0.25 -0.81 -1.35 -1.95 3.26* 0.92 -0.65 -1.28 -4.64** -1.39 -2.83* 2.77* 3.76** -3.26* 1.88 -2.48 3.80** 2.51 -0.51 -1.15 2.81* 1.34

-1.59 0.29 -1.59 3.39** 3.51** 0.79 -1.19 -3.70** 0.40 -3.90** -3.69** 0.31 3.91** 0.55 4.70** -3.56** -2.46* -0.75 1.03 1.28 2.47* -0.77 0.87 1.23

3.05 6.12 5.11 1.61 22.10** -16.26** 32.07** -11.37* 0.64 -7.54 9.11 18.06** 21.99** -10.49* 6.71 -6.52 -7.44 -5.19 6.16 -9.50 -5.13 0.24 -10.45* 4.78

8.06 7.34 5.08 5.27 15.43 -11.80 -0.33 -2.70 -8.72 1.15 1.21 -7.71 10.27 0.50 1.40 -0.12 -3.58 4.51 -4.68 8.49 2.81 -8.01 -6.25 8.32

-7.31 -4.56 1.97 -0.40 7.77 0.64 -7.31 -4.25 -9.67 7.42 -8.09 -11.46 -14.10 -11.67 0.43 5.63 4.11 -12.31 -0.29 6.27 11.87 0.39 21.81** 8.07

1.27 2.97 4.05 2.16 15.10** -9.14* 8.14 -6.11 -5.92 0.35 0.74 -0.37 6.05 -7.22 2.85 -0.34 -2.30 -4.33 0.39 1.75 3.19 -2.46 1.70 4.37

Table 12.6: Estimates of general and specific combining ability effects for Test weight and Grain yield per plant at Warangal, Kunaram and Kampasagar and over locations in rice PARENT/CROSS LINES IR 58025 A IR 68897 A IR 79128 A IR 79156 A IR 80155 A IR 80555 A S E(Lines) TESTERS R- 7 R- 17 R- 19 R- 21 R- 24 R- 25 R- 27 R- 31 R- 32 R- 34 R- 35 R- 36 R- 53 R- 56 S E(Testers) CROSSES IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31

Test weight

Grain yield per plant

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.33 0.42* -0.11 -0.18 0.29 -0.09 0.13

-0.39 0.49* -0.12 -0.19 0.28 -0.06 0.19

-0.35* 0.42* -0.10 -0.17 0.29 -0.08 0.13

-0.35** 0.44** -0.10 -0.18 0.28* -0.07 0.07

1.48** 1.65** -0.97* 1.14* 0.02 -0.36 0.31

-1.67** 1.69** -1.27** 1.11** 0.07 0.07 0.25

-1.67** 1.49** -0.55 -0.38 0.49 0.61* 0.24

-1.60** 1.61** -0.93** 0.62** 0.19 0.10 0.16

0.28 -1.14** -0.44 -0.18 -0.48* -1.70** 1.42** 0.97** 2.00** 0.10 -0.86** -0.04 0.27 -0.19 0.21

0.22 -1.13** -0.46 -0.22 -0.50 -1.06** 1.33** 0.90* 1.80** 0.06 -0.87* -0.07 0.14 -0.14 0.30

0.28 -1.11** -0.43* -0.26 -0.47* -1.66** 1.40** 0.96** 1.97** 0.10 -0.84** -0.03 0.27 -0.18 0.20

0.26* -1.12** -0.44** -0.21 -0.48** -1.47** 1.38** 0.94** 1.92** 0.08 -0.85** -0.04 0.22 -0.16 0.12

-2.61** 1.77** -0.42 -1.87** 2.42** -5.17** 2.14** 2.13** -5.21** 0.02 1.10* 0.48 4.22** 1.02 0.48

-2.82** 1.67** 0.25 -1.42** 1.65** -4.18** 2.60** 1.05* -4.76** -0.29 0.54 0.62 3.92** 1.17** 0.38

0.26 0.85* 3.32** -3.87** -1.24** -1.02* -1.15** -1.05* 1.66** -0.38 -0.06 0.89* 2.26** -0.47 0.37

-1.72** 1.43** 1.04** -2.38** 0.94** -3.45** 1.19** 0.71* -2.76** -0.21 0.52* 0.66** 3.46** 0.57* 0.24

-0.75 -0.18 0.10 0.04 0.23 -0.37 -0.26 -0.44 0.78 0.11 0.15 0.10 0.09 0.40 -0.22 -1.06* -0.09 0.96 -0.36 -0.40 0.47 0.47

-1.61* -0.10 0.17 0.12 0.31 -0.46 -0.17 -0.36 0.89 0.18 0.22 0.18 0.24 0.39 0.67 -1.12 -0.18 0.84 -0.43 -0.36 0.37 0.38

-0.71 -0.15 0.12 -0.35 0.26 -0.34 -0.23 -0.40 0.79 0.14 0.19 0.13 0.12 0.42 -0.22 -1.05* -0.09 1.01* -0.36 -0.40 0.46 0.45

-1.02** -0.14 0.13 -0.06 0.27 -0.39 -0.22 -0.40 0.82** 0.14 0.19 0.14 0.15 0.40 0.07 -1.08** -0.12 0.94** -0.39 -0.39 0.43 0.43

-3.07* -3.15** 5.96** -3.24** 0.85 1.23 3.47** -2.24 1.53 -1.19 1.52 -3.95** 2.43* -0.15 -1.10 -0.23 -0.77 0.96 -0.06 -0.95 3.90** 1.60

-2.50* -2.94** 4.88** -3.39** 1.04 0.18 3.45** -1.13 1.63 -0.80 1.97* -3.54** 2.40* -1.25 -1.05 -0.79 -1.75 -0.78 1.33 0.03 4.76** 2.11*

-2.23* 7.18** -2.04* 1.91* -0.31 1.13 -0.45 0.25 -1.31 0.85 -0.33 -3.35** 1.83* -3.14** -3.76** 2.75** 4.72** -0.69 -2.87** 2.09* -0.95 4.32**

-2.60** 0.36 2.94** -1.57** 0.53 0.85 2.16** -1.04 0.62 -0.38 1.05 -3.61** 2.22** -1.51* -1.97** 0.58 0.73 -0.17 -0.53 0.39 2.57** 2.67**

Table 12.6 Contd…. PARENT/CROSS IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24

Test weight

Grain yield per plant

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

0.34 0.35 -0.17 -0.62 -0.52 0.86 -0.54 0.45 -0.64 0.76 -0.24 0.70 0.02 0.07 0.10 0.21 -0.45 -0.85 0.31 0.11 1.09* -0.15 -0.14 1.08* -0.80 0.25 0.19 0.29 -0.20 -0.16 0.00 -0.71 0.26 -1.00 0.74 0.09 0.24 -2.03** -0.13

0.33 0.25 -0.24 -0.67 -0.50 0.67 -0.51 0.46 -0.60 0.75 -0.23 0.43 0.04 0.08 0.17 0.22 -0.42 -0.80 0.39 0.03 1.07 -0.12 -0.12 1.05 -0.74 0.37 0.21 0.30 -0.57 -0.14 0.03 -0.67 0.36 -1.02 0.72 0.08 0.23 -1.94* -0.12

0.33 0.34 -0.17 -0.61 -0.52 0.84 -0.54 0.44 -0.64 0.82 -0.24 0.68 0.02 0.06 0.10 0.20 -0.45 -0.84 0.29 0.10 1.06* -0.15 -0.15 1.13* -0.78 0.24 0.18 0.28 -0.20 -0.17 0.00 -0.71 0.25 -0.99 0.72 0.08 0.23 -1.92** -0.13

0.33 0.31 -0.19 -0.63* -0.51 0.79** -0.53 0.45 -0.63* 0.78** -0.24 0.60* 0.03 0.07 0.12 0.21 -0.44 -0.83** 0.33 0.08 1.07** -0.14 -0.13 1.09** -0.77** 0.28 0.19 0.29 -0.33 -0.15 0.01 -0.70* 0.29 -1.00** 0.72* 0.08 0.23 -1.96** -0.13

-1.41 0.54 -2.55* 2.55* -3.18** 0.71 -1.47 -2.85* 3.94** 3.27** -0.60 2.73* -4.81** -2.98* 0.92 -1.29 0.63 -2.44* 0.87 4.08** 0.83 4.88** -4.66** -0.10 2.97* -1.69 -2.35 1.48 -1.35 -4.24** 0.48 1.31 2.09 0.37 5.41** 1.89 -1.83 -5.10** -4.24**

-1.57 0.45 -2.47* 1.88 -3.29** 1.16 -1.34 -3.00** 3.49** 2.56** -0.36 2.47* -5.01** -1.74 1.13 -0.78 -1.11 -2.36* 1.19 4.85** 0.86 4.65** -6.72** -1.59 3.47** -1.96* -2.44* 2.40* -1.43 -3.97** 0.72 2.44* 2.28* 1.29 4.87** 3.67** 2.37* -5.44** -4.59**

4.55** -1.48 -5.10** -0.90 1.88* -4.54** -1.22 -2.54** 5.98** -0.18 4.83** -0.67 0.35 -0.95 -5.25** -1.60 -4.41** -4.43** -0.36 10.44** 12.71** -3.41** -8.06** 0.80 -0.88 -3.16** -2.05* -1.44 -4.36** 2.33* 5.32** 3.80** -2.22* 0.62 -3.36** -2.82** 4.43** -1.18 -0.34

0.52 -0.16 -3.37** 1.17 -1.53* -0.89 -1.34* -2.79** 4.47** 1.88** 1.29* 1.51* -3.16** -1.89** -1.07 -1.22* -1.63** -3.07** 0.57 6.46** 4.80** 2.04** -6.48** -0.29 1.85** -2.27** -2.28** 0.81 -2.38** -1.96** 2.17** 2.51** 0.72 0.76 2.31** 0.91 1.66** -3.91** -3.06**

Table 12.6 Contd…. PARENT/CROSS IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 SE(Crosses)

Test weight

Grain yield per plant

WGL

KUN

KAMP

POOLED

WGL

KUN

KAMP

POOLED

-0.36 -0.32 -0.10 -0.49 -0.29 0.36 0.54 1.40** 0.36 -0.31 0.85 0.54 -0.80 1.29* 0.19 -0.10 -0.29 -0.52 -0.22 0.10 1.53** -1.55** -0.73 0.52

-0.48 -0.32 -0.09 -0.39 -0.28 0.35 0.52 0.96 0.76 -0.32 0.79 0.49 -0.80 1.21 0.50 -0.12 -0.31 -0.44 -0.24 0.07 1.43 -1.45 -0.81 0.74

-0.36 -0.33 -0.11 -0.49 -0.29 0.34 0.52 1.38** 0.35 -0.30 0.83 0.52 -0.70 1.26* 0.18 -0.10 -0.29 -0.52 -0.21 0.09 1.50** -1.53** -0.73 0.50

-0.40 -0.33 -0.10 -0.46 -0.29 0.35 0.53 1.25** 0.49 -0.31 0.83** 0.51 -0.77** 1.26** 0.29 -0.10 -0.30 -0.49 -0.22 0.08 1.49** -1.51** -0.76* 0.29

-0.85 3.03* 4.09** -1.51 5.80** -3.08* -0.83 0.53 -3.31** -0.60 -0.54 -2.64* 4.21** 1.09 -0.48 -3.24** -1.94 1.82 0.38 3.01* 3.36** -2.73* -1.70 1.19

-0.98 2.02* -0.22 0.43 5.07** -2.59** -1.27 0.27 -3.62** -0.84 -1.59 -2.27* 8.64** -0.89 0.26 -2.78** -1.42 -0.19 0.03 3.48** 2.85** -2.85** -2.43* 0.94

-1.12 -3.41** -1.28 6.94** 0.89 -2.20* 0.76 4.13** -1.45 -2.14* -1.17 -5.03** -0.66 -0.43 1.72 6.51** -0.90 -0.58 -0.99 6.73** 4.12** -5.26** -1.93* 0.91

-0.98 0.55 0.86 1.95** 3.92** -2.63** -0.45 1.64** -2.79** -1.19* -1.10 -3.31** 4.06** -0.08 0.50 0.16 -1.42* 0.35 -0.19 4.40** 3.45** -3.62** -2.02** 0.60

Table 13.1: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA- 6201 and KRH-2) for days to fifty percent flowering at Warangal and Kunaram. CROSS

WARANGAL Mid

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

-7.57 ** -9.38 ** -8.14 ** -10.08 ** -7.77 ** -6.52 ** -10.08 ** -7.81 ** -3.05 * -9.09 ** -12.5 ** 2.59 * -10.18 ** -6.81 ** -10.66 ** -10.89 ** -11.22 ** -11.06 ** -10.33 ** -6.6 ** -12.56 ** -9.87 ** -4.84 ** -6.57 ** -12.91 ** -10.33 ** -13.2 ** 1.27 -8.35 ** -10.61 ** -11.45 ** -12.28 ** -10.05 ** -7.37 ** -10.78 ** -10.61 ** -6.7 ** -10.33 ** -13.13 ** -1.51 -11.39 ** -1.02

Better

PA- 6201

-9.69 ** -11.68 ** -9.79 ** -13 ** -10.55 ** -8.02 ** -13 ** -10.15 ** -6.42 ** -11.62 ** -14.72 ** -0.50 -12.24 ** -8.72 ** -11.11 ** -11.11 ** -12.12 ** -11.5 ** -10.55 ** -10.61 ** -13 ** -10.1 ** -10.61 ** -6.57 ** -13.13 ** -10.55 ** -13.64 ** 0.51 -9.05 ** -11.06 ** -12.56 ** -12.5 ** -10.05 ** -11.56 ** -11 ** -11.06 ** -12.56 ** -10.55 ** -13.57 ** -1.51 -12.06 ** -2.01

-2.21 -3.87 ** -3.31 * -3.87 ** -1.66 -4.97 ** -3.87 ** -2.21 -3.31 * -3.31 * -7.18 ** 9.39 ** -4.97 ** -1.66 -2.76 -2.76 -3.87 ** -2.21 -1.66 -2.21 -3.87 ** -1.66 -2.21 2.21 -4.97 ** -1.66 -5.52 ** 9.94 ** 0 -2.21 -3.87 ** -3.31 * -1.1 -2.76 -1.66 -2.21 -3.87 ** -1.66 -4.97 ** 8.29 ** -3.31 * 7.73 **

KUNARAM KRH -2

-4.32 ** -5.95 ** -5.41 ** -5.95 ** -3.78 ** -7.03 ** -5.95 ** -4.32 ** -5.41 ** -5.41 ** -9.19 ** 7.03 ** -7.03 ** -3.78 ** -4.86 ** -4.86 ** -5.95 ** -4.32 ** -3.78 ** -4.32 ** -5.95 ** -3.78 ** -4.32 ** 0 -7.03 ** -3.78 ** -7.57 ** 7.57 ** -2.16 -4.32 ** -5.95 ** -5.41 ** -3.24 * -4.86 ** -3.78 ** -4.32 ** -5.95 ** -3.78 ** -7.03 ** 5.95 ** -5.41 ** 5.41 **

Mid

Better

PA- 6201

KRH -2

-0.54 -12.83 ** 2.81 2.27 8.05 ** -1.62 -13.9 ** -5.56 ** 5.26 ** 2.03 -5.21 ** 12.79 ** -2.48 -4.89 ** 8.57 ** 2.26 6.55 ** 9.04 ** 12.2 ** -1.71 -1.44 -11.76 ** 9.32 ** 7.69 ** -3.77 * 12.35 ** -6.12 ** -8.62 ** -5.03 ** -1.1 -12.79 ** -5.88 ** -3.57 * -8.94 ** -10.42 ** -6.32 ** 13.94 ** -5.71 ** 1.42 5.42 ** 3.13 -6.18 **

-1.6 -12.83 ** -2.14 -3.74 * 0.53 -2.67 -15.51 ** -9.09 ** -3.74 * -5.88 ** -7.49 ** 3.74 * -5.35 ** -6.42 ** 3.83 * -3.21 5.92 ** 8.38 ** 10.18 ** -6.01 ** -5 ** -13.29 ** 5.39 ** 4.79 * -6.74 ** 8.98 ** -8.52 ** -12.15 ** -7.1 ** -4.28 * -14.29 ** -8.57 ** -7.43 ** -10.93 ** -11.67 ** -6.86 ** 7.43 ** -10.29 ** 0.56 0 2.84 -7.73 **

14.29 ** 1.24 13.66 ** 11.8 ** 16.77 ** 13.04 ** -1.86 5.59 ** 11.8 ** 9.32 ** 7.45 ** 20.5 ** 9.94 ** 8.7 ** 18.01 ** 12.42 ** 11.18 ** 12.42 ** 14.29 ** 6.83 ** 6.21 ** -6.83 ** 9.32 ** 8.7 ** 3.11 13.04 ** 0 -1.24 5.59 ** 11.18 ** -6.83 ** -0.62 0.62 1.24 -1.24 1.24 16.77 ** -2.48 11.18 ** 8.7 ** 12.42 ** 3.73

13.58 ** 0.62 12.96 ** 11.11 ** 16.05 ** 12.35 ** -2.47 4.94 * 11.11 ** 8.64 ** 6.79 ** 19.75 ** 9.26 ** 8.02 ** 17.28 ** 11.73 ** 10.49 ** 11.73 ** 13.58 ** 6.17 ** 5.56 ** -7.41 ** 8.64 ** 8.02 ** 2.47 12.35 ** -0.62 -1.85 4.94 * 10.49 ** -7.41 ** -1.23 0 0.62 -1.85 0.62 16.05 ** -3.09 10.49 ** 8.02 ** 11.73 ** 3.09

Table 13.1: contd… CROSS IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-7.93 ** -10.71 ** -9 ** -11.39 ** -10.15 ** -7.45 ** -9.37 ** -9.69 ** -2.98 * -11.45 ** -12.24 ** -0.51 -10.49 ** 1.54 -8.67 ** -8.91 ** -8.72 ** -14.65 ** -10.38 ** -7.69 ** -11.62 ** -10.43 ** -5.41 ** -10.15 ** -13.49 ** 0.25 -12.24 ** -10.49 ** -11.86 ** -7.97 ** -8.29 ** -12.76 ** -8.44 ** -7.77 ** -9.69 ** -11.05 ** -0.55 -13.33 ** -7.46 ** -5.37 ** -9.79 ** 1.81

-8.16 ** -11.17 ** -9.23 ** -12.5 ** -11.06 ** -10.77 ** -10.5 ** -10.15 ** -8.21 ** -12.12 ** -12.69 ** -1.51 -10.71 ** 1.54 -8.67 ** -9.14 ** -9.18 ** -15.5 ** -11.06 ** -11.22 ** -12.5 ** -10.66 ** -10.71 ** -10.61 ** -13.71 ** -0.5 -12.24 ** -10.71 ** -12.76 ** -9.14 ** -8.76 ** -14.5 ** -10.05 ** -10.42 ** -11.5 ** -12.18 ** -5.21 ** -14.65 ** -8.63 ** -7.04 ** -10.71 ** 1.03

-0.55 -3.31 * -2.21 -3.31 * -2.21 -3.87 ** -1.1 -2.21 -1.1 -3.87 ** -4.97 ** 8.29 ** -3.31 * 9.39 ** -1.1 -1.1 -1.66 -6.63 ** -2.21 -3.87 ** -3.31 * -2.76 -3.31 * -2.21 -6.08 ** 9.39 ** -4.97 ** -3.31 * -5.52 ** -1.1 -2.21 -5.52 ** -1.1 -4.97 ** -2.21 -4.42 ** 0.55 -6.63 ** -0.55 2.21 -3.31 * 8.84 **

-2.7 -5.41 ** -4.32 ** -5.41 ** -4.32 ** -5.95 ** -3.24 * -4.32 ** -3.24 * -5.95 ** -7.03 ** 5.95 ** -5.41 ** 7.03 ** -3.24 * -3.24 * -3.78 ** -8.65 ** -4.32 ** -5.95 ** -5.41 ** -4.86 ** -5.41 ** -4.32 ** -8.11 ** 7.03 ** -7.03 ** -5.41 ** -7.57 ** -3.24 * -4.32 ** -7.57 ** -3.24 * -7.03 ** -4.32 ** -6.49 ** -1.62 -8.65 ** -2.7 0 -5.41 ** 6.49 **

2.76 2.73 0.57 -5.81 ** 1.18 -6.63 ** 2.51 2.84 1.2 3.26 -2.52 -5.95 ** -8.73 ** 0.56 -3.95 * -0.56 2.94 -4.17 * 0.6 -6.78 ** -10.54 ** -2.91 13.5 ** 7.6 ** -6.59 ** -1.83 4.9 ** 3.41 * -0.82 -4.61 ** -4.84 ** 5.48 ** -2.62 -2.47 -3.87 * 0.28 -6.82 ** 5.88 ** -2.78 -4.42 * -3.91 * -6.89 **

1.64 0.53 -2.23 -9.5 ** -3.91 * -7.65 ** 2.22 1.12 -5.59 ** -2.79 -2.79 -11.73 ** -9.5 ** 0 -7.1 ** -4.81 ** 2.34 -5.85 ** -2.34 -9.84 ** -12.78 ** -3.47 8.19 ** 3.51 -8.43 ** -5.85 ** 3.41 0.55 -1.09 -5.88 ** -8.24 ** 0.55 -8.24 ** -2.73 -4.4 * -2.2 -13.74 ** -1.1 -3.85 * -10.99 ** -5.49 ** -7.14 **

15.53 ** 16.77 ** 8.7 ** 0.62 6.83 ** 4.97 * 14.29 ** 12.42 ** 4.97 * 8.07 ** 8.07 ** -1.86 0.62 12.42 ** 5.59 ** 10.56 ** 8.7 ** 0 3.73 2.48 -2.48 3.73 14.91 ** 9.94 ** 1.24 0 13.04 ** 13.04 ** 12.42 ** 9.32 ** 3.73 13.66 ** 3.73 10.56 ** 8.07 ** 10.56 ** -2.48 11.8 ** 8.7 ** 0.62 6.83 ** 4.97 *

14.81 ** 16.05 ** 8.02 ** 0 6.17 ** 4.32 * 13.58 ** 11.73 ** 4.32 * 7.41 ** 7.41 ** -2.47 0 11.73 ** 4.94 * 9.88 ** 8.02 ** -0.62 3.09 1.85 -3.09 3.09 14.2 ** 9.26 ** 0.62 -0.62 12.35 ** 12.35 ** 11.73 ** 8.64 ** 3.09 12.96 ** 3.09 9.88 ** 7.41 ** 9.88 ** -3.09 11.11 ** 8.02 ** 0 6.17 ** 4.32 *

Table 13.2: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for days to fifty percent flowering at Kampasagar and Pooled.

CROSS IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-5.47 ** -2.77 * -3.12 ** -6.72 ** -12.65 ** -7.69 ** -8.12 ** -2.13 0.28 -6.95 ** -8.2 ** 8.6 ** -6.96 ** -4.94 ** -11.5 ** -2.08 -8.42 ** -7.94 ** -3.73 ** -2.24 -8.53 ** -6.26 ** 2.7 * -4.42 ** -5.06 ** -8.75 ** -4.6 ** 4.55 ** -10.29 ** -5.53 ** -9.94 ** -12.79 ** -6.97 ** -11.55 ** -13.56 ** -8.61 ** -8.06 ** -9.92 ** -11.95 ** 0.77 -3.97 ** -4.7 **

-9.23 ** -3.31 -5.56 ** -9.87 ** -16.33 ** -8.08 ** -11.99 ** -6.36 ** -1.39 -10.54 ** -9.92 ** 4.94 ** -6.96 ** -8.72 ** -15.13 ** -2.75 * -10.85 ** -11.17 ** -7.91 ** -2.51 -12.5 ** -10.43 ** 1.12 -8.23 ** -6.97 ** -11.95 ** -4.74 ** 0.26 -11.08 ** -9.57 ** -12.09 ** -14.11 ** -7.56 ** -16.12 ** -14.11 ** -9.07 ** -13.85 ** -10.83 ** -14.61 ** -0.76 -8.56 ** -5.54 **

-1.12 -1.96 -0.28 -3.07 * -8.38 ** -7.82 ** -3.63 ** 2.79 * -1.12 -2.79 * -6.15 ** 12.85 ** -6.7 ** -0.56 -7.54 ** -1.4 -5.87 ** -4.47 ** 0.84 -2.51 -4.19 ** -1.68 1.12 -0.28 -3.07 * -5.31 ** -4.47 ** 9.22 ** -1.4 0.28 -2.51 -4.75 ** 2.51 -6.98 ** -4.75 ** 0.84 -4.47 ** -1.12 -5.31 ** 10.06 ** 1.4 4.75 **

-6.84 ** -7.63 ** -6.05 ** -8.68 ** -13.68 ** -13.16 ** -9.21 ** -3.16 * -6.84 ** -8.42 ** -11.58 ** 6.32 ** -12.11 ** -6.32 ** -12.89 ** -7.11 ** -11.32 ** -10 ** -5 ** -8.16 ** -9.74 ** -7.37 ** -4.74 ** -6.05 ** -8.68 ** -10.79 ** -10 ** 2.89 * -7.11 ** -5.53 ** -8.16 ** -10.26 ** -3.42 ** -12.37 ** -10.26 ** -5 ** -10 ** -6.84 ** -10.79 ** 3.68 ** -4.47 ** -1.32

-4.57 ** -8.4 ** -2.94 ** -5.04 ** -4.46 ** -5.25 ** -10.67 ** -5.18 ** 0.76 -4.89 ** -8.7 ** 7.8 ** -6.61 ** -5.56 ** -4.92 ** -3.83 ** -4.84 ** -3.95 ** -1.36 -3.59 ** -7.77 ** -9.23 ** 2.05 * -1.6 * -7.46 ** -3.07 ** -8.17 ** -0.72 -7.98 ** -5.89 ** -11.34 ** -10.53 ** -7.04 ** -9.29 ** -11.62 ** -8.6 ** -0.84 -8.82 ** -8.2 ** 1.34 -4.36 ** -3.89 **

-6.27 ** -9.37 ** -3.07 ** -5.38 ** -4.68 ** -6.23 ** -12.41 ** -6.27 ** -3.88 ** -5.15 ** -9.35 ** 7.32 ** -6.78 ** -7.01 ** -7.4 ** -5.66 ** -5.53 ** -5.11 ** -2.43 ** -3.77 ** -10.33 ** -11.03 ** -1.84 * -2.18 * -8.9 ** -3.46 ** -8.79 ** -3.06 ** -8.1 ** -6.46 ** -12.93 ** -11.7 ** -8.38 ** -11.7 ** -11.89 ** -9.08 ** -6.9 ** -10.57 ** -9.08 ** -0.79 -6.11 ** -4.02 **

3.26 ** -1.63 2.98 ** 1.25 1.73 -0.38 -3.17 ** 1.92 * 2.11 * 0.77 -2.3 * 14.01 ** -0.96 1.92 * 2.02 * 2.4 * 0.1 1.54 4.13 ** 0.48 -0.86 -3.26 ** 2.5 ** 3.36 ** -1.82 1.63 -3.45 ** 6.24 ** 1.25 2.78 ** -4.32 ** -2.98 ** 0.67 -2.98 ** -2.59 ** -0.1 2.3 * -1.73 -0.1 9.02 ** 3.17 ** 5.47 **

0.19 -4.56 ** -0.09 -1.77 -1.3 -3.35 ** -6.05 ** -1.12 -0.93 -2.23 * -5.21 ** 10.61 ** -3.91 ** -1.12 -1.02 -0.65 -2.89 ** -1.49 1.02 -2.51 ** -3.82 ** -6.15 ** -0.56 0.28 -4.75 ** -1.4 -6.33 ** 3.07 ** -1.77 -0.28 -7.17 ** -5.87 ** -2.33 * -5.87 ** -5.49 ** -3.07 ** -0.74 -4.66 ** -3.07 ** 5.77 ** 0.09 2.33 *

Table 13.2: contd… CROSS IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56

IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-10.66 ** -11.7 ** -11.6 ** -13.15 ** -11.14 ** -2.92 ** -11.39 ** -14.03 ** -2.82 * -12.83 ** -11.54 ** -1.4 -6.47 ** -3.55 ** -8.05 ** -7.14 ** -7.13 ** -13.37 ** -8.28 ** -10.28 ** -12.87 ** -9.92 ** -3.24 ** -10.74 ** -14.36 ** -1.03 -9.84 ** -14.18 ** -10.54 ** -3.6 ** -8.88 ** -14.1 ** -11.79 ** -2.69 * -11.28 ** -14.21 ** 3.67 ** -14.03 ** -4.07 ** -2.46 * -8.17 ** 2.31 *

-11.56 ** -15.58 ** -13.82 ** -14.57 ** -11.81 ** -8.04 ** -12.06 ** -14.57 ** -9.05 ** -13.82 ** -14.32 ** -3.02 * -11.06 ** -4.52 ** -8.4 ** -10.69 ** -8.91 ** -14.25 ** -8.4 ** -14.5 ** -12.98 ** -9.92 ** -8.91 ** -11.2 ** -16.54 ** -2.04 -13.74 ** -14.5 ** -10.77 ** -6.7 ** -10.05 ** -14.43 ** -12.24 ** -6.7 ** -11.73 ** -14.76 ** -1.8 -14.14 ** -5.93 ** -2.84 * -11.6 ** 2.05

-1.68 -6.15 ** -4.19 ** -5.03 ** -1.96 2.23 -2.23 -5.03 ** 1.12 -4.19 ** -4.75 ** 7.82 ** -1.12 6.15 ** 0.56 -1.96 0 -5.87 ** 0.56 -6.15 ** -4.47 ** -1.12 0 -2.51 -8.38 ** 7.54 ** -5.31 ** -6.15 ** -2.79 * 1.12 -2.51 -7.26 ** -3.91 ** 1.12 -3.35 * -6.42 ** 6.42 ** -6.7 ** 1.96 5.31 ** -4.19 ** 11.17 **

-7.37 ** -11.58 ** -9.74 ** -10.53 ** -7.63 ** -3.68 ** -7.89 ** -10.53 ** -4.74 ** -9.74 ** -10.26 ** 1.58 -6.84 ** 0 -5.26 ** -7.63 ** -5.79 ** -11.32 ** -5.26 ** -11.58 ** -10 ** -6.84 ** -5.79 ** -8.16 ** -13.68 ** 1.32 -10.79 ** -11.58 ** -8.42 ** -4.74 ** -8.16 ** -12.63 ** -9.47 ** -4.74 ** -8.95 ** -11.84 ** 0.26 -12.11 ** -3.95 ** -0.79 -9.74 ** 4.74 **

-5.49 ** -6.72 ** -6.93 ** -10.31 ** -7.09 ** -5.65 ** -6.35 ** -7.33 ** -1.63 * -7.52 ** -8.95 ** -2.45 ** -8.58 ** -0.52 -6.99 ** -5.67 ** -4.62 ** -11.06 ** -6.39 ** -8.28 ** -11.72 ** -7.96 ** 1.13 -5.12 ** -11.64 ** -0.81 -6.1 ** -7.45 ** -7.88 ** -5.43 ** -7.41 ** -7.6 ** -7.83 ** -4.32 ** -8.39 ** -8.59 ** -1.07 -7.73 ** -4.83 ** -4.08 ** -7.37 ** -0.79

-5.57 ** -7.33 ** -8.64 ** -11.52 ** -8.46 ** -8.2 ** -6.6 ** -7.85 ** -7.68 ** -9.34 ** -9.86 ** -4.54 ** -10.3 ** -0.7 -7.84 ** -5.84 ** -5.59 ** -11.54 ** -7.01 ** -10.03 ** -12.67 ** -8.21 ** -4.35 ** -6.21 ** -11.8 ** -2.13 * -7.1 ** -8.06 ** -8.36 ** -5.63 ** -8.71 ** -8.45 ** -8.8 ** -6.51 ** -9.03 ** -8.71 ** -6.78 ** -9.15 ** -5.37 ** -5.72 ** -8.71 ** -1.05

4.03 ** 1.92 * 0.48 -2.69 ** 0.67 0.96 3.26 ** 1.34 1.54 -0.29 -0.86 4.99 ** -1.34 9.21 ** 1.54 2.21 * 2.11 * -4.32 ** 0.58 -2.69 ** -3.45 ** -0.19 3.45 ** 1.44 -4.61 ** 5.85 ** 0.48 0.77 0.96 2.88 ** -0.48 -0.19 -0.58 1.92 * 0.58 -0.48 1.63 -0.96 3.17 ** 2.78 ** -0.48 8.45 **

0.93 -1.12 -2.51 ** -5.59 ** -2.33 * -2.05 * 0.19 -1.68 -1.49 -3.26 ** -3.82 ** 1.86 * -4.28 ** 5.96 ** -1.49 -0.84 -0.93 -7.17 ** -2.42 ** -5.59 ** -6.33 ** -3.17 ** 0.37 -1.58 -7.45 ** 2.7 ** -2.51 ** -2.23 * -2.05 * -0.19 -3.45 ** -3.17 ** -3.54 ** -1.12 -2.42 ** -3.45 ** -1.4 -3.91 ** 0.09 -0.28 -3.45 ** 5.21 **

Table 13.3: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for plant height at Warangal and Kunaram. CROSS

WARANGAL Mid

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

5.6 * 3.65 8.12 ** 7.03 ** 7.37 ** 3.8 15.2 ** 15.73 ** 7.62 ** 11.05 ** 20.54 ** 16.33 ** 24.75 ** 15.02 ** 6.42 ** 8.45 ** 10.45 ** 3.91 9 ** 2.64 18.07 ** 7.38 ** -0.45 5.95 * 3.87 1.68 9.38 ** 5.95 ** 18.62 ** 11.6 ** 6.42 ** 5.61 * 8.44 ** 5.02 * 3.82 8.14 ** 2.41 7.94 ** 2.86 3.21 12.38 ** 14.8 **

Better

-1.55 -5.76 * 4.19 5.84 * 2.16 -0.73 9.3 ** 10.74 ** -2.48 7.6 ** 11.37 ** 7.82 ** 16.8 ** 2.11 4.71 3.91 8.42 ** -0.59 8.42 ** 1.54 17.79 ** 6.17 * -4.96 * 3.44 1.24 -0.57 8.11 ** -1.03 18.18 ** 9.02 ** 2.45 -0.85 5.75 * 1.88 1.54 4.84 -0.32 3.36 2.25 2.95 11.45 ** 9.27 **

PA- 6201

-3.22 -2.14 -4.51 -8.01 ** -3.84 -7.56 ** 3.5 2.99 2.03 -2.48 11.63 ** 7.34 ** 13.77 ** 11.91 ** 2.93 7.9 ** 3.16 -5.42 * 3.16 -3.39 12.08 ** 1.02 -0.56 -1.58 1.47 -1.02 5.3 * 8.47 ** 17.04 ** 13.21 ** 1.47 -1.81 4.74 0.9 0.56 3.84 4.29 2.37 2.48 2.48 10.38 ** 19.75 **

KUNARAM KRH -2

Mid

-7.2 ** -6.17 * -8.44 ** -11.8 ** -7.79 ** -11.36 ** -0.76 -1.24 -2.16 -6.49 ** 7.03 ** 2.92 9.09 ** 7.31 ** -1.3 3.46 -1.08 -9.31 ** -1.08 -7.36 ** 7.47 ** -3.14 -4.65 -5.63 * -2.71 -5.09 * 0.97 4 12.23 ** 8.55 ** -2.71 -5.84 * 0.43 -3.25 -3.57 -0.43 0 -1.84 -1.73 -1.73 5.84 * 14.83 **

-1.63 -6.24 ** 3.51 ** -9.19 ** -15.46 ** -13.21 ** -11.36 ** -0.06 -18.35 ** -14.73 ** -12.59 ** 2.13 -13.87 ** -7.55 ** -3.6 ** -5.14 ** -3.3 * 1.1 -5.26 ** -3.43 * 6.75 ** -9.83 ** -8.37 ** 8.66 ** 5.22 ** 4.25 ** -13.84 ** 4.76 ** 10.89 ** -9.34 ** -7.58 ** 2.25 -12.63 ** -10.28 ** -11.15 ** -16.06 ** -14.64 ** -0.41 -12.77 ** -5.18 ** -15.94 ** -1.75

Better

PA- 6201

KRH -2

-5.84 ** -8.55 ** -4.71 ** -17.65 ** -16.67 ** -20.01 ** -13.6 ** -2.85 * -20.94 ** -18.42 ** -17 ** -1.21 -15.57 ** -7.7 ** -5.16 ** -8.42 ** -5.7 ** -2.97 -9.48 ** -5.7 ** 3.12 * -12.66 ** -16.22 ** 6.96 ** 4.39 ** 1.47 -17.24 ** -1.42 9.46 ** -9.92 ** -12.38 ** -4.56 ** -14.11 ** -14.84 ** -11.66 ** -16.3 ** -19.82 ** -1.75 -14.6 ** -5.37 ** -16.89 ** -4.92 **

17.48 ** 14.09 ** 18.88 ** 2.74 3.97 * -0.21 7.8 ** 21.2 ** 5.34 ** 1.78 3.56 * 23.26 ** 5.34 ** 15.53 ** 8.21 ** 8.62 ** 4.1 * 7.11 ** 9.71 ** 4.1 * 22.16 ** 2.87 11.63 ** 21.89 ** 17.1 ** 18.33 ** -0.82 23.39 ** 28.18 ** 6.84 ** 2.6 11.76 ** 4.1 * -0.27 4.65 ** -1.42 6.84 ** 15.05 ** 0 10.81 ** -0.41 19.02 **

10.2 ** 7.02 ** 11.51 ** -3.63 * -2.48 -6.39 ** 1.12 13.69 ** -1.19 -4.53 ** -2.86 15.62 ** -1.19 8.37 ** 1.5 1.89 -2.35 0.47 2.91 -2.35 14.59 ** -3.5 * 4.71 ** 14.33 ** 9.84 ** 11 ** -6.97 ** 15.74 ** 20.24 ** 0.22 -3.76 * 4.84 ** -2.35 -6.45 ** -1.83 -7.53 ** 0.22 7.92 ** -6.2 ** 3.94 * -6.58 ** 11.64 **

Table 13.3: contd… CROSS

WARANGAL Mid

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

13.24 ** 5.26 * 6.29 ** 3.7 10.47 ** 7.11 ** 8.43 ** 12.27 ** -0.98 -0.94 9.15 ** 9.41 ** 14.66 ** 6.56 ** 0.11 -3.98 4.65 * -3.56 -2.67 1.17 1.51 3.57 -4.08 1.3 -1.41 -3 10.06 ** 4.09 10.16 ** 3.15 2.6 13.24 ** 10.96 ** 4.28 3 7.88 ** -1.36 7.28 ** 9.51 ** 7.96 ** 2.58 1.38

Better

11.17 ** 4.35 0.88 -3.98 6.19 * 2.43 4.54 7.3 ** -2.21 -6.47 * 8.19 ** 8.08 ** 12.06 ** 2.88 -0.79 -5.71 * 0.23 -9.92 ** -5.58 * -2.37 -1.24 -0.11 -6.15 * -3.49 -1.46 -3.27 8.57 ** -0.41 3.33 -5.65 * -0.49 12.73 ** 6.24 * 0.36 -1.67 3.88 -10.09 ** 4.61 1.8 0.68 -3.36 -9.47 **

PA- 6201

13.43 ** 8.35 ** 2.93 -2.03 8.35 ** 4.51 6.66 ** 9.48 ** 2.31 -4.57 10.38 ** 10.27 ** 14.33 ** 12.75 ** -0.68 -2.09 0.34 -9.82 ** -5.47 * -2.26 -1.13 0 -1.81 -3.39 -1.24 -3.16 8.69 ** 9.14 ** 1.58 -2.03 -8.8 ** -2.03 0 -6.55 * -6.88 ** -3.39 -5.93 * -5.19 * 2.03 0.23 -5.87 * -0.79

KUNARAM KRH -2

Mid

Better

PA- 6201

KRH -2

8.77 ** 3.9 -1.3 -6.06 * 3.9 0.22 2.27 4.98 * -1.89 -8.5 ** 5.84 * 5.74 * 9.63 ** 8.12 ** -4.76 -6.11 * -3.79 -13.53 ** -9.36 ** -6.28 * -5.19 * -4.11 -5.84 * -7.36 ** -5.3 * -7.14 ** 4.22 4.65 -2.6 -6.06 * -12.55 ** -6.06 * -4.11 -10.39 ** -10.71 ** -7.36 ** -9.79 ** -9.09 ** -2.16 -3.9 -9.74 ** -4.87 *

9.09 ** -0.59 10.92 ** 4.61 ** -9.98 ** 10.9 ** -2.66 * -2.96 * -5.61 ** -3.22 * -4.13 ** -8.07 ** -6.28 ** -4.25 ** 1.7 -3.17 * -6.41 ** -6.58 ** -12.41 ** 0.79 -15.21 ** -3.24 * -5.42 ** -3.7 ** -7.46 ** -8.16 ** -16.04 ** -8.07 ** -7.68 ** -9.3 ** -5.73 ** 6.45 ** 1.29 4.58 ** 0.69 -1.95 -6.02 ** -1.86 3.36 * 4.25 ** -7.97 ** -1.53

8.63 ** -2.88 * 6.89 ** -0.77 -12.98 ** 7.01 ** -4.85 ** -4.88 ** -12.73 ** -3.57 * -4.53 ** -9.44 ** -8.9 ** -8.85 ** -0.4 -3.33 * -11.95 ** -13.45 ** -13.21 ** -5.06 ** -15.4 ** -3.74 * -10.47 ** -5.75 ** -10.11 ** -9.08 ** -16.32 ** -10.33 ** -11.51 ** -14.65 ** -5.87 ** 4.87 ** -5.64 ** 4.29 ** -5.2 ** -7.43 ** -16.12 ** -5.88 ** -0.12 -1.11 -13.81 ** -9.62 **

23.94 ** 15.18 ** 20.93 ** 12.26 ** 5.47 ** 21.07 ** 12.72 ** 12.04 ** 16.28 ** 9.88 ** 8 ** 5.61 ** 9.17 ** 14.09 ** 18.54 ** 15.05 ** 4.79 ** 3.01 5.2 ** 13 ** 0.68 14.57 ** 19.29 ** 12.18 ** 6.98 ** 8.21 ** 0.27 12.24 ** 0.96 1.23 -1.23 9.71 ** 14.36 ** 9.71 ** 12.31 ** 9.03 ** 11.76 ** 7.25 ** 12.04 ** 15.32 ** 3.28 13.13 **

16.26 ** 8.05 ** 13.44 ** 5.31 ** -1.07 13.56 ** 5.74 ** 5.09 ** 9.07 ** 3.07 1.31 -0.94 2.4 7.02 ** 11.19 ** 7.92 ** -1.71 -3.37 * -1.32 5.99 ** -5.56 ** 7.47 ** 11.9 ** 5.22 ** 0.35 1.5 -5.94 ** 5.29 ** -5.3 ** -5.04 ** -7.35 ** 2.91 7.28 ** 2.91 5.35 ** 2.27 4.84 ** 0.6 5.09 ** 8.17 ** -3.12 6.12 **

Table 13.4: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for plant height at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

4.29 9.3 * -5.03 1.94 5.33 7.83 1.4 -1.06 6.41 1.68 7.96 * 0.3 10.24 ** -1.84 2.32 0.96 0.3 5.85 3.29 17.87 ** -0.92 5.02 -0.37 0.1 8.66 * 12.55 ** 4.78 8.04 * 4.01 5.7 0.76 0.37 -0.72 6.24 -0.67 2.57 0.05 0.09 -0.29 0 1.14 2.67

2.38 4.71 -8.81 * -5.35 3 2.67 -1.17 -2.69 6.14 -2 7.09 -1.87 6.63 -9.4 * -1.78 -5.37 -5.78 0.43 -1.23 14.76 ** -5.57 1 -2.87 -5.63 5.36 7.68 -0.87 -2.35 1.51 5.66 0.57 -10.38 * -2.74 -2.83 -2.36 -0.09 -3.87 -0.47 -3.68 -2.08 0.19 -1.31

0.1 7.66 -6.69 -10.85 * 1.5 -3.29 -1.94 -5.23 0.48 -0.48 2.52 -3.39 7.46 0.87 -3.97 -2.71 -3.59 -9.69 * -2.66 3.2 -6.3 -1.65 -8.04 -4.17 0.87 6.01 -0.1 8.72 * 4.26 8.62 * 3.29 -7.95 -0.1 -0.19 0.29 2.62 -1.26 2.23 -1.07 0.58 2.91 9.88 *

-1.99 5.41 -8.63 * -12.71 ** -0.62 -5.31 -3.98 -7.21 -1.61 -2.56 0.38 -5.41 5.22 -1.23 -5.98 -4.74 -5.6 -11.57 ** -4.7 1.04 -8.25 -3.7 -9.96 * -6.17 -1.23 3.8 -2.18 6.45 2.09 6.36 1.14 -9.87 * -2.18 -2.28 -1.8 0.47 -3.32 0.09 -3.13 -1.52 0.76 7.59

2.76 2.53 1.59 -0.2 -1.02 -0.33 1.27 4.24 * -1.69 -0.96 5.16 ** 5.76 ** 6.61 ** 1.45 1.81 1.51 2.44 3.72 * 2.37 6.2 ** 7.52 ** 1.06 -3.01 4.6 ** 6.03 ** 6.45 ** 0.39 6.36 ** 10.76 ** 2.99 0.03 2.64 -1.64 0.75 -2.54 -1.54 -3.94 * 2.35 -3.09 -0.58 -0.66 5.17 **

1.3 -1.26 1.55 -5.73 ** -2.83 -3.43 -0.44 3.22 -5.8 ** -1.83 4.01 * 3.58 3.89 * -5.21 ** -0.74 -3.3 1.33 -0.97 -0.6 4.03 * 4.54 * -1.04 -8.06 ** 2.53 3.71 3.11 -3.24 -1.65 9.18 ** 2 -2.81 -5.6 ** -2.63 -5.03 ** -3.67 * -3.36 -5.35 ** 0.34 -4.78 ** -1.34 -0.91 0.99

3.78 6.15 ** 1.09 -6.15 ** 0.4 -3.87 * 2.57 4.81 * 2.34 -0.53 5.85 ** 7.55 ** 8.98 ** 8.61 ** 1.7 3.96 * 0.79 -3.62 2.7 1.25 7.7 ** 0.49 -0.11 3.89 * 5.55 ** 7.06 ** 1.51 12.68 ** 15.14 ** 9.66 ** 2.49 -0.45 2.68 0.15 1.59 1.91 2.83 5.81 ** 0.42 4.04 * 4.49 * 15.7 **

-0.29 1.98 -2.88 -9.84 ** -3.55 -7.65 ** -1.46 0.7 -1.68 -4.44 * 1.69 3.33 4.7 * 4.34 * -2.3 -0.12 -3.17 -7.41 ** -1.33 -2.73 3.47 -3.46 -4.04 * -0.19 1.4 2.85 -2.48 8.26 ** 10.62 ** 5.36 ** -1.53 -4.36 * -1.35 -3.78 * -2.4 -2.09 -1.21 1.66 -3.53 -0.05 0.39 11.16 **

Table 13.4: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

13.49 ** 0 6.45 5.35 2.73 -3.97 1.8 4.31 -5.96 0.14 -3.41 -3.26 -0.91 3.11 -2.33 -9.87 ** -6.51 -2.95 -10.55 ** -1.16 -5.28 -2.52 -3.71 -8.02 * -2.02 -3.31 4.59 3.34 23.49 ** 15.46 ** 10.9 ** 4.26 7.94 14.89 ** -4.5 6.25 -1.05 6.91 9.99 * 0 11.21 ** 7.51

11.96 ** -1.13 5.49 -5.01 1.74 -11.28 ** 1.16 2.7 -8.68 * -0.38 -5.69 -4.24 -1.06 -1.91 -6.2 -11.31 ** -8.21 * -14.6 ** -13.78 ** -10.95 ** -8.39 * -6.57 -8.94 * -10.04 * -6.84 -6.84 1.92 0.96 12.78 ** 3.11 -0.76 4.2 -1.77 11.95 * -13.36 ** -2.79 -8.29 -4.01 1.42 -8.96 * 0.19 -7.22

12.5 ** 1.65 7.95 -4.55 2.23 -10.85 * 1.65 3.2 -8.24 1.16 -5.23 -3.78 -0.29 9.21 * -0.39 -5.81 -2.52 -9.3 * -8.43 -5.43 -2.71 -0.78 -3.29 -4.46 -1.07 -1.07 8.24 12.4 ** 10.27 * 6.01 1.55 -15.79 ** -3.2 -4.65 -14.03 ** -5.33 -13.18 ** -2.52 -2.91 -10.37 * 0.97 3.29

10.15 * -0.47 5.69 -6.55 0.09 -12.71 ** -0.47 1.04 -10.15 * -0.95 -7.21 -5.79 -2.37 6.93 -2.47 -7.78 -4.55 -11.2 ** -10.34 * -7.4 -4.74 -2.85 -5.31 -6.45 -3.13 -3.13 5.98 10.06 * 7.97 3.8 -0.57 -17.55 ** -5.22 -6.64 -15.83 ** -7.31 -14.99 ** -4.55 -4.93 -12.24 ** -1.14 1.14

12.08 ** 1.53 7.72 ** 4.58 ** 1.22 4.22 * 2.53 4.58 ** -4.23 ** -1.22 0.49 -0.63 2.4 2.02 -0.32 -5.96 ** -3.02 -4.27 * -8.71 ** 0.19 -6.27 ** -0.87 -4.38 ** -3.85 * -3.48 * -4.7 ** -0.11 0.12 9.38 ** 3.73 * 3.19 7.89 ** 6.73 ** 8.13 ** -0.48 4.12 * -2.8 4.25 * 7.76 ** 3.91 * 2.36 2.73

10.98 ** 0.11 5.13 ** -3.41 0.65 -1.34 1.81 3.11 -6.06 ** -2.72 -0.81 -0.94 2.2 -2.47 -2.75 -6.05 ** -6.73 ** -12.79 ** -10.57 ** -6.48 ** -8.31 ** -3.7 * -4.79 ** -6.69 ** -6.13 ** -6.41 ** -1.4 -2.88 2.28 -5.13 ** -2.16 7.51 ** -0.58 5.7 ** -7.17 ** -2.23 -11.52 ** -2.01 1.08 -3.44 -5.33 ** -8.67 **

15.97 ** 7.63 ** 9.85 ** 0.93 5.17 ** 3.1 6.38 ** 7.74 ** 2.06 1.65 3.64 3.51 7.21 ** 11.74 ** 4.74 * 1.19 0.45 -6.08 ** -3.68 0.72 -1.25 3.72 3.44 0.49 1.09 0.79 6.19 ** 11.27 ** 4.79 * 2 -2.68 -4.15 * 2.72 -1.32 -4.37 * -0.72 -3.87 * -0.72 2.87 0.26 -0.68 4.64 *

11.41 ** 3.4 5.54 ** -3.03 1.04 -0.95 2.2 3.51 -1.95 -2.34 -0.43 -0.55 3 7.35 ** 0.62 -2.79 -3.49 -9.77 ** -7.46 ** -3.24 -5.12 ** -0.36 -0.63 -3.46 -2.88 -3.17 2.02 6.9 ** 0.68 -2.01 -6.5 ** -7.92 ** -1.32 -5.2 ** -8.13 ** -4.62 * -7.65 ** -4.62 * -1.17 -3.67 * -4.58 * 0.53

Table 13.9: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for panicle length at Warangal and Kunaram.

CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

-3.79 -5.98 -10.84 ** -1.63 -7.08 * -0.73 -0.59 4.31 -0.48 -11.8 ** -1.04 -9.51 ** 7.48 * 1.38 8.44 * -7.62 * -5.5 -1.63 -7.65 * 13.16 ** 6.41 10.63 ** 1.97 -10.89 ** -9.09 ** -3.89 -3.2 9.62 ** 21.91 ** 11.37 ** 0.55 8.03 * 2.65 12.31 ** 5.23 11.02 ** -4.41 -5.88 4.88 6.62 * 8.28 * 6.05

-8.39 * -9.52 * -12.36 ** -9.18 * -9.07 * -7.68 * -2.52 -3.91 -3.16 -14.95 ** -1.81 -11.96 ** 6.84 1.17 7.06 -7.79 -10.4 ** -5.96 -9.04 * 9* 4.58 5.52 0.99 -17.05 ** -11.7 ** -9.75 ** -7.21 5.9 20.85 ** 9.2 * -6.58 5.46 -1.02 10.5 * 1.25 8.13 -7.32 -14.12 ** -0.23 -1.89 1.67 0.34

9.2 * 7.85 8.17 8.25 8.39 10.05 * 16.2 ** 14.54 ** 15.43 ** 9.2 * 17.05 ** 10.95 * 28.89 ** 20.59 ** 18.44 ** 2.02 10.59 * 4.04 3.77 20.59 ** 19.83 ** 16.73 ** 13.91 ** 6.51 3.63 13.73 ** 11.93 ** 25.71 ** 30.28 ** 20.37 ** 15.3 ** 11.71 ** 12.92 ** 17.05 ** 16.02 ** 14.54 ** 4.53 10.27 * 17.09 ** 23.64 ** 22.66 ** 19.11 **

-3.91 -5.09 -4.82 -4.74 -4.62 -3.16 2.25 0.79 1.58 -3.91 3 -2.37 13.42 ** 6.12 4.22 -10.23 ** -2.68 -8.45 * -8.69 * 6.12 5.45 2.72 0.24 -6.28 -8.8 * 0.08 -1.5 10.62 ** 14.65 ** 5.92 1.46 -1.7 -0.63 3 2.09 0.79 -8.01 * -2.96 3.04 8.8 * 7.94 * 4.82

Mid

Better

PA- 6201

KRH -2

-2.94 5.3 7.45 -0.7 4.83 7.91 -0.24 2.83 2.68 -3.39 -2.55 -3.32 -3.04 8.76 10.22 * 5.51 9.5 13.36 ** 2.19 4.49 4.65 7.21 1.73 1.39 5.52 -3.73 -4.39 13.16 ** 14.68 ** 5.41 -5.36 0.25 3.79 5.23 -3.62 -3.74 5.83 -6.39 -3.03 2.38 14.34 ** 17.4 **

-4.96 4.3 5.58 -3.14 2.79 7.43 -3.44 1.07 1.03 -5.16 -4.81 -5.27 -9.54 * 5.84 4.75 1.39 8.07 12.7 * 1.06 1.79 -1.66 2.26 -2.87 -3.41 0.04 -8.45 -13.3 ** 6.91 13.61 ** 5.19 -8.08 -3.33 0.61 3.54 -5.63 -4.27 5.35 -7.03 -4.18 1.49 7.85 15.58 **

1.4 8.73 7.96 -0.95 5.11 9.86 5.52 7.01 6.74 0.68 2.08 0.95 6.83 14.37 ** 11.76 * 5.7 6.65 9.59 -0.68 3.17 7.47 8.28 2.62 2.53 7.29 -2.44 2.4 15.52 ** 21.22 ** 10.14 -3.76 1.22 5.34 8.42 3.12 1.36 11.31 * -1.31 2.76 8.14 27.38 ** 24.89 **

-11.39 * -4.98 -5.65 -13.44 ** -8.15 -3.99 -7.79 -6.48 -6.72 -12.02 * -10.79 * -11.78 * -6.64 -0.06 -2.33 -7.63 -6.8 -4.23 -13.21 ** -9.85 * -6.09 -5.38 -10.32 * -10.4 * -6.25 -14.75 ** -10.52 * 0.95 5.93 -3.76 -15.9 ** -11.55 * -7.95 -5.26 -9.89 * -11.43 * -2.73 -13.76 ** -10.2 * -5.5 11.31 * 9.13

Table 13.9: contd… CROSS

WARANGAL Mid

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

21.94 ** -2.59 0.57 5.04 4.63 14.44 ** -3.62 8.03 * 2.13 -6.04 6.98 * -7.35 * 20.37 ** 4.33 12.2 ** 3.33 -8.19 * 7.78 * 4.7 28.63 ** 5.24 5.38 2.73 -11.6 ** -0.18 -4.57 12.73 ** 18.18 ** 13.47 ** -2.96 -5.21 4.16 2.86 11.01 ** -1.47 3.66 -3.11 -4.07 -2.96 2.32 9.59 ** 17.33 **

KUNARAM

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

18.32 ** -4.46 -3.02 -1.25 4.38 8.4 * -3.64 1.33 1.31 -11.08 ** 5.73 -11.53 ** 17.37 ** 2.53 11.03 ** 1.14 -14.83 ** 5.4 0.79 26.77 ** 1.1 2.8 -0.56 -19.46 ** -5.2 -12.32 ** 5.69 11.64 ** 10.45 * -6.55 -13.41 ** 3.56 -2.56 10.77 * -6.85 2.81 -7.72 -13.91 ** -9.29 * -7.4 * 1.15 9.11 *

35.62 ** 9.51 * 19.69 ** 13.19 ** 19.65 ** 24.25 ** 10.45 * 16.15 ** 16.13 ** 14.18 ** 24.09 ** 11.48 * 41.59 ** 21.71 ** 19.69 ** 11.48 * 5.11 11.26 * 14.98 ** 33.83 ** 15.84 ** 8.52 12.16 ** 3.41 11.26 * 10.5 * 27.5 ** 32.53 ** 19.07 ** 3.01 6.86 5.7 11.17 * 13.55 ** 6.73 4.93 4.08 10.54 * 6.46 16.69 ** 22.03 ** 29.52 **

19.34 ** -3.63 5.33 -0.39 5.29 9.34 * -2.8 2.21 2.19 0.47 9.2 * -1.89 24.6 ** 7.11 5.33 -1.89 -7.5 -2.09 1.18 17.77 ** 1.93 -4.5 -1.3 -9 * -2.09 -2.76 12.2 ** 16.62 ** 4.78 -9.36 * -5.96 -6.99 -2.17 -0.08 -6.08 -7.66 -8.41 * -2.72 -6.32 2.68 7.38 13.98 **

4.69 -2.39 4.07 -4.75 -0.6 -8.11 -5.39 -1.25 1.9 -0.54 -2.07 -8.31 0.3 10.77 * 3.11 11.95 ** -4.59 -9.72 * 0.27 -2.59 -2.65 -6.73 3.6 -1.8 -5.22 -4.61 -2.44 8.9 * 3.73 2 0.55 8.53 2.5 -5.2 17.28 ** 4.2 6.36 -1.29 -4.13 -0.81 7.09 -1.32

2.52 -5.49 -1.83 -10.77 * -6.42 -12.22 * -6.26 -3.66 -0.69 -2.85 -3.86 -10.26 * -2.59 9.15 2.01 11.85 * -7.21 -12.82 * -2.69 -4.03 -4.8 -7.37 3 -2.6 -6.46 -5.56 -8.08 7.08 -4.37 -4.95 -3.85 4.51 -1.8 -10.49 6.96 -3.59 -1.5 -8.78 -11.81 * -8.49 -5.63 -9.55

14.12 * 5.2 9.28 -0.68 4.16 -2.29 4.34 7.24 10.54 8.14 7.01 -0.11 15.05 ** 21.49 ** 8.85 16.81 ** -3.1 -8.96 1.63 0.23 4.03 -1.92 8.82 3.39 0.32 0.63 8.55 15.7 ** 2.04 -0.9 -5.11 1.63 -3.48 -9.28 16.88 ** 2.08 4.07 -3.17 -5.43 -2.49 11.45 * -2.26

-0.28 -8.07 -4.51 -13.21 ** -8.98 -14.61 ** -8.82 -6.29 -3.4 -5.5 -6.48 -12.71 ** 0.53 6.17 -4.88 2.08 -15.32 ** -20.44 ** -11.19 * -12.42 * -9.09 -14.29 ** -4.9 -9.65 * -12.34 * -12.06 * -5.14 1.11 -10.83 * -13.4 ** -17.08 ** -11.19 * -15.66 ** -20.72 ** 2.14 -10.79 * -9.05 -15.38 ** -17.36 ** -14.79 ** -2.61 -14.59 **

Table 13.10: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for panicle length at Kampasagar and Pooled.

CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

5.83 1.67 2.8 -1.45 1.57 -6.12 4.72 4.22 7.1 * -7.39 * 8.88 ** -4.64 8.55 ** -9.52 ** 8.73 * 5.16 3.71 21.36 ** -10.16 ** 16.97 ** 10.73 ** 3.95 5.42 1.8 13.12 ** 1.2 13.4 ** 5.75 10.91 ** 2.13 8.12 * 4.43 -17.98 ** -9.78 ** 0 -6.28 2.73 -6.06 4.64 5.99 -3.96 8.86 **

4.7 -0.54 -2.11 -8.53 * -2.27 -7.14 * 0.92 1.83 4.26 -8.82 * 3.38 -5.97 6.84 -11.15 ** 0.45 0.2 1.53 20.67 ** -19.11 ** 8.04 * 7.08 -5.06 0.93 -6.37 11.07 ** -6.8 7.42 -2.96 5.49 0.28 7.08 0.71 -24.04 ** -14.21 ** -0.29 -11.91 ** 1.38 -11.06 ** 3.33 0.49 -6.27 2.81

20.82 ** 12.32 ** 10.54 * 3.3 19.39 ** 7.2 13.97 ** 20.52 ** 17.74 ** 6.25 16.75 ** 9.24 * 20.65 ** 4.08 15.92 ** 8.24 * 3.69 18.05 ** -1.17 24.73 ** 12.15 ** 12.36 ** 7.94 9.11 * 12.75 ** 8.29 * 17.48 ** 13.67 ** 21.74 ** 8.33 * 11.5 ** 4.86 -7.2 -0.95 4.43 4.25 8.42 * 3.64 7.59 16.75 ** 2.52 20.43 **

8.53 * 0.9 -0.7 -7.21 7.25 -3.7 2.38 8.26 * 5.77 -4.56 4.87 -1.87 8.38 * -6.51 4.13 -2.77 -6.86 6.04 -11.22 ** 12.04 ** 0.74 0.94 -3.04 -1.99 1.29 -2.73 5.53 2.1 9.35 * -2.69 0.16 -5.81 -16.64 ** -11.03 ** -6.2 -6.35 -2.61 -6.9 -3.35 4.87 -7.91 * 8.18 *

-0.14 0.14 -0.78 -1.28 -0.46 -0.01 1.31 3.82 3.09 -7.77 ** 1.79 -5.98 ** 4.5 * -0.16 9.1 ** 0.81 2.07 10.78 ** -5.59 * 11.8 ** 7.27 ** 7.2 ** 3.04 -2.91 2.75 -2.13 1.82 9.4 ** 15.74 ** 6.3 ** 1.2 4.28 -4.37 * 2.21 0.59 0.08 1.31 -6.1 ** 2.23 5.07 * 6.24 ** 10.62 **

-0.8 -1.65 -2.33 -7.14 ** -0.53 -2.23 0.39 2.34 1.68 -9.96 ** 0.48 -7.91 ** 2.49 -1.55 4.86 * -2.01 -1.02 9.01 ** -9.89 ** 9.14 ** 3.36 3.82 -0.26 -9.36 ** -0.63 -8.35 ** -4.53 * 3.12 13.04 ** 5.01 * -0.26 0.98 -7.26 ** 1.42 -1.5 -1.51 -0.34 -10.97 ** 0.48 -0.06 1.18 5.91 *

10.62 ** 9.67 ** 8.91 ** 3.54 11.08 ** 9.02 ** 11.94 ** 14.12 ** 13.37 ** 5.4 * 12.04 ** 7.09 ** 18.85 ** 12.91 ** 15.39 ** 5.35 * 6.94 ** 10.65 ** 0.62 16.3 ** 13.15 ** 12.47 ** 8.17 ** 6.09 * 7.95 ** 6.57 * 10.71 ** 18.25 ** 24.39 ** 12.9 ** 7.76 ** 5.93 * 3.56 8.07 ** 7.83 ** 6.7 * 8.08 ** 4.21 9.15 ** 16.21 ** 17.32 ** 21.46 **

-2.2 -3.04 -3.71 -8.46 ** -1.8 -3.62 -1.04 0.89 0.24 -6.82 ** -0.94 -5.32 * 5.07 * -0.18 2.02 -6.86 ** -5.45 * -2.18 -11.04 ** 2.82 0.04 -0.56 -4.37 -6.2 ** -4.56 -5.78 * -2.12 4.55 9.98 ** -0.18 -4.73 * -6.35 ** -8.44 ** -4.46 -4.67 * -5.66 * -4.44 -7.87 ** -3.5 2.74 3.72 7.38 **

Table 13.10: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-2.2 -4.94 4.03 -1.88 5.12 -8.04 * 0.88 -8.58 ** 9.3 ** -1.17 3.88 -11.38 ** -0.8 2.18 -7.39 * -1.22 -3.88 -6.9 * -6.5 * 6.56 * 7.23 * 6.27 * -4.61 5.59 2.65 -2.79 14.55 ** 6.03 3.47 -0.2 -1.3 18.79 ** -4.33 -9.18 ** 7.76 * -13.67 ** -11.97 ** -1.41 -1.39 -4.76 5.91 3.02

-3.08 -7.16 -1.11 -9.07 * 1.31 -8.89 * -2.95 -10.52 ** 6.22 -2.53 -1.53 -12.47 ** -2.53 0.52 -9.77 ** -1.86 -7.09 -12.33 ** -11.36 ** 3.8 4.91 2.27 -5.71 2.38 -1.07 -5.6 14.51 ** 2.56 -1.47 -1.89 -2.37 14.42 ** -11.29 ** -13.53 ** 7.58 -18.77 ** -13.02 ** -6.55 -2.74 -9.6 ** 3.49 -2.59

11.84 ** 5.21 12.06 ** 3.04 23.77 ** 5.18 9.98 * 5.9 20.37 ** 13.58 ** 11.58 ** 1.69 10.46 * 17.74 ** 4.12 7.42 1.69 -4.03 8.29 * 19.83 ** 14.84 ** 21.04 ** 3.21 19.31 ** 8.29 * 9.67 * 25.34 ** 20.13 ** 13.71 ** 5.99 1.91 19.44 ** 8.37 * -0.17 12.67 ** -3.86 -6.98 8.89 * 1.52 5.03 13.19 ** 14.1 **

0.47 -5.49 0.66 -7.44 * 11.18 ** -5.51 -1.21 -4.87 8.13 * 2.03 0.23 -8.65 * -0.78 5.77 -6.47 -3.51 -8.65 * -13.8 ** -2.73 7.64 * 3.16 8.73 * -7.29 7.17 -2.73 -1.48 12.59 ** 7.91 * 2.14 -4.79 -8.46 * 7.29 -2.65 -10.33 ** 1.21 -13.64 ** -16.45 ** -2.18 -8.81 * -5.65 1.68 2.49

7.96 ** -3.33 2.81 -0.48 3.21 -0.72 -2.69 -0.89 4.49 * -2.67 3.03 -9.02 ** 6.75 ** 5.62 ** 2.34 4.5 * -5.62 ** -2.92 -0.71 10.79 ** 3.36 1.82 0.48 -2.64 -0.85 -3.97 8.37 ** 11.01 ** 6.87 ** -0.46 -2.16 10.62 ** 0.11 -1.32 7.57 ** -2.54 -3.27 -2.31 -2.79 -1.1 7.54 ** 6.59 **

6.5 ** -5.72 * 0.51 -7 ** 2.56 -3.59 -4.25 -2.98 2.35 -4.32 1 -10.27 ** 5.43 * 4.89 * 0.71 4.02 -6.28 * -6.68 ** -3 10.77 ** 1.96 0.96 -0.41 -7.02 ** -1.82 -8 ** 3.96 7.06 ** 1.47 -4.44 -6.29 * 10.25 ** -5.6 * -4.86 2.38 -6.78 ** -7.52 ** -9.88 ** -7.14 ** -8.48 ** -0.36 -0.74

20.45 ** 6.63 * 13.67 ** 5.17 15.98 ** 9.04 ** 8.29 ** 9.73 ** 15.75 ** 12 ** 14.22 ** 4.34 22.25 ** 20.28 ** 10.82 ** 11.84 ** 1.25 -0.59 8.32 ** 18.03 ** 11.63 ** 9.38 ** 8.01 ** 8.84 ** 6.66 * 6.98 ** 20.55 ** 22.78 ** 11.65 ** 2.74 1.25 9.06 ** 5.41 * 1.38 12.08 ** 0.99 0.3 5.49 * 0.87 6.42 * 15.54 ** 13.83 **

6.49 ** -5.73 * 0.5 -7.01 ** 2.54 -3.6 -4.26 -2.99 2.33 -0.98 0.98 -7.75 ** 8.08 ** 6.35 ** -2.03 -1.12 -10.48 ** -12.11 ** -4.23 4.35 -1.31 -3.3 -4.51 -3.78 -5.7 * -5.41 * 6.58 ** 8.55 ** -1.28 -9.16 ** -10.49 ** -3.58 -6.8 ** -10.37 ** -0.9 -10.71 ** -11.33 ** -6.74 ** -10.82 ** -5.91 * 2.15 0.64

Table 13.15: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for panicle weight at Warangal and Kunaram.

CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-7.67 -8.43 -6.12 -1.65 -9.85 -13.55 4.2 1.38 4.74 -0.67 30.56 ** 5.81 -0.16 12.79 24.86 ** -11.27 3.72 -5.31 -20.96 ** -5.5 31.34 ** 36.28 ** 34.81 ** 3.15 6.01 -9.33 4.83 21.2 ** -12.2 15.77 * -3.59 39.46 ** 2.44 -9.17 14.41 24.26 ** 5.91 -2.65 38.81 ** 27.18 ** 17.05 * 16.97 *

-11.37 -9.48 -15.38 * -10.37 -10 -21.07 ** -8.7 -14.05 -11.37 -1.34 10.03 -4.01 -5.65 4.68 17.82 * -20.26 ** 2.87 -5.69 -28.33 ** -6.07 26.23 ** 26.23 ** 24.59 ** -5.76 -2.46 -9.43 -9.52 18.36 * -18.91 * 1.96 -5 35.77 ** -9 -11.74 12.45 17.6 0 -12.88 30.47 ** 24.44 ** -0.89 11.72

-4.33 0 -8.66 -3.25 -2.53 -14.8 -1.44 -7.22 -4.33 6.5 18.77 * 3.61 14.44 13 16.97 * -11.91 -9.39 -16.25 * -22.38 ** -16.25 * 11.19 11.19 9.75 0.36 -14.08 -20.22 * 9.75 9.39 -19.49 * 12.64 -17.69 * 20.58 ** -1.44 -21.3 ** -5.42 -1.08 -15.88 * -7.22 9.75 9.39 20.22 * 3.25

-18.46 ** -14.77 * -22.15 ** -17.54 ** -16.92 * -27.38 ** -16 * -20.92 ** -18.46 ** -9.23 1.23 -11.69 -2.46 -3.69 -0.31 -24.92 ** -22.77 ** -28.62 ** -33.85 ** -28.62 ** -5.23 -5.23 -6.46 -14.46 * -26.77 ** -32 ** -6.46 -6.77 -31.38 ** -4 -29.85 ** 2.77 -16 * -32.92 ** -19.38 ** -15.69 * -28.31 ** -20.92 ** -6.46 -6.77 2.46 -12

-9.15 0.75 -8.04 -4.94 -11.11 * -15.29 ** 1.92 -0.79 0.78 -4.81 28.66 ** 3.9 -2.07 -1.47 4.54 2.75 7.17 -6.58 -2.81 -6.22 -6.32 35.89 ** 31.26 ** 0 8.22 -9.62 -4.58 7.22 -12.06 * 20.78 ** -3.58 37.57 ** 2.41 -7.79 14.48 * 24.33 ** 3.77 -5.39 39.46 ** 31.32 ** 16.5 ** 24.71 **

-14.29 ** -10.63 -18.27 ** -13.62 * -12.29 * -23.59 ** -11.96 * -16.94 ** -14.29 ** -4.97 6.64 -6.98 -6.1 -10.63 -0.75 1.25 5.83 -7.72 -11.6 * -6.61 -10.42 25.42 ** 23.33 ** -10.26 -1.25 -10 -17.38 ** 6.12 -18.73 ** 19.1 ** -5.13 32.11 ** -9.22 -10.74 12.58 17.88 * 0.22 -17.22 ** 30.68 ** 28.15 ** -1.52 20 **

-4.8 -0.74 -9.23 -4.06 -2.58 -15.13 * -2.21 -7.75 -4.8 5.9 18.45 ** 3.32 13.65 * -0.74 -2.21 -10.33 -6.27 -16.24 ** -4.43 -16.61 ** -20.66 ** 11.07 9.23 0 -12.55 * -20.3 ** 0 -4.06 -19.93 ** 2.4 -18.08 ** 19.93 ** -1.85 -20.3 ** -5.9 -1.48 -16.24 ** -7.75 9.23 12.55 * 19.19 ** 8.49

-18.61 ** -15.14 ** -22.4 ** -17.98 ** -16.72 ** -27.44 ** -16.4 ** -21.14 ** -18.61 ** -9.46 1.26 -11.67 * -2.84 -15.14 ** -16.4 ** -23.34 ** -19.87 ** -28.39 ** -18.3 ** -28.71 ** -32.18 ** -5.05 -6.62 -14.51 ** -25.24 ** -31.86 ** -14.51 ** -17.98 ** -31.55 ** -12.46 * -29.97 ** 2.52 -16.09 ** -31.86 ** -19.56 ** -15.77 ** -28.39 ** -21.14 ** -6.62 -3.79 1.89 -7.26

Table 13.15: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

10.26 3.81 6.85 -9.48 9.28 -10.81 -10.08 37.79 ** 25.94 ** -8.83 18.07 * 10.01 -3.79 15.37 * 41.25 ** -14.58 * -3.9 21.37 ** 7.28 -10.87 9.62 -5.12 23.08 ** 13.35 13.82 -2.47 5.38 43.1 ** 16.57 * 9.93 28.45 ** 12.81 -13.38 -0.82 12.74 25.11 ** 8.76 8.82 29.57 ** 12.56 -13.24 * -14.17

9.45 -2.12 0.74 -13.65 4 -14.76 -17.71 * 21.77 ** 11.07 -12.54 3.69 4.43 -13.1 * 12.18 27.64 ** -26.31 ** -7.5 15.45 -6.67 -15.38 8.89 -8.11 18.92 -0.68 9.46 -6.78 -12.5 33.59 ** 8.73 -2.29 27.92 ** 10.98 -22.33 ** -2.63 9.66 17.23 1.68 -1.69 20.59 * 11.29 -25.89 ** -17.19 *

8.66 8.12 -1.44 -15.52 * 12.64 -16.61 * -19.49 * 19.13 * 8.66 -6.86 1.44 2.17 5.42 9.75 26.71 ** -18.59 * -19.86 * 2.53 1.08 -24.55 ** -11.55 -26.35 ** -4.69 5.78 -12.27 -18.05 * 6.14 23.47 ** 7.94 7.94 10.83 -1.44 -15.88 * -13.18 -5.78 0.72 -12.64 4.69 3.61 -2.17 -10.11 -23.47 **

-7.38 -7.85 -16 * -28 ** -4 -28.92 ** -31.38 ** 1.54 -7.38 -20.62 ** -13.54 * -12.92 -10.15 -6.46 8 -30.62 ** -31.69 ** -12.62 -13.85 * -35.69 ** -24.62 ** -37.23 ** -18.77 ** -9.85 -25.23 ** -30.15 ** -9.54 5.23 -8 -8 -5.54 -16 * -28.31 ** -26 ** -19.69 ** -14.15 * -25.54 ** -10.77 -11.69 -16.62 * -23.38 ** -34.77 **

-4.38 12.83 * 7.32 -9.52 9.98 -11.6 * -8.6 39.26 ** 7.46 -10.36 * 14.04 * 11.29 * -21.16 ** 16.1 ** 41.61 ** -6.9 -3.56 21.21 ** 13.56 * -2.18 9.43 4.53 20.37 ** 11.2 * 14.49 * -2.2 5.51 44.47 ** 14.67 ** 14.46 * 23.3 ** 8.25 -18.01 ** -9.94 18.72 ** 19.38 ** 2.16 1.99 24.28 ** 7.98 -2.25 -10.48

-5.99 7.36 2.33 -11.63 3.41 -14.34 * -15.5 * 24.42 ** -2.33 -16.89 ** 0.78 6.98 -29.57 ** 13.18 * 28.09 ** -10.3 -7.26 13.82 * -1.37 -7.44 8.68 1.39 18.98 * -4.64 9.72 -6.72 -12.5 * 35.92 ** 11.24 10.36 19.12 ** 7.17 -23.89 ** -11.55 11.16 7.97 -5.98 -6.62 11.16 5.18 -13.72 ** -11.55

-7.38 2.21 -2.58 -15.87 ** 11.81 -18.45 ** -19.56 ** 18.45 ** -7.01 -7.38 -4.06 1.85 -14.76 * 7.75 26.2 ** -22.88 ** -19.93 ** 3.32 6.64 -17.34 ** -12.18 * -19.19 ** -5.17 6.27 -12.55 * -18.08 ** 5.9 22.88 ** 9.59 2.21 10.33 -0.74 -17.71 ** -18.08 ** 2.95 0 -12.92 * 4.06 2.95 -2.58 4.43 -18.08 **

-20.82 ** -12.62 * -16.72 ** -28.08 ** -4.42 -30.28 ** -31.23 ** 1.26 -20.5 ** -20.82 ** -17.98 ** -12.93 * -27.13 ** -7.89 7.89 -34.07 ** -31.55 ** -11.67 * -8.83 -29.34 ** -24.92 ** -30.91 ** -18.93 ** -9.15 -25.24 ** -29.97 ** -9.46 5.05 -6.31 -12.62 * -5.68 -15.14 ** -29.65 ** -29.97 ** -11.99 * -14.51 ** -25.55 ** -11.04 * -11.99 * -16.72 ** -10.73 * -29.97 **

Table 13.16: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for panicle weight at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

18.74 ** 12.51 * -8.59 -3.57 7.58 -9.23 13.31 * 9.63 22.06 ** 1.67 5.15 4.66 16.86 * 4.91 15.06 * -15.21 * -8.48 -12.83 * -11.94 * 18.83 ** 14.49 * 13.66 * 3.27 3.93 10.41 -11.76 31.03 ** 8.84 -14.29 * 9.49 -9.25 -17.08 ** 1.68 -6.6 1.98 8.28 -2.25 -13.48 * 19.52 ** 6.86 14.94 * -0.87

18.51 ** 7.5 -9.87 -7.71 3.93 -9.58 5.17 2.49 15.52 * -1.44 -6.13 3.26 8.24 4.41 13.74 * -19.72 ** -10.61 -17.34 ** -15.71 * 18.15 * 7.23 7.23 -1.37 -0.18 -0.59 -12.11 22.46 ** 8.32 -15.27 * 3.66 -11.36 -21.37 ** -2.68 -7.14 -4.49 2.15 -6.64 -16.91 * 7.62 6.45 7.42 -1.35

11.69 10.79 -12.95 * -5.22 4.68 -15.11 * -1.26 -3.78 8.45 -1.44 -11.87 -3.06 1.62 -1.98 7.19 -17.27 ** -13.67 * -15.11 * -15.11 * 10.07 -1.26 -1.26 -9.17 -0.18 -8.45 -19.06 ** 12.77 0.72 -20.14 ** 6.83 -14.39 * -19.24 ** -1.98 -13.49 * -12.05 -5.94 -14.03 * -16.91 * -0.9 -1.98 -1.08 -8.27

29.38 ** 28.33 ** 0.83 9.79 21.25 ** -1.67 14.38 11.46 25.63 ** 14.17 2.08 12.29 17.71 * 13.54 24.17 ** -4.17 0 -1.67 -1.67 27.5 ** 14.38 14.38 5.21 15.63 * 6.04 -6.25 30.63 ** 16.67 * -7.5 23.75 ** -0.83 -6.46 13.54 0.21 1.88 8.96 -0.42 -3.75 14.79 13.54 14.58 6.25

0.12 1.27 -7.58 * -3.39 -4.84 -12.74 ** 6.31 3.34 9.06 * -1.38 21.85 ** 4.79 3.86 5.46 14.9 ** -8.4 * 0.51 -8.4 * -11.97 ** 2.69 13.32 ** 28.23 ** 22.57 ** 2.35 8.23 * -10.27 ** 9.25 ** 12.44 ** -12.87 ** 15.06 ** -5.62 18.35 ** 2.17 -7.82 * 10.12 * 18.58 ** 2.31 -7.2 * 32.3 ** 21.36 ** 16.23 ** 13.22 **

-3.19 -0.81 -13.94 ** -8.07 * -5.5 -18.47 ** -5.63 -10.05 ** -4.24 -2.17 3.95 -2.85 2.37 -0.75 10.32 ** -13.14 ** 0.34 -10.61 ** -18.67 ** 2.14 7.77 19.39 ** 15.2 ** -5.54 -1.42 -10.54 * 0.23 10.99 ** -17.66 ** 7.39 -7.34 13.63 ** -7.04 -9.83 * 6.43 12.16 ** -2.31 -15.66 ** 22.36 ** 19.71 ** 5.02 9.94 *

0.91 3.39 -10.29 ** -4.18 -0.12 -15.01 ** -1.63 -6.23 -0.18 3.63 8.35 * 1.27 9.87 * 3.45 7.38 -13.2 ** -9.81 * -15.86 ** -14.04 ** -7.51 -3.45 6.96 3.21 0.06 -11.68 ** -19.85 ** 7.57 * 2.06 -19.85 ** 7.32 -16.71 ** 6.96 -1.76 -18.34 ** -7.81 * -2.85 -15.38 ** -10.65 ** 5.99 6.6 12.71 ** 1.09

-5.5 -3.17 -15.99 ** -10.26 ** -6.46 -20.41 ** -7.88 * -12.19 ** -6.52 -2.95 1.47 -5.16 2.89 -3.12 0.57 -18.71 ** -15.53 ** -21.2 ** -19.5 ** -13.38 ** -9.58 ** 0.17 -3.34 -6.29 -17.29 ** -24.94 ** 0.74 -4.42 -24.94 ** 0.51 -22 ** 0.17 -7.99 * -23.53 ** -13.66 ** -9.01 * -20.75 ** -16.33 ** -0.74 -0.17 5.56 -5.33

Table 13.16: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

4.21 -3.58 2.4 -13.26 * 0.63 -5.55 -4.23 0.7 9 -6.45 17.49 ** 7.31 17.58 ** 14.12 * 36.84 ** -16.28 ** -14.73 * 5.68 5.27 -18.24 ** 3.27 -8.37 8.88 10.78 6.36 -10.3 23.97 ** 34.05 ** 14.95 * 9.94 16.95 ** 0.55 -13.33 * 0.48 13.96 * 14.79 * 4.19 0.09 29.79 ** -0.69 -5.64 -4.27

2.2 -5.93 1.65 -15.24 * -0.71 -7.89 -12.84 -7.71 1.1 -7.37 2.94 3.67 6.79 11.19 33.97 ** -21.47 ** -17.5 * -0.7 -0.18 -19.5 ** -2.39 -12.75 4.98 5.4 -3.39 -10.83 16.93 * 32.11 ** 13.74 * 4.19 14.34 * -4.55 -16.96 * 0 6.63 8.19 -0.58 -3.78 16.76 * -1.17 -11.89 -4.64

0.18 -3.06 -0.36 -12.95 * 0 -9.71 -14.57 * -9.53 -0.9 -7.37 0.9 1.62 4.68 8.99 26.26 ** -19.06 ** -20.32 ** 1.98 0.54 -25 ** -11.87 -21.22 ** -5.22 5.4 -12.77 -18.53 ** 5.58 22.84 ** 7.19 7.37 10.43 -1.98 -16.37 * -6.83 -1.62 -0.18 -8.27 -3.78 7.73 -8.81 -18.71 ** -11.33

16.04 * 12.29 15.42 * 0.83 15.83 * 4.58 -1.04 4.79 14.79 7.29 16.88 * 17.71 * 21.25 ** 26.25 ** 46.25 ** -6.25 -7.71 18.13 * 16.46 * -13.13 2.08 -8.75 9.79 22.08 ** 1.04 -5.63 22.29 ** 42.29 ** 24.17 ** 24.38 ** 27.92 ** 13.54 -3.13 7.92 13.96 15.63 * 6.25 11.46 24.79 ** 5.63 -5.83 2.71

3.46 4 5.44 -10.83 ** 6.66 * -9.26 ** -7.62 * 25.39 ** 14.08 ** -8.56 ** 16.57 ** 9.5 ** -3.55 15.18 ** 39.85 ** -12.91 ** -7.72 * 15.58 ** 8.64 * -10.72 ** 7.34 -3.24 17.09 ** 11.76 ** 11.41 ** -5.16 11.01 ** 40.35 ** 15.39 ** 11.33 ** 22.72 ** 6.96 -14.92 ** -3.38 15.15 ** 19.62 ** 4.98 3.61 27.89 ** 6.48 -7.11 * -9.57 **

3.3 2.48 1.56 -12.16 ** 2.29 -12.29 ** -15.35 ** 12.6 ** 3.37 -12.4 ** 2.5 4.99 -8.18 * 12.16 ** 29.85 ** -20.11 ** -11.04 ** 9* -2.81 -14.24 ** 5.66 -6.82 13.86 ** -0.11 4.86 -8.16 -1.35 33.84 ** 11.19 ** 5.94 22.47 ** 4.76 -21.13 ** -3.54 9.12 * 11 ** -1.68 -4.06 16.1 ** 5.77 -14.5 ** -10.4 *

0.54 2.42 -1.45 -14.77 ** 8.11 * -14.89 ** -17.86 ** 9.26 * 0.3 -7.2 -0.54 1.88 -1.45 8.84 * 26.39 ** -20.16 ** -20.04 ** 2.6 2.72 -22.34 ** -11.86 ** -22.28 ** -5.02 5.81 -12.53 ** -18.22 ** 5.87 23.06 ** 8.23 * 5.87 10.53 ** -1.39 -16.65 ** -12.65 ** -1.51 0.18 -11.26 ** 1.63 4.78 -4.54 -8.23 * -17.62 **

-5.84 -4.08 -7.71 * -20.18 ** 1.25 -20.29 ** -23.07 ** 2.32 -6.07 -13.1 ** -6.86 -4.59 -7.71 * 1.93 18.37 ** -25.23 ** -25.11 ** -3.91 -3.8 -27.27 ** -17.46 ** -27.21 ** -11.05 ** -0.91 -18.08 ** -23.41 ** -0.85 15.25 ** 1.36 -0.85 3.51 -7.65 * -21.94 ** -18.2 ** -7.77 * -6.18 -16.89 ** -4.82 -1.87 -10.6 ** -14.06 ** -22.85 **

Table 13.5: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for number of productive tillers per plant at Warangal and Kunaram. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

WARANGAL Mid

Better

PA- 6201

9.52 6.22 15.49 * 11.57 -22.42 ** 38.31 ** 13.96 7.32 36.32 ** -7.96 11.02 33.64 ** 0.92 14.4 * -11.85 -8.05 -13.82 * 7.63 -7.82 -14.64 * -3.31 -6.77 -32.13 ** 3.25 -18.49 ** -9.17 -16.81 * -8.15 -16.85 ** -22.48 ** -19.34 ** 2.7 -13.33 -16.1 * -17.15 * 8.75 0 -6.17 -19.85 ** -2.11 -7.23 -11.61

-5.59 -5.88 7.85 -1.46 -26.69 ** 32.85 ** 8.12 -6.38 30.48 ** -14.05 -2.86 27.83 ** -2.65 -1.38 -17.93 ** -11.76 -15.2 * 2.92 -10.4 -18.4 * -6.4 -12.06 -40 ** 1.6 -22.86 ** -12.8 -20.8 ** -14.48 * -23.45 ** -26.47 ** -19.67 * -2.92 -14.75 -18.85 * -18.85 * 1.42 -10.66 -6.56 -25 ** -4.92 -10.66 -18.62 **

19.04 * 11.3 13.48 17.39 * -24.78 ** 31.7 ** 10 14.78 19.13 * -9.57 18.26 * 27.83 ** -4.35 24.35 ** 3.48 4.35 -7.83 22.61 ** -2.61 -11.3 1.74 7.83 -34.78 ** 10.43 -6.09 -5.22 -13.91 7.83 -3.48 -13.04 -14.78 15.65 -9.57 -13.91 -13.91 24.35 ** -5.22 -0.87 -8.7 0.87 -5.22 2.61

KUNARAM KRH -2

18.02 * 10.34 12.5 16.38 * -25.43 ** 30.56 ** 9.05 13.79 18.1 * -10.34 17.24 * 26.72 ** -5.17 23.28 ** 2.59 3.45 -8.62 21.55 ** -3.45 -12.07 0.86 6.9 -35.34 ** 9.48 -6.9 -6.03 -14.66 6.9 -4.31 -13.79 -15.52 14.66 -10.34 -14.66 -14.66 23.28 ** -6.03 -1.72 -9.48 0 -6.03 1.72

Mid

Better

PA- 6201

KRH -2

-0.54 25.13 * 22.11 * 39.13 ** 28.81 ** -2.88 35.33 ** 45.63 ** 14.52 -2.11 17.41 27.23 ** 29.41 * 42.86 ** 6.41 13.56 8.47 11.72 23.01 ** 7.39 17.59 -6.67 -21.89 ** -12.59 -8.8 -1.67 -3.2 -12.24 61.46 ** 28.87 ** 31.07 ** 33.64 ** 33.7 ** 33.95 ** 66.67 ** 11.74 32.55 ** 10.66 3.85 46.46 ** 36.72 ** 5.56

-1.08 23.16 * 13.55 25.22 * 23.91 * -12.93 22.83 31.58 ** -8.97 -20 * 8.26 22.73 * 19.57 14.38 * -11.7 -4.96 -4.61 1.42 -1.42 -2.13 -9.93 -15.6 * -25.64 ** -13.79 -19.15 * -16.31 * -24.82 ** -15.69 * 56.57 ** 26.26 * 26.17 * 24.35 * 24.24 * 24.14 * 46.46 ** 4.39 8.33 -6.9 -0.92 46.46 ** 22.22 * -13.07

-47.13 ** -32.76 ** -30.17 ** -17.24 ** -34.48 ** -41.95 ** -35.06 ** -13.79 * -18.39 ** -33.33 ** -32.18 ** -30.17 ** -36.78 ** 0.57 -28.45 ** -22.99 ** -22.7 ** -17.82 ** -20.11 ** -20.69 ** -27.01 ** -31.61 ** -33.33 ** -28.16 ** -34.48 ** -32.18 ** -39.08 ** -25.86 ** -10.92 -28.16 ** -22.41 ** -17.82 ** -29.31 ** -17.24 ** -16.67 * -31.61 ** -2.87 -22.41 ** -37.93 ** -16.67 * -30.46 ** -23.56 **

-22.69 * -1.68 2.1 21.01 * -4.2 -15.13 -5.04 26.05 ** 19.33 * -2.52 -0.84 2.1 -7.56 47.06 ** 4.62 12.61 13.03 20.17 * 16.81 15.97 6.72 0 -2.52 5.04 -4.2 -0.84 -10.92 8.4 30.25 ** 5.04 13.45 20.17 * 3.36 21.01 * 21.85 * 0 42.02 ** 13.45 -9.24 21.85 * 1.68 11.76

Table 13.5: contd… CROSS

WARANGAL Mid

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

-34.69 ** -17.89 ** -35.56 ** -15.38 ** -16.1 ** 0.38 -7.52 -29.66 ** -16.73 * 5.93 3.81 -21.97 ** -19.08 ** -42.18 ** -11.97 -17.78 * 21.9 ** 18.58 * 28.5 ** 18.23 * 14.56 -9.57 -2.7 1.9 54.59 ** -4.9 8.91 -16.24 * -8.28 -30.25 ** -18.8 ** -0.71 -2.66 13.51 * 19.85 ** -20.28 ** -0.41 -26.32 ** -10.88 -13.85 * -10.08 1.38

Better

-35.57 ** -21.48 ** -41.61 ** -18.79 ** -24.83 ** -11.41 -17.45 ** -31.54 ** -31.54 ** -4.03 0.67 -30.87 ** -28.86 ** -42.95 ** -28.97 ** -31.99 ** 5.79 -2.19 12.71 5.26 0.85 -26.24 ** -6.25 -11.57 26.43 ** -15.65 -2.65 -32.41 ** -8.28 -32.41 ** -25.52 ** -3.45 -11.72 1.38 8.28 -21.38 ** -17.24 ** -32.41 ** -12.41 -22.76 ** -20 ** 1.38

KUNARAM

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-16.52 * 1.74 -24.35 ** 5.22 -2.61 14.78 6.96 -11.3 -11.3 24.35 ** 30.43 ** -10.43 -7.83 -26.09 ** -10.43 -19.57 * 11.3 16.52 * 15.65 4.35 2.61 -9.57 -21.74 ** -6.96 53.91 ** -15.65 -4.35 -14.78 15.65 -14.78 -6.09 21.74 ** 11.3 27.83 ** 36.52 ** -0.87 4.35 -14.78 10.43 -2.61 0.87 27.83 **

-17.24 * 0.86 -25 ** 4.31 -3.45 13.79 6.03 -12.07 -12.07 23.28 ** 29.31 ** -11.21 -8.62 -26.72 ** -11.21 -20.26 * 10.34 15.52 14.66 3.45 1.72 -10.34 -22.41 ** -7.76 52.59 ** -16.38 * -5.17 -15.52 14.66 -15.52 -6.9 20.69 * 10.34 26.72 ** 35.34 ** -1.72 3.45 -15.52 9.48 -3.45 0 26.72 **

25.13 * 13.71 30.14 ** 38.25 ** 21.93 * 37.61 ** 43.5 ** 21.3 * -3.88 11.74 14.69 5.47 31.11 ** -20.78 ** 28.64 ** 2.33 0.44 -16.6 * 11.22 23.73 ** 22.05 * -6.84 -10.87 -21.51 ** 31.88 ** 24.2 ** 25.25 * -34.8 ** 11.52 22.37 * 26.41 ** 9.62 33.01 ** 5 10.55 12.61 -11.43 -15.99 * 12.45 -16.59 42.57 ** -11.19

19.61 9.8 27.1 * 30.43 ** 11.76 29.31 ** 24.51 * 14.91 -20.51 ** -4.83 11.01 3.92 15.69 -33.99 ** 14.17 -8.33 -5 -18.33 * -5 21.67 * -0.83 -9.17 -21.15 ** -28.28 ** 25.83 ** 13.33 3.33 -41.83 ** -2.42 8.06 17.74 * 5.65 12.1 1.61 -11.29 8.06 -20.51 ** -22.07 ** 5.65 -25 ** 16.13 -19.61 **

-29.89 ** -35.63 ** -21.84 ** -13.79 * -34.48 ** -13.79 * -27.01 ** -24.71 ** -28.74 ** -20.69 ** -30.46 ** -39.08 ** -32.18 ** -41.95 ** -21.26 ** -36.78 ** -34.48 ** -43.68 ** -34.48 ** -16.09 * -31.61 ** -37.36 ** -29.31 ** -40.23 ** -13.22 * -21.84 ** -28.74 ** -48.85 ** -30.46 ** -22.99 ** -16.09 * -24.71 ** -20.11 ** -27.59 ** -36.78 ** -22.99 ** -28.74 ** -35.06 ** -24.71 ** -46.55 ** -17.24 ** -29.31 **

2.52 -5.88 14.29 26.05 ** -4.2 26.05 ** 6.72 10.08 4.2 15.97 1.68 -10.92 -0.84 -15.13 15.13 -7.56 -4.2 -17.65 -4.2 22.69 * 0 -8.4 3.36 -12.61 26.89 ** 14.29 4.2 -25.21 ** 1.68 12.61 22.69 * 10.08 16.81 5.88 -7.56 12.61 4.2 -5.04 10.08 -21.85 * 21.01 * 3.36

Table 13.6: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for number of productive tillers per plant at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

38.97 ** 48.29 ** -3.81 -13.91 57 ** -13.3 -5.08 -17.41 26.85 ** 10.7 1.4 -10.5 19.58 * -22.02 ** -9.47 -26.92 ** 36.9 ** 24.64 ** 23.16 * 0 8.92 31.46 ** 35.75 ** 16.67 8.33 30.61 ** 49.4 ** 14.87 55.75 ** 31.27 ** 56.16 ** -2.41 52.08 ** 24.54 * 5.97 11.75 20.58 * 20.12 11.95 20.8 * 36.08 ** 24.36 *

28.7 ** 32.17 ** -12.17 -13.91 36.52 ** -14.41 -7.44 -27.83 ** 19.13 * 3.48 -5.22 -14.78 -1.74 -26.09 ** -12.24 -27.72 * 34.74 ** 12.17 18.48 -11.02 -4.13 27.17 * 29.7 ** 12 4 23.08 * 34.78 ** 8.74 34.69 ** 17.78 36.84 ** -20.87 * 40 ** 0 -15.7 2.33 2.97 3 -4 1.92 33.78 * 5.34

37.04 ** 40.74 ** -6.48 -8.33 45.37 ** -6.48 3.7 -23.15 * 26.85 ** 10.19 0.93 -9.26 4.63 -21.3 * -20.37 * -38.43 ** 18.52 19.44 * 0.93 -2.78 7.41 8.33 21.3 * 3.7 -3.7 18.52 14.81 3.7 22.22 * -1.85 20.37 * -15.74 10.19 9.26 -5.56 -18.52 -3.7 -4.63 -11.11 -1.85 -8.33 0.46

97.33 ** 102.67 ** 34.67 * 32 * 109.33 ** 34.67 * 49.33 ** 10.67 82.67 ** 58.67 ** 45.33 ** 30.67 * 50.67 ** 13.33 14.67 -11.33 70.67 ** 72 ** 45.33 ** 40 ** 54.67 ** 56 ** 74.67 ** 49.33 ** 38.67 ** 70.67 ** 65.33 ** 49.33 ** 76 ** 41.33 ** 73.33 ** 21.33 58.67 ** 57.33 ** 36 * 17.33 38.67 ** 37.33 ** 28 * 41.33 ** 32 * 44.67 **

16.33 ** 25.43 ** 11.18 * 11.34 * 19.17 ** 7.11 12.48 * 11.79 * 25.11 ** 0 9.83 * 16.35 ** 15.42 ** 13.04 ** -5.04 -5.6 8.22 13.93 ** 11.46 * -2.27 7.3 3 -9.42 * 0.55 -7.78 5.03 5.62 -3.82 26.65 ** 7.91 17.95 ** 11.3 * 19.21 ** 12.72 ** 14.29 ** 10.5 * 18.36 ** 6.91 -3.66 20.23 ** 18.03 ** 3.68

12.17 * 23.68 ** 9.29 3 14.58 * 1.57 12.3 * 7.04 17.85 ** -7.38 4.01 15.25 ** 6.73 0.5 -7.96 -10.47 * 2.93 12.53 * 0.56 -3.63 0.56 0.56 -10.06 * -0.55 -8.94 -0.84 -8.1 -8.98 * 18.45 ** 3.12 12.38 * 0 18.29 ** 3.74 10.54 2.64 8.22 -3.83 -11.46 * 15.41 ** 12.48 * -10.35 *

-5.06 0 -11.08 * -4.79 -9.95 * -10.97 * -11.46 * -8.06 4.79 -14.61 ** -8.56 -7.68 -16.12 ** 1.51 -17 ** -19.27 ** -7.18 4.03 -9.32 * -13.1 ** -9.32 * -9.32 * -18.89 ** -8.31 -17.88 ** -10.58 * -17.13 ** -8.06 0.25 -16.62 ** -8.56 -7.56 -12.85 ** -9.07 * -12.85 ** -11.84 ** -3.78 -11.34 * -22.17 ** -7.56 -17.13 ** -9.45 *

21.58 ** 28.06 ** 13.87 * 21.94 ** 15.32 ** 14.02 * 13.39 * 17.74 ** 34.19 ** 9.35 17.1 ** 18.23 ** 7.42 30 ** 6.29 3.39 18.87 ** 33.23 ** 16.13 ** 11.29 16.13 ** 16.13 ** 3.87 17.42 ** 5.16 14.52 * 6.13 17.74 ** 28.39 ** 6.77 17.1 ** 18.39 ** 11.61 * 16.45 ** 11.61 * 12.9 * 23.23 ** 13.55 * -0.32 18.39 ** 6.13 15.97 **

Table 13.6: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-12.17 17.12 * -17.18 * -7.69 12.44 -12 2.77 15.6 -5.15 -10.34 0.86 6.78 4.85 -1.28 19.39 * -19.15 * -7.77 12.68 47.54 ** 21.3 * 22.37 ** 31.52 ** 18.59 * 19.19 * 9.09 22.77 * 40.7 ** 17.41 4.17 20.65 * 43.92 ** 16.75 19.55 -25.47 ** 25.58 ** 10 22.05 * 15.46 2.06 -3.03 38.1 ** 28.93 **

-23.48 ** -1.52 -28.79 ** -13.64 -7.58 -16.67 * -1.52 -4.55 -16.29 * -21.21 ** -11.36 -4.55 -18.18 * -12.12 19.39 -22.45 * -9.18 4.35 37.76 ** 11.02 10.74 23.47 * 16.83 18 8 19.23 23.47 * 14.56 2.04 18.09 43.16 ** 6.09 13.83 -33.05 ** 11.57 5.32 17.82 12 -1 -7.69 23.4 * 23.3 *

-6.48 20.37 * -12.96 5.56 12.96 1.85 20.37 * 16.67 2.31 -3.7 8.33 16.67 0 7.41 8.33 -29.63 ** -17.59 11.11 25 * 21.3 * 24.07 * 12.04 9.26 9.26 0 14.81 12.04 9.26 -7.41 2.78 25.93 ** 12.96 -0.93 -26.85 ** 25 * -8.33 10.19 3.7 -8.33 -11.11 7.41 17.59

34.67 * 73.33 ** 25.33 52 ** 62.67 ** 46.67 ** 73.33 ** 68 ** 47.33 ** 38.67 ** 56 ** 68 ** 44 ** 54.67 ** 56 ** 1.33 18.67 60 ** 80 ** 74.67 ** 78.67 ** 61.33 ** 57.33 ** 57.33 ** 44 ** 65.33 ** 61.33 ** 57.33 ** 33.33 * 48 ** 81.33 ** 62.67 ** 42.67 ** 5.33 80 ** 32 * 58.67 ** 49.33 ** 32 * 28 * 54.67 ** 69.33 **

-11.27 ** 1.99 -10.2 * 2.67 3.73 7.25 9.2 * -0.83 -8.56 * 2.8 6.01 -4.42 2.47 -22.96 ** 11.04 * -11.31 * 5.08 4.45 28.4 ** 21.22 ** 19.68 ** 3.09 0.3 -2.23 32.93 ** 14.24 ** 24.13 ** -13.84 ** 1.29 0.29 13.7 ** 7.67 14.9 ** -0.98 18.93 ** -1.42 1.4 -11.39 ** 0.28 -11.6 * 19.75 ** 3.93

-16.71 ** -6.27 -17.23 ** 0.52 -9.14 2.35 -0.78 -6.27 -12.14 * 0.52 1.31 -12.53 ** -13.32 ** -24.69 ** 6.25 -13.24 * 2.48 -4.09 24.43 ** 14.08 ** 18.53 ** -2.05 -6.23 -10.11 * 24.93 ** 12.26 * 15.64 ** -23.94 ** -2.48 -5.51 7.44 7.08 3.03 -3.03 10.74 * -4.41 0 -11.75 * -1.65 -17.08 ** 3.58 -1

-19.65 ** -9.57 * -20.15 ** -3.02 -12.34 ** -1.26 -4.28 -9.57 * -15.24 ** -3.02 -2.27 -15.62 ** -16.37 ** -23.93 ** -10.08 * -29.85 ** -16.62 ** -11.34 * -3.78 0 -6.55 -15.87 ** -16.62 ** -17.13 ** 9.82 * -10.08 * -10.58 * -23.17 ** -10.83 * -13.6 ** -1.76 -1.01 -5.79 -11.34 * 1.26 -12.59 ** -8.56 -18.64 ** -10.08 * -24.18 ** -5.29 0

2.9 15.81 ** 2.26 24.19 ** 12.26 * 26.45 ** 22.58 ** 15.81 ** 8.55 24.19 ** 25.16 ** 8.06 7.1 -2.58 15.16 ** -10.16 6.77 13.55 * 23.23 ** 28.06 ** 19.68 ** 7.74 6.77 6.13 40.65 ** 15.16 ** 14.52 * -1.61 14.19 * 10.65 25.81 ** 26.77 ** 20.65 ** 13.55 * 29.68 ** 11.94 * 17.1 ** 4.19 15.16 ** -2.9 21.29 ** 28.06 **

Table 13.7: Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for number of unproductive tillers per plant at Warangal and Kunaram.

CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

WARANGAL Mid

Better

105 ** 60 ** 142.42 ** 58.97 ** 16.28 85 ** 85.37 ** 6.67 49.02 ** 84.21 ** 30 ** 9.09 9.52 -19.05 * 19.05 * 24.32 * 48.57 ** 21.95 * 6.67 33.33 ** 44.19 ** 27.66 ** -13.21 0 23.81 * 0 22.73 * 40.91 ** 7.32 11.11 47.06 ** 75 ** 68.18 ** 41.46 ** 47.62 ** 47.83 ** 50 ** 43.59 ** 46.34 ** 15.56 25.58 ** 11.63

78.26 ** 55.56 ** 135.29 ** 40.91 ** -3.85 60.87 ** 58.33 ** -14.29 11.76 66.67 ** 13.04 -11.11 -8 -32 ** 8.7 21.05 36.84 ** 13.64 -7.69 21.74 * 29.17 ** 7.14 -32.35 ** -4.76 13.04 -14.81 8 24 ** -4.35 11.11 38.89 ** 59.09 ** 42.31 ** 26.09 ** 29.17 ** 21.43 ** 14.71 * 33.33 ** 30.43 ** -3.7 8 -4

PA- 6201

64 ** 12 60 ** 24 ** 0 48 ** 52 ** -4 52 ** 40 ** 4 -4 -8 -32 ** 0 -8 4 0 -4 12 24 ** 20 * -8 -20 * 4 -8 8 24 ** -12 -20 * 0 40 ** 48 ** 16 24 ** 36 ** 56 ** 12 20 * 4 8 -4

KUNARAM KRH -2

Mid

Better

PA- 6201

KRH -2

70.83 ** 16.67 66.67 ** 29.17 ** 4.17 54.17 ** 58.33 ** 0 58.33 ** 45.83 ** 8.33 0 -4.17 -29.17 ** 4.17 -4.17 8.33 4.17 0 16.67 29.17 ** 25 ** -4.17 -16.67 8.33 -4.17 12.5 29.17 ** -8.33 -16.67 4.17 45.83 ** 54.17 ** 20.83 * 29.17 ** 41.67 ** 62.5 ** 16.67 25 ** 8.33 12.5 0

-5.71 -4.11 -3.12 -6.06 8.47 15.79 * 16.67 * 20.59 ** 15.49 ** 18.18 ** 15.62 * 9.09 -4.92 0 -5.41 1.3 26.47 ** -11.43 * 7.94 4.92 -3.12 -27.78 ** -38.67 ** -5.71 -32.35 ** -25.71 ** -29.23 ** -8.33 -21.21 ** -4.35 6.67 19.35 ** 16.36 * 16.98 * 28.57 ** -21.87 ** -10.45 -29.03 ** 3.33 3.23 29.82 ** 0

-8.33 -10.26 -8.82 -8.82 -5.88 -2.94 2.94 20.59 ** 10.81 14.71 * 8.82 5.88 -14.71 * 0 -7.89 0 13.16 * -18.42 ** -10.53 -15.79 * -18.42 ** -31.58 ** -39.47 ** -13.16 * -39.47 ** -31.58 ** -39.47 ** -13.16 * -27.78 ** -15.38 * 6.67 15.62 * 6.67 3.33 20 * -26.47 ** -18.92 ** -31.25 ** 3.33 0 23.33 ** -5.88

0 6.06 -6.06 -6.06 -3.03 0 6.06 24.24 ** 24.24 ** 18.18 * 12.12 9.09 -12.12 3.03 6.06 18.18 * 30.3 ** -6.06 3.03 -3.03 -6.06 -21.21 ** -30.3 ** 0 -30.3 ** -21.21 ** -30.3 ** 0 -21.21 ** 0 -3.03 12.12 -3.03 -6.06 9.09 -24.24 ** -9.09 -33.33 ** -6.06 -3.03 12.12 -3.03

-2.94 2.94 -8.82 -8.82 -5.88 -2.94 2.94 20.59 ** 20.59 ** 14.71 * 8.82 5.88 -14.71 * 0 2.94 14.71 * 26.47 ** -8.82 0 -5.88 -8.82 -23.53 ** -32.35 ** -2.94 -32.35 ** -23.53 ** -32.35 ** -2.94 -23.53 ** -2.94 -5.88 8.82 -5.88 -8.82 5.88 -26.47 ** -11.76 -35.29 ** -8.82 -5.88 8.82 -5.88

Table 13.7: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

WARANGAL Mid

Better

28.21 ** 76.47 ** 93.75 ** 21.05 * 52.38 ** 43.59 ** 95 ** 40.91 ** 12 105.41 ** 23.08 * 2.33 12.2 17.07 -33.33 ** 10 10.53 22.73 * -4.17 28.89 ** 4.35 4 17.86 * -2.33 11.11 -10.2 -2.13 -6.38 28.89 ** 10 42.11 ** 54.55 ** -8.33 55.56 ** 4.35 -20 * 25 ** -16.28 -11.11 -14.29 -31.91 ** 27.66 **

8.7 66.67 ** 93.75 ** 4.55 23.08 ** 21.74 * 62.5 ** 10.71 -17.65 ** 80.95 ** 4.35 -18.52 * -8 -4 -34.78 ** 0 -4.55 22.73 * -11.54 26.09 ** 0 -7.14 -2.94 -4.55 8.7 -18.52 * -8 -12 26.09 ** 0 22.73 * 54.55 ** -15.38 52.17 ** 0 -28.57 ** 2.94 -18.18 -13.04 -22.22 ** -36 ** 20 *

PA- 6201

0 20 * 24 ** -8 28 ** 12 56 ** 24 ** 12 52 ** -4 -12 -8 -4 -40 ** -12 -16 8 -8 16 -4 4 32 ** -16 0 -12 -8 -12 16 -12 8 36 ** -12 40 ** -4 -20 * 40 ** -28 ** -20 * -16 -36 ** 20 *

KUNARAM KRH -2

Mid

Better

PA- 6201

KRH -2

4.17 25 ** 29.17 ** -4.17 33.33 ** 16.67 62.5 ** 29.17 ** 16.67 58.33 ** 0 -8.33 -4.17 0 -37.5 ** -8.33 -12.5 12.5 -4.17 20.83 * 0 8.33 37.5 ** -12.5 4.17 -8.33 -4.17 -8.33 20.83 * -8.33 12.5 41.67 ** -8.33 45.83 ** 0 -16.67 45.83 ** -25 ** -16.67 -12.5 -33.33 ** 25 **

1.49 -11.43 * 14.75 * -1.59 32.14 ** 29.63 ** 22.81 ** 4.62 0 -4.76 11.48 26.98 ** 0 -13.85 * -28.77 ** -23.68 ** -7.46 -30.43 ** -25.81 ** 0 11.11 -40.85 ** -18.92 ** -4.35 1.49 -13.04 * 3.13 -7.04 23.33 ** 11.11 25.93 ** -3.57 26.53 ** 53.19 ** 28 ** 31.03 ** 31.15 ** 10.71 37.04 ** 10.71 21.57 ** -6.9

-5.56 -20.51 ** 12.9 -3.13 19.35 * 12.9 12.9 0 -8.11 -6.25 9.68 25 ** -6.45 -17.65 * -29.73 ** -25.64 ** -16.22 * -35.14 ** -37.84 ** -18.92 ** -5.41 -43.24 ** -18.92 ** -10.81 -8.11 -18.92 ** -10.81 -10.81 2.78 -10.26 13.33 -15.63 * 24 * 50 ** 23.08 * 11.76 8.11 -3.13 23.33 ** -3.13 14.81 -20.59 **

3.03 -6.06 6.06 -6.06 12.12 6.06 6.06 3.03 3.03 -9.09 3.03 21.21 ** -12.12 -15.15 * -21.21 ** -12.12 -6.06 -27.27 ** -30.3 ** -9.09 6.06 -36.36 ** -9.09 0 3.03 -9.09 0 0 12.12 6.06 3.03 -18.18 * -6.06 9.09 -3.03 15.15 * 21.21 ** -6.06 12.12 -6.06 -6.06 -18.18 *

0 -8.82 2.94 -8.82 8.82 2.94 2.94 0 0 -11.76 0 17.65 * -14.71 * -17.65 * -23.53 ** -14.71 * -8.82 -29.41 ** -32.35 ** -11.76 2.94 -38.24 ** -11.76 -2.94 0 -11.76 -2.94 -2.94 8.82 2.94 0 -20.59 ** -8.82 5.88 -5.88 11.76 17.65 * -8.82 8.82 -8.82 -8.82 -20.59 **

Table 13.8: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for number of unproductive tillers per plant at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-60 ** 24.32 ** -2.56 -48 ** 61.29 ** 20 ** -29.03 ** -29.03 ** -74.36 ** -74.19 ** -48.57 ** -29.03 ** -33.33 ** -53.85 ** 107.14 ** 53.33 ** 31.25 ** 2.33 0 21.43 * 100 ** 66.67 ** 31.25 ** -8.33 -50 ** -41.67 ** 23.08 * -18.75 * -37.5 ** -47.06 ** -27.78 ** -19.15 ** 50 ** -31.25 ** -64.29 ** -35.71 ** -27.78 ** 57.14 ** -43.75 ** -7.14 53.33 ** -38.89 **

-65 ** 15 * -5 -56.67 ** 25 ** 5 -45 ** -45 ** -75 ** -80 ** -55 ** -45 ** -45 ** -55 ** 93.33 ** 35.29 ** 10.53 -26.67 ** -7.69 13.33 84.62 ** 53.85 ** 10.53 -15.38 -53.33 ** -46.15 ** 23.08 * -31.58 ** -41.18 ** -47.06 ** -31.58 ** -36.67 ** 23.53 ** -35.29 ** -70.59 ** -47.06 ** -31.58 ** 29.41 ** -47.06 ** -23.53 ** 35.29 ** -42.11 **

-63.16 ** 21.05 ** 0 -31.58 ** 31.58 ** 10.53 -42.11 ** -42.11 ** -73.68 ** -78.95 ** -52.63 ** -42.11 ** -42.11 ** -52.63 ** 52.63 ** 21.05 ** 10.53 15.79 * -36.84 ** -10.53 26.32 ** 5.26 10.53 -42.11 ** -63.16 ** -63.16 ** -15.79 * -31.58 ** -47.37 ** -52.63 ** -31.58 ** 0 10.53 -42.11 ** -73.68 ** -52.63 ** -31.58 ** 15.79 * -52.63 ** -31.58 ** 21.05 ** -42.11 **

-75 ** -17.86 ** -32.14 ** -53.57 ** -10.71 * -25 ** -60.71 ** -60.71 ** -82.14 ** -85.71 ** -67.86 ** -60.71 ** -60.71 ** -67.86 ** 3.57 -17.86 ** -25 ** -21.43 ** -57.14 ** -39.29 ** -14.29 ** -28.57 ** -25 ** -60.71 ** -75 ** -75 ** -42.86 ** -53.57 ** -64.29 ** -67.86 ** -53.57 ** -32.14 ** -25 ** -60.71 ** -82.14 ** -67.86 ** -53.57 ** -21.43 ** -67.86 ** -53.57 ** -17.86 ** -60.71 **

11.72 ** 18.62 ** 32.35 ** -3.23 23.31 ** 37.88 ** 27.27 ** 5.56 4.35 15.56 ** 3.6 0.71 -7.35 -19.46 ** 23.61 ** 18.06 ** 33.33 ** 1.3 6.06 17.56 ** 31.3 ** 6.29 -16.25 ** -4.48 -18.84 ** -20 ** -2.22 4.05 -16.55 ** -10.79 * 7.69 22.15 ** 41.73 ** 12.7 ** 14.29 ** -1.45 5.81 11.63 * 5.26 5.19 33.85 ** -6.29

9.46 * 16.22 ** 26.76 ** -10.71 * 15.49 ** 28.17 ** 18.31 ** 4.11 -6.67 9.86 * 1.41 0 -11.27 * -23.08 ** 20.27 ** 14.86 ** 28.57 ** -7.14 0 10 * 22.86 ** 4.11 -25.56 ** -8.57 -20 ** -20 ** -5.71 -1.28 -21.62 ** -16.22 ** 7.69 8.33 * 38.46 ** 9.23 10.77 * -6.85 -8.89 * 10.77 * 2.94 1.43 33.85 ** -14.1 **

5.19 11.69 * 16.88 ** -2.6 6.49 18.18 ** 9.09 * -1.3 9.09 * 1.3 -6.49 -7.79 -18.18 ** -22.08 ** 15.58 ** 10.39 * 16.88 ** 1.3 -9.09 * 0 11.69 * -1.3 -12.99 ** -16.88 ** -27.27 ** -27.27 ** -14.29 ** 0 -24.68 ** -19.48 ** -9.09 * 18.18 ** 16.88 ** -7.79 -6.49 -11.69 * 6.49 -6.49 -9.09 * -7.79 12.99 ** -12.99 **

-5.81 0 4.65 -12.79 ** -4.65 5.81 -2.33 -11.63 ** -2.33 -9.3 * -16.28 ** -17.44 ** -26.74 ** -30.23 ** 3.49 -1.16 4.65 -9.3 * -18.6 ** -10.47 * 0 -11.63 ** -22.09 ** -25.58 ** -34.88 ** -34.88 ** -23.26 ** -10.47 * -32.56 ** -27.91 ** -18.6 ** 5.81 4.65 -17.44 ** -16.28 ** -20.93 ** -4.65 -16.28 ** -18.6 ** -17.44 ** 1.16 -22.09 **

Table 13.8: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-6.25 -41.18 ** -52.78 ** -78.72 ** -7.14 -6.25 -50 ** -64.29 ** -16.67 * -35.71 ** -6.25 71.43 ** 26.67 ** -38.89 ** -38.89 ** 15.79 * -55 ** -66.67 ** -31.25 ** -27.78 ** 6.25 -31.25 ** -45 ** -43.75 ** -5.56 -18.75 * 0 -35 ** 11.76 -22.22 ** -42.11 ** -6.12 53.33 ** -17.65 * 0 -26.67 ** -26.32 ** 60 ** -35.29 ** -13.33 -46.88 ** 10.53

-11.76 -41.18 ** -55.26 ** -83.33 ** -23.53 ** -11.76 -58.82 ** -70.59 ** -21.05 ** -47.06 ** -11.76 41.18 ** 11.76 -42.11 ** -47.62 ** 4.76 -57.14 ** -71.67 ** -47.62 ** -38.1 ** -19.05 ** -47.62 ** -47.62 ** -57.14 ** -19.05 ** -38.1 ** -19.05 ** -38.1 ** 0 -26.32 ** -42.11 ** -23.33 ** 21.05 ** -26.32 ** -21.05 ** -42.11 ** -26.32 ** 26.32 ** -42.11 ** -31.58 ** -55.26 ** 10.53

-21.05 ** -47.37 ** -55.26 ** -73.68 ** -31.58 ** -21.05 ** -63.16 ** -73.68 ** -21.05 ** -52.63 ** -21.05 ** 26.32 ** 0 -42.11 ** -42.11 ** 15.79 * -52.63 ** -55.26 ** -42.11 ** -31.58 ** -10.53 -42.11 ** -42.11 ** -52.63 ** -10.53 -31.58 ** -10.53 -31.58 ** 0 -26.32 ** -42.11 ** 21.05 ** 21.05 ** -26.32 ** -21.05 ** -42.11 ** -26.32 ** 26.32 ** -42.11 ** -31.58 ** -55.26 ** 10.53

-46.43 ** -64.29 ** -69.64 ** -82.14 ** -53.57 ** -46.43 ** -75 ** -82.14 ** -46.43 ** -67.86 ** -46.43 ** -14.29 ** -32.14 ** -60.71 ** -60.71 ** -21.43 ** -67.86 ** -69.64 ** -60.71 ** -53.57 ** -39.29 ** -60.71 ** -60.71 ** -67.86 ** -39.29 ** -53.57 ** -39.29 ** -53.57 ** -32.14 ** -50 ** -60.71 ** -17.86 ** -17.86 ** -50 ** -46.43 ** -60.71 ** -50 ** -14.29 ** -60.71 ** -53.57 ** -69.64 ** -25 **

7.25 2.9 15.5 ** -20.27 ** 30.16 ** 24.8 ** 29.6 ** 2.19 0 20.31 ** 10.61 * 28.36 ** 10.08 * -11.27 ** -32.47 ** -5.19 -15.86 ** -27.44 ** -19.72 ** 2.13 7.8 -24.18 ** -12.94 ** -12.5 ** 2.7 -13.33 ** 0.69 -13.92 ** 22.3 ** 2.16 10.77 * 12.75 ** 19.69 ** 34.92 ** 12.7 ** 0 14.84 ** 13.18 ** 2.26 -3.7 -14.62 ** 9.09 *

0 -4.05 14.62 ** -29.76 ** 28.12 ** 21.87 ** 26.56 ** -4.11 -14.44 ** 20.31 ** 7.35 22.86 ** 9.23 -19.23 ** -35 ** -8.75 * -23.75 ** -29.17 ** -28.75 ** -10 * -5 -27.5 ** -17.78 ** -21.25 ** -5 -18.75 ** -8.75 * -15 ** 14.86 ** -4.05 10.77 * 0 16.92 ** 30.77 ** 9.23 -5.48 -1.11 12.31 * 0 -7.14 -14.62 ** 0

-3.9 -7.79 -3.25 -23.38 ** 6.49 1.3 5.19 -9.09 * 0 0 -5.19 11.69 * -7.79 -18.18 ** -32.47 ** -5.19 -20.78 ** -22.73 ** -25.97 ** -6.49 -1.3 -24.68 ** -3.9 -18.18 ** -1.3 -15.58 ** -5.19 -11.69 * 10.39 * -7.79 -6.49 9.09 * -1.3 10.39 * -7.79 -10.39 * 15.58 ** -5.19 -11.69 * -15.58 ** -27.92 ** 1.3

-13.95 ** -17.44 ** -13.37 ** -31.4 ** -4.65 -9.3 * -5.81 -18.6 ** -10.47 * -10.47 * -15.12 ** 0 -17.44 ** -26.74 ** -39.53 ** -15.12 ** -29.07 ** -30.81 ** -33.72 ** -16.28 ** -11.63 ** -32.56 ** -13.95 ** -26.74 ** -11.63 ** -24.42 ** -15.12 ** -20.93 ** -1.16 -17.44 ** -16.28 ** -2.33 -11.63 ** -1.16 -17.44 ** -19.77 ** 3.49 -15.12 ** -20.93 ** -24.42 ** -35.47 ** -9.3 *

Table 13.11: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for flag leaf length at Warangal and Kunaram. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-14.05 ** -13.29 ** -13.38 ** -23.52 ** -9.66 * 37.35 ** -3.97 6.55 -4.17 -8.8 -6.18 0.05 -23.63 ** 4.03 -16.79 ** 0.69 9.94 * 1.75 -3.21 16.44 ** -6.06 5.99 3.54 0.12 11.23 * 13.75 ** -15.91 ** 13.84 ** -5.51 3.47 1.17 -1.6 3.64 11.26 * -6.89 6.6 -9.99 * -1.88 -11.74 * 2.26 -4.54 4.49

-22.66 ** -15.19 ** -16.3 ** -25.53 ** -12.24 * 27.89 ** -10.01 * -5.91 -8.08 -19 ** -18.17 ** -7.91 -33.54 ** 0.87 -30.47 ** -9.24 * 4.46 -4.04 -8.51 14.91 ** -7.92 1.35 -0.91 -3.65 4.92 13.66 * -31.81 ** 7.8 -17.84 ** -2.55 0.71 -2.81 2.61 7.53 -9.41 -2.52 -10.27 -9.73 -20.32 ** -2.34 -19.61 ** 3.65

2.8 -5.73 -11.04 * -20.85 ** -6.73 35.93 ** -4.35 0 -2.3 -13.91 ** -13.03 * -2.12 -4.6 7.2 -7.58 0.88 3.54 -3.36 -8.32 5.31 -14.44 ** -9.56 -3.26 -14.02 ** -6.37 1.59 -2.12 7.61 9.2 8.32 -0.18 -2.12 2.83 5.63 -11.01 * -4.25 -11.86 * -11.33 * -21.73 ** -4.07 15.4 ** 3.47

-3.43 -11.44 * -16.43 ** -25.64 ** -12.37 * 27.7 ** -10.14 * -6.05 -8.21 -19.12 ** -18.29 ** -8.05 -10.38 * 0.71 -13.17 ** -5.22 -2.73 -9.21 -13.87 ** -1.06 -19.62 ** -15.03 ** -9.11 -19.22 ** -12.04 * -4.56 -8.05 1.1 2.59 1.76 -6.22 -8.05 -3.39 -0.76 -16.4 ** -10.04 * -17.19 ** -16.69 ** -26.47 ** -9.88 * 8.41 -2.79

-11.85 -11.33 2.08 4.45 7.43 -11.8 -1.44 -3.72 2.07 -13.74 * -5.41 -6.2 -13.11 * -12.66 * -10.94 -6.59 -5.62 -2.54 -19.34 ** -22.64 ** -4.94 -3.68 -7.12 -1.75 -6.37 -4.62 -13.97 * 4.3 7.59 -8.9 11.19 8.46 6.39 -2.49 6.03 -0.77 -5.51 0.53 4.59 1.93 -0.34 -3.6

-16.03 * -14.98 * 1.72 2.33 5.55 -20.36 ** -1.94 -4.66 0.68 -15.15 -5.74 -9.65 -25.68 ** -19.45 ** -15.86 * -11.17 -6.1 -3.7 -20.07 * -30.69 ** -6.23 -3.8 -9.16 -2.51 -7.5 -7.35 -26.94 ** -4.57 0.21 -14.59 * 8.97 8.11 5.75 -13.79 * 3.05 -2.14 -8.93 -0.19 1.81 0.49 -16.4 ** -12.99

-19.89 ** -20.01 ** -12.16 -11.63 -8.86 -14.65 * -14.45 * -17.67 * -10.63 -26.73 ** -18.04 ** -21.98 ** -9.7 -17.63 * -19.73 ** -16.43 * -19.48 ** -18.28 ** -32.17 ** -25.72 ** -18.2 ** -18.36 ** -19.36 ** -17.27 * -19.57 ** -21.38 ** -11.23 -2.42 -4.39 -19.65 ** -6.56 -10.43 -11.88 -7.61 -10.1 -17.15 * -19.16 ** -16.63 * -11.47 -17.27 * 1.57 -11.03

-9.34 -9.48 -0.59 0 3.14 -3.42 -3.19 -6.83 1.14 -17.08 * -7.24 -11.71 2.19 -6.79 -9.16 -5.42 -8.88 -7.52 -23.23 ** -15.95 * -7.43 -7.61 -8.75 -6.38 -8.97 -11.03 0.46 10.43 8.2 -9.07 5.74 1.37 -0.27 4.56 1.73 -6.24 -8.52 -5.65 0.18 -6.38 14.94 0.68

Table 13.11: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-7.73 * 4.44 -6.87 -12.19 ** -6.52 18.82 ** -2.5 8.7 9.26 * -12.13 ** 0.13 3.88 -0.62 28.38 ** -0.8 -1.64 -3.53 6.69 1.8 15.21 ** 1.61 3.42 -3.2 7.56 4.12 13.67 ** -11.21 ** -6.72 -7.5 -13.68 ** -18.22 ** -1.15 0.25 19.96 ** 7.08 11.46 * 6.8 11.37 * 31.6 ** 13.26 ** -27.55 ** 0.84

-14.91 ** 3.94 -12.3 ** -16.69 ** -11.51 * 7.93 -10.88 * -6.21 2.16 -23.75 ** -14.64 ** -6.69 -11.47 ** 21.29 ** -13.45 ** -7.01 -3.57 5.8 1.2 10.92 * -1.52 -5.77 -3.88 -1.41 -6.34 8.13 -24.98 ** -7.09 -23.62 ** -23.22 ** -23.39 ** -8.08 -6.57 16.65 ** 3.43 8.14 0.76 8.75 25.92 ** 11.49 * -41.92 ** -5.85

13.1 * 16.64 ** -1.59 -6.51 -0.71 21.12 ** 0 5.24 14.64 ** -14.44 ** -4.21 4.71 27.08 ** 36.11 ** 15.04 ** 3.36 -4.42 6.55 1.42 9.84 -2.48 -6.69 -4.81 -2.37 -7.26 7.08 7.68 -7.26 1.52 -14.65 ** -24.07 ** -7.43 -6.37 6.9 -3.89 -6.37 -1.63 -5.84 9.03 -0.35 -16.64 ** -6.02

6.25 9.58 * -7.55 -12.17 * -6.72 13.78 ** -6.05 -1.13 7.7 -19.62 ** -10.01 * -1.63 19.39 ** 27.87 ** 8.08 -2.89 -10.21 * 0.1 -4.72 3.19 -8.38 -12.34 * -10.58 * -8.28 -12.87 ** 0.6 1.16 -12.87 ** -4.62 -19.82 ** -28.67 ** -13.04 ** -12.04 * 0.43 -9.71 * -12.04 * -7.58 -11.54 * 2.43 -6.39 -21.68 ** -11.71 *

13.45 * -7.55 13.32 -8.59 8.85 -20.2 ** 3.29 -2.36 -1.94 6.23 6.77 8.04 -14.89 ** -6.69 -22.61 ** -7.15 -33.03 ** 0.36 16.43 * -15.11 * -8.32 -3.13 -1.53 -1.58 -3.3 -10.3 3.14 -9.83 -20.29 ** -16.64 ** -10.2 -0.22 -12.82 * -19.56 ** 7.97 -7.11 -7.43 -25.18 ** -22.39 ** -3.46 -17.59 ** -25.14 **

8.9 -10.65 12.02 -11.15 6.1 -27.42 ** 2.98 -4.08 -2.49 3.67 6.28 3.26 -26.71 ** -13.31 * -26.84 ** -11.64 -33.33 ** -0.9 15.3 -23.89 ** -9.51 -3.32 -3.63 -2.42 -4.4 -12.93 -12.36 * -17.44 ** -21.43 ** -18.4 ** -15.9 * -8.03 -19.43 ** -22.92 ** 1.93 -13.52 -11.89 -30.78 ** -26.84 ** -12.42 -25.48 ** -26.61 **

3.9 -15.94 * -1.69 -22.02 ** -6.88 -22.22 ** -9.62 -15.82 * -13.45 * -9.02 -6.72 -9.38 -10.95 -11.35 -30.19 ** -16.87 * -42.83 ** -15.78 * -2.01 -18.44 ** -21.05 ** -17.83 ** -14.45 * -17.07 * -16.87 * -26.01 ** 6.48 -15.58 * -22.83 ** -19.85 ** -17.39 * -9.66 -20.85 ** -17.39 * 0.12 -15.06 * -13.45 * -32 ** -28.14 ** -13.97 * -9.46 -24.96 **

17.59 * -4.87 11.25 -11.75 5.38 -11.98 2.28 -4.74 -2.05 2.96 5.56 2.55 0.77 0.32 -21 ** -5.92 -35.31 ** -4.69 10.89 -7.7 -10.66 -7.02 -3.19 -6.15 -5.92 -16.26 * 20.5 ** -4.46 -12.67 -9.29 -6.51 2.23 -10.43 -6.51 13.3 -3.87 -2.05 -23.05 ** -18.68 * -2.64 2.46 -15.08

Table 13.12: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for flag leaf length at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-11.45 5.1 -6.2 -13.63 2.15 1.05 -16.79 * -0.09 -1.6 7.48 -3.23 9.24 -23.92 ** -4.3 -2.18 -1.11 -12.63 1.6 15.15 1.99 -12.82 2.63 -7.53 9.11 -0.86 31.12 ** 1.09 8.7 -5.18 13.45 1.99 -12.43 -2.62 8.14 -8.01 0.74 -16.51 * 15.94 26.54 ** -1.03 7.26 -2.75

-23.62 ** 4.18 -7.45 -16.11 1.06 -3.64 -21.9 ** -3.72 -6.4 -4.96 -15.07 4.79 -34.53 ** -10.37 -19.41 ** -7.14 -16.21 -6.42 10.14 -7.66 -22.24 ** 0.76 -16.48 1.47 -8.53 29.34 ** -16.88 * -3.25 -18.77 ** 11.57 1.44 -15.61 -2.88 2.35 -14.31 -2.16 -21.18 * 3.24 11.84 -4.32 -8.31 -9.6

0.88 1.53 -11.38 -14.77 -3.23 1.7 -14.74 -7.81 -0.68 -9 -18.68 * 0.34 -13.07 -1.7 6.45 -9.51 -21.9 * -4.92 3.23 -2.55 -15.11 -10.53 -11.38 -13.17 -21.73 * 13.75 10.36 6.11 7.3 8.73 -4.41 -14.26 -8.49 8.01 -6.45 -7.81 -16.37 -2.72 5.38 -9.85 21.73 * -0.85

17.43 18.18 3.16 -0.79 12.65 18.38 -0.75 7.31 15.61 5.93 -5.34 16.8 1.19 14.43 23.91 * 5.34 -9.09 10.67 20.16 13.44 -1.19 4.15 3.16 1.07 -8.89 32.41 ** 28.46 ** 23.52 * 24.9 * 26.56 * 11.26 -0.2 6.52 25.73 * 8.89 7.31 -2.65 13.24 22.67 * 4.94 41.7 ** 15.42

-12.53 ** -6.34 -6.6 -12.49 ** -0.84 9.7 ** -8.13 * 1.23 -1.53 -4.65 -4.94 1.64 -20.87 ** -3.74 -9.81 ** -2.03 -2.52 0.51 -1.22 -0.83 -8.3 * 1.9 -3.58 2.62 1.62 14.7 ** -9.33 ** 9.14 * -2.1 3.6 4.2 -2.97 2.11 6.05 -3.83 2.35 -11.23 ** 5.04 6.42 0.97 0.85 -0.49

-21.47 ** -8.47 * -8.32 * -12.88 ** -2.74 7.13 -8.36 * -4.8 -2.26 -13 ** -13.55 ** -3.88 -31.73 ** -7.22 -22.72 ** -9.06 * -5.86 -4.24 -4.52 -8 * -13.21 ** 0.97 -9.17 * -1.51 -2.81 14.32 ** -25.16 ** -0.01 -13.93 ** -1.07 3.66 -4.81 1.67 1.21 -6.31 -1.54 -13.93 ** -2.03 -1.07 -2.3 -14.7 ** -6.25

-4.71 -7.44 -11.5 ** -15.91 ** -6.12 8.49 * -11.1 ** -8.11 * -4.23 -16.02 ** -16.55 ** -7.22 -9.16 * -3.45 -6.23 -8.03 * -12.47 ** -8.41 * -11.38 ** -6.83 -15.81 ** -12.55 ** -11 ** -14.7 ** -15.82 ** -0.98 -0.41 4.06 4.43 0.05 -3.61 -8.95 * -5.63 2.5 -9.11 * -9.4 * -15.67 ** -9.85 * -8.97 * -10.1 ** 13.5 ** -2.44

1.72 -1.19 -5.52 -10.23 * 0.22 15.82 ** -5.1 -1.9 2.24 -10.35 * -10.92 ** -0.96 -3.03 3.07 0.1 -1.82 -6.56 -2.22 -5.39 -0.54 -10.13 * -6.65 -4.99 -8.94 * -10.14 * 5.7 6.31 11.08 ** 11.48 ** 6.8 2.9 -2.81 0.74 9.42 * -2.97 -3.29 -9.97 * -3.76 -2.83 -4.04 21.16 ** 4.15

Table 13.12: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-22.81 ** -12.42 -1.64 -9.52 -12.17 0.77 -22.65 ** 5.51 -5.15 -7.86 1.56 3.21 -12.17 * -13.95 * -11.46 -2.87 -18.86 * -2.68 -7.54 -16.1 * -11.23 -1.97 -12.33 5.36 0.5 6.68 6.71 -5.65 -18.74 * -8.9 -2.4 -4.01 5.49 6.51 -10.97 18.82 * -9.49 25.81 * 5.42 -5.81 -9.34 5.24

-25.19 ** -21.78 ** -13.84 -17.67 * -22.88 ** -6.71 -27.26 ** -9.45 -11.97 -26.58 ** -19.59 ** -11.78 -15.09 * -18.9 * -23.01 ** -2.96 -20.7 * -4.58 -9.39 -19.24 * -15.93 -6.4 -15.84 -7.62 -12.52 1.39 -7.42 -10.84 -35.35 ** -17.94 -10.31 -15.11 -3.3 -7.34 -23.64 ** 11.66 -21.44 * 22.17 1.52 -11.08 -28.01 ** -9.91

-1.19 -3.06 6.79 2.04 -4.41 15.62 -9.85 12.22 9.1 -9 -0.34 9.34 12.73 0.51 1.7 -5.26 -22.58 * -3.06 -11.54 -14.77 -8.22 -8.62 -10.7 -9.81 -14.6 -1.02 22.92 * -2.21 -14.6 -20.03 * -16.4 -13.75 -9.37 -2.21 -16.64 -0.85 -16.64 -4.58 -20.71 * -21.8 * -4.41 -1.19

15.02 12.85 24.31 * 18.77 11.26 34.58 ** 4.94 30.63 ** 27 * 5.93 16.01 27.27 * 31.23 ** 17 18.38 10.28 -9.88 12.85 2.96 -0.79 6.84 6.36 3.95 4.98 -0.59 15.22 43.08 ** 13.83 -0.59 -6.92 -2.69 0.4 5.49 13.83 -2.96 15.42 -2.96 11.07 -7.71 -8.97 11.26 15.02

-8.64 ** -5.02 0.35 -10.23 ** -4.77 0.91 -9.16 ** 4.49 0.67 -5.52 2.52 4.7 -8.7 ** 2.41 -10.34 ** -3.6 -17.2 ** 1.5 2.35 -5.36 -6.03 -0.44 -6.2 4.12 0.64 4.5 -0.81 -7.2 * -15.12 ** -13 ** -10.38 ** -1.88 -1.93 2.31 0.8 8.07 * -3.31 4.06 5.03 1.55 -18.33 ** -5.82

-13.27 ** -8.47 * -7.03 * -15.74 ** -11.86 ** -2.68 -14.17 ** -7.01 -4.43 -18.26 ** -11.58 ** -6.34 -16.94 ** 0.08 -20.33 ** -6.85 -17.77 ** 0.79 1.55 -8.61 * -7.34 -5.34 -7.96 * -3.98 -7.5 -0.07 -15.26 ** -11.56 ** -27.11 ** -19.05 ** -13.24 ** -6.28 -4.97 -4.87 -4.37 6.8 -8.7 * -0.38 0.19 0.96 -32.45 ** -13.52 **

5.23 -0.19 1.37 -8.13 * -3.89 6.11 -6.41 1.39 4.21 -10.87 ** -3.59 2.12 10.52 ** 9.12 * -3.33 -5.8 -22.46 ** -3.6 -4.24 -7.45 -10.12 ** -10.73 ** -9.81 * -9.45 * -12.77 ** -5.77 12.76 ** -7.96 * -11.56 ** -18.14 ** -19.32 ** -10.36 ** -11.8 ** -3.66 -7.23 -7.01 -10.54 ** -13.27 ** -12.77 ** -12.1 ** -10.12 ** -10 *

12.34 ** 6.54 8.21 * -1.93 2.6 13.28 ** -0.09 8.24 * 11.25 ** -4.85 2.92 9.01 * 17.98 ** 16.49 ** 3.19 0.56 -17.23 ** 2.91 2.22 -1.2 -4.05 -4.71 -3.72 -3.34 -6.88 0.59 20.37 ** -1.75 -5.59 -12.61 ** -13.88 ** -4.31 -5.85 2.85 -0.97 -0.74 -4.5 -7.41 -6.88 -6.17 -4.05 -3.92

Table 13.13: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for flag leaf width at Warangal and Kunaram. CROSS

WARANGAL Mid

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

-4.83 2.95 3.45 8.4 8.64 10.17 -8.15 1.2 -25.36 ** -6.06 0.72 10.29 -9.86 * 4.62 15.92 ** 28.64 ** 1.27 5.88 5.94 17.92 ** -4.88 15.42 * -14.29 * -6.67 -1.57 8.68 4.62 12.71 * 4.41 11.67 * 2.27 6.42 4.07 7.11 -1.1 8.66 -26.88 ** -2.62 -13.17 ** -5.69 5.92 2.66

KUNARAM

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-7.25 -6.87 3.05 8.4 0.76 -0.76 -10.79 -3.05 -28.97 ** -6.77 -4.76 2.29 -16.34 ** 3.82 2.9 28.04 ** -7.69 -3.82 3.57 16.82 * -15.83 ** 9.17 -25.52 ** -15.79 * -14.97 ** 6.25 -11.11 * 3.1 2.9 0 0.75 5.22 -4.48 -4.48 -2.88 2.99 -29.66 ** -2.99 -17.01 ** -13.43 * -0.65 0.75

-9.22 -13.48 * -4.26 0.71 -6.38 -7.8 -12.06 * -9.93 -26.95 ** -12.06 * -0.71 -4.96 -9.22 -3.55 0.71 -2.84 -14.89 * -10.64 -17.73 ** -11.35 -17.02 ** -7.09 -23.4 ** -20.57 ** -11.35 -15.6 ** -3.55 -5.67 0.71 -4.96 -4.26 0 -9.22 -9.22 -4.26 -2.13 -27.66 ** -7.8 -13.48 * -17.73 ** 7.8 -4.26

-1.54 -6.15 3.85 9.23 1.54 0 -4.62 -2.31 -20.77 ** -4.62 7.69 3.08 -1.54 4.62 9.23 5.38 -7.69 -3.08 -10.77 -3.85 -10 0.77 -16.92 ** -13.85 * -3.85 -8.46 4.62 2.31 9.23 3.08 3.85 8.46 -1.54 -1.54 3.85 6.15 -21.54 ** 0 -6.15 -10.77 16.92 ** 3.85

-3.15 -5.43 3.25 4.42 1.65 -3.28 7.76 -2.88 4.45 0.82 -5.65 4.49 -12.78 * -5.65 -3.64 -6.77 -3.77 5.79 -3.83 -0.42 1.68 -12.71 * 0.83 2.95 1.24 -7.56 -18.92 ** -5.39 -8.87 -0.79 -15.83 * 0.41 0 0.84 -5.44 4.64 -7.05 -8.4 -8.26 -2.09 -7.69 0.83

-5.38 -8.96 2.42 4 -0.81 -4.84 6.45 -4.84 4.03 -0.81 -5.65 3.23 -18.31 ** -5.65 -8.46 -12.69 * -5.74 2.4 -4.24 -1.67 0 -13.45 -1.63 1.67 -1.61 -9.09 -26.06 ** -8.06 -13.08 * -6.72 -17.21 * -2.4 0 0 -6.61 4.2 -8.94 -9.17 -10.48 -3.31 -15.49 ** -1.61

18.27 * 17.31 * 22.12 ** 25 ** 18.27 * 13.46 26.92 ** 13.46 24.04 ** 18.27 * 12.5 23.08 ** 11.54 12.5 14.42 12.5 10.58 23.08 ** 8.65 13.46 16.35 * -0.96 16.35 * 17.31 * 17.31 * 5.77 0.96 9.62 8.65 20.19 * -2.88 17.31 * 13.46 15.38 8.65 19.23 * 7.69 4.81 6.73 12.5 15.38 17.31 *

1.65 0.83 4.96 7.44 1.65 -2.48 9.09 -2.48 6.61 1.65 -3.31 5.79 -4.13 -3.31 -1.65 -3.31 -4.96 5.79 -6.61 -2.48 0 -14.88 * 0 0.83 0.83 -9.09 -13.22 -5.79 -6.61 3.31 -16.53 * 0.83 -2.48 -0.83 -6.61 2.48 -7.44 -9.92 -8.26 -3.31 -0.83 0.83

Table 13.13: contd… CROSS

WARANGAL Mid

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

-4.62 16.67 ** 3.17 9.09 5.98 11.01 -1.15 5.79 -14.61 ** -16.86 ** -7.06 23.93 ** -1.09 6.77 10.47 * 23.27 ** -0.37 2.96 -2.39 11.48 * -3.6 1.93 -27.46 ** 2.94 -6.99 5.18 2.74 8.21 5.26 27.35 ** 0 7.34 13.33 * 9.01 10.86 * 7.26 -26.01 ** 1.92 -3.27 24.17 ** -1.07 3.5

KUNARAM

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-10.14 9.02 0 5.34 1.64 3.28 -7.19 4.92 -21.38 ** -20.3 ** -14.97 ** 18.85 ** -11.11 * 3.88 10.07 8.63 -3.6 0 -11.87 * -2.16 -3.6 -5.04 -28.97 ** 0.72 -9.52 -5.04 -1.96 4.32 1.45 16.41 * -0.77 6.11 6.25 -0.78 6.47 3.91 -30.34 ** 0 -9.52 16.41 * -9.15 3.1

-12.06 * -5.67 -7.8 -2.13 -12.06 * -10.64 -8.51 -9.22 -19.15 ** -24.82 ** -11.35 2.84 -3.55 -4.96 8.51 7.09 -4.96 -1.42 -13.12 * -3.55 -4.96 -6.38 -26.95 ** -0.71 -5.67 -6.38 6.38 2.84 -0.71 5.67 -8.51 -1.42 -3.55 -9.93 4.96 -5.67 -28.37 ** -5.67 -5.67 5.67 -1.42 -5.67

-4.62 2.31 0 6.15 -4.62 -3.08 -0.77 -1.54 -12.31 -18.46 ** -3.85 11.54 4.62 3.08 17.69 ** 16.15 * 3.08 6.92 -5.77 4.62 3.08 1.54 -20.77 ** 7.69 2.31 1.54 15.38 * 11.54 7.69 14.62 * -0.77 6.92 4.62 -2.31 13.85 * 2.31 -22.31 ** 2.31 2.31 14.62 * 6.92 2.31

-3.53 -10.42 -10.12 -5.6 -6.17 -3.67 -0.81 -2.46 -16.13 ** -14.29 * -3.61 -11.38 -13.48 * -3.61 -0.76 0 -13.39 * -5.84 -0.8 -5.56 -5.14 -4.38 3.53 -3.17 -1.56 -11.46 * -5.84 -10.16 4.84 -8.73 12.5 * 5.35 8.47 11.76 5.44 3.8 2.9 10.08 -4.13 0.42 3.08 -2.48

-5.38 -13.43 * -11.2 -5.6 -8.8 -5.6 -2.4 -4.8 -16.8 * -16 * -4 -12.8 -18.66 ** -4 -1.52 -0.75 -16.67 ** -8.33 -6.06 -9.85 -9.09 -9.09 0 -7.58 -4.55 -15.15 * -9.15 -12.88 * 0 -14.18 * 10.66 2.4 8.47 10.83 4.13 3.36 0.81 9.17 -6.45 -0.83 -5.63 -4.84

18.27 * 11.54 6.73 13.46 9.62 13.46 17.31 * 14.42 0 0.96 15.38 4.81 11.06 15.38 25 ** 27.88 ** 5.77 16.35 * 19.23 * 14.42 15.38 15.38 26.92 ** 17.31 * 21.15 ** 7.69 24.04 ** 10.58 25 ** 10.58 29.81 ** 23.08 ** 23.08 ** 27.88 ** 21.15 ** 18.27 * 19.23 * 25.96 ** 11.54 15.38 28.85 ** 13.46

1.65 -4.13 -8.26 -2.48 -5.79 -2.48 0.83 -1.65 -14.05 * -13.22 -0.83 -9.92 -4.55 -0.83 7.44 9.92 -9.09 0 2.48 -1.65 -0.83 -0.83 9.09 0.83 4.13 -7.44 6.61 -4.96 7.44 -4.96 11.57 5.79 5.79 9.92 4.13 1.65 2.48 8.26 -4.13 -0.83 10.74 -2.48

Table 13.14: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for flag leaf width at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

2.72 -3.95 -0.35 -10.14 -2.56 -4.5 -3.27 9.63 12.98 10.71 0.71 -14.59 * -11.9 18.46 * 8.46 0 1.96 14.05 16.32 * 9.02 -6.62 16.1 * 20.18 * 14.63 15.32 * 5.26 3.97 14.16 10.1 1.68 -3.55 12.27 -0.75 -1.42 0.33 -0.38 10.59 -3.3 6.91 -3.65 0 9.88

0.67 -5.19 -4 -17.33 * -11.33 -8 -5.13 -1.33 -1.33 3.33 -5.33 -20 ** -14.91 * 2.67 -2.08 -12.34 -6.47 9.52 13.01 0 -18.59 ** 14.17 18.1 8.46 8.33 -0.76 -10.56 11.21 9.72 -1.95 -4.9 5.59 -7.69 -2.8 -3.85 -8.39 -1.4 -7.69 2.8 -7.69 -5.59 -2.8

0 -3.31 -4.64 -17.88 * -11.92 -8.61 -1.99 -1.99 -1.99 2.65 -5.96 -20.53 ** -9.27 1.99 -6.62 -10.6 -13.91 -8.61 -7.95 -7.95 -15.89 * -9.27 -9.27 -6.62 -5.3 -13.91 -4.64 -14.57 * 4.64 0 -9.93 0 -12.58 -7.95 -0.66 -13.25 -6.62 -12.58 -2.65 -12.58 0.66 -7.95

7.86 4.29 2.86 -11.43 -5 -1.43 5.71 5.71 5.71 10.71 1.43 -14.29 -2.14 10 0.71 -3.57 -7.14 -1.43 -0.71 -0.71 -9.29 -2.14 -2.14 0.71 2.14 -7.14 2.86 -7.86 12.86 7.86 -2.86 7.86 -5.71 -0.71 7.14 -6.43 0.71 -5.71 5 -5.71 8.57 -0.71

-1.59 -2.38 2.01 0.64 2.37 0.39 -1.58 2.88 -3.18 2.03 -1.24 -0.65 -11.5 ** 5.99 6.91 5.99 -0.14 8.59 * 6.2 8.52 * -3.44 6.15 1.67 3.73 4.98 1.99 -3.27 6.97 2.35 3.93 -5.34 6.56 1.07 1.98 -1.85 4.24 -8.39 * -4.63 -4.76 -3.82 -0.35 4.49

-2.43 -3.7 0.25 -2.22 -4.2 -4.69 -2.88 -2.96 -6.17 -0.74 -1.48 -5.68 -16.45 ** 0.49 -2.43 -1.27 -6.65 2.62 4.25 4.95 -12.26 ** 3.34 -3.68 -2.09 -3.23 -1.37 -15.57 ** 3.58 0.24 3.8 -5.82 4.81 -4.3 -2.03 -4.33 -0.51 -10.13 * -6.08 -5.71 -7.59 -7.02 * 0.25

1.52 -1.52 2.53 0 -2.02 -2.53 2.02 -0.76 -4.04 1.52 0.76 -3.54 -3.79 2.78 1.52 -1.77 -7.83 * -1.01 -7.07 -3.54 -7.83 * -6.31 -7.58 -5.3 -1.52 -9.34 * -2.78 -5.05 4.29 3.54 -6.06 4.55 -4.55 -2.27 0.51 -0.76 -10.35 ** -6.31 -4.04 -7.83 * 7.07 0

2.81 -0.26 3.84 1.28 -0.77 -1.28 3.32 0.51 -2.81 2.81 2.05 -2.3 -2.56 4.09 2.81 -0.51 -6.65 0.26 -5.88 -2.3 -6.65 -5.12 -6.39 -4.09 -0.26 -8.18 * -1.53 -3.84 5.63 4.86 -4.86 5.88 -3.32 -1.02 1.79 0.51 -9.21 * -5.12 -2.81 -6.65 8.44 * 1.28

Table 13.14: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

12.55 1.83 6.98 5.31 8.26 5.43 11.27 16.32 * 17.75 * 9.24 8.37 6 2.86 16.16 5.96 -14.1 * -11.11 7.04 -7.47 -8.42 -0.64 15.11 * 8.15 5.56 -9.66 -5.19 5.33 -14.18 * 17.29 * 3.62 4.98 -2.42 25.71 ** 4.98 10.07 17.36 * 14.53 18.25 * 25.2 ** 17 * 14.49 * 27.59 **

2.78 -9.74 -0.72 2.38 6.5 -2.16 -1.92 15.83 14.29 4.62 3.03 1.15 -10.56 11.76 1.27 -15.19 * -16.46 * -3.8 -17.72 * -13.92 * -1.27 1.27 -7.59 -3.8 -17.09 * -13.29 4.35 -27.22 ** 8.33 -7.14 -1.44 -3.97 25.2 ** -1.44 -1.92 16.39 9.84 14.62 20.45 * 12.98 0.62 21.31 *

-1.99 -7.95 -8.61 -14.57 * -13.25 -9.93 1.32 -7.95 -9.93 -9.93 -9.93 -12.25 -4.64 -11.92 5.96 -11.26 -12.58 0.66 -13.91 -9.93 3.31 5.96 -3.31 0.66 -13.25 -9.27 11.26 -23.84 ** 3.31 -5.3 -9.27 -19.87 ** 1.99 -9.27 1.32 -5.96 -11.26 -1.32 5.3 -1.99 7.28 -1.99

5.71 -0.71 -1.43 -7.86 -6.43 -2.86 9.29 -0.71 -2.86 -2.86 -2.86 -5.36 2.86 -5 14.29 -4.29 -5.71 8.57 -7.14 -2.86 11.43 14.29 4.29 8.57 -6.43 -2.14 20 * -17.86 * 11.43 2.14 -2.14 -13.57 10 -2.14 9.29 1.43 -4.29 6.43 13.57 5.71 15.71 * 5.71

1.54 2.11 0.13 2.94 2.64 4.11 3.32 6.48 -5.09 -7.34 * -0.91 5.89 -3.77 6.17 5.35 1.58 -8.29 * 1.6 -3.71 -1.39 -2.96 4.57 -5.81 1.97 -6.25 -3.91 1.02 -5.3 9.23 ** 6.82 5.67 3.47 15.95 ** 8.47 * 8.93 ** 9.49 * -4.01 9.99 ** 5.84 13.93 ** 5.58 9.17 *

-4.13 -1.52 -3.07 0.79 0.82 3.83 -2.88 5.46 -6.84 -9.4 * -5.46 5.6 -13.27 ** 5.74 3.26 -2.56 -12.35 ** -3.96 -12.24 ** -8.86 * -4.43 -3.96 -11.19 ** -3.5 -9.09 * -11.19 ** -1.97 -12.59 ** 3.4 3.3 2.56 1.57 13.59 ** 7.88 2.64 8.15 -5.53 7.83 1.24 13.32 ** -4.61 8.42 *

-0.25 -2.02 -4.29 -2.78 -6.82 -4.04 2.02 -2.53 -10.61 ** -12.37 ** -3.79 -2.4 -0.13 -2.27 11.87 ** 5.56 -5.05 4.04 -4.92 -1.26 3.54 4.04 -3.79 4.55 -1.52 -3.79 12.88 ** -5.3 7.58 2.78 1.26 -2.02 5.56 0.25 7.83 * 0.51 -9.34 * 4.29 3.03 5.3 9.85 * 0.76

1.02 -0.77 -3.07 -1.53 -5.63 -2.81 3.32 -1.28 -9.46 * -11.25 ** -2.56 -1.15 1.15 -1.02 13.3 ** 6.91 -3.84 5.37 -3.71 0 4.86 5.37 -2.56 5.88 -0.26 -2.56 14.32 ** -4.09 8.95 * 4.09 2.56 -0.77 6.91 1.53 9.21 * 1.79 -8.18 * 5.63 4.35 6.65 11.25 ** 2.05

Table 13.19: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for number of filled grains per panicle at Warangal and Kunaram. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

0.67 -6.11 -9.22 * -33.27 ** -8.13 0.62 8.6 -5.16 -1.25 -8.81 22.51 ** -10.76 * 20.39 ** 10.02 * 22.67 ** -10.27 * -4.4 4.88 1.94 -1.59 17.82 ** 22.62 ** 7.84 -7.14 7.25 0.8 23.03 ** 0.48 13.03 ** -8.17 4.25 -6.85 7.95 -0.33 12.27 * 5.71 6.12 -6.91 6.2 -5.91 28.62 ** 10 *

-0.85 -14.96 ** -15.73 ** -38.31 ** -8.62 0.08 8.1 -8.83 -6.43 -9.45 18.05 ** -14.61 ** 12.97 * 8.48 17.25 ** -22.94 ** -15.99 ** -8.19 -4.44 -6.81 10.51 * 20.07 ** 7.18 -11.94 * 4.76 -8.88 22.51 ** -4.06 9.5 -20.21 ** -7.27 -17.46 ** 2.53 -4.35 6.72 4.95 5.28 -10.53 5.18 -13.87 ** 26.32 ** 6.45

-15.65 ** -10.84 * -16.31 ** -38.19 ** -21.42 ** -14.86 ** -7.18 -22.44 ** -20.4 ** -22.97 ** 0.43 -20.49 ** -3.89 -7.71 -3.26 -19.21 ** -16.57 ** -8.01 -17.83 ** -21.58 ** -5.11 -5.77 -18.39 ** -26.13 ** -17.36 ** -15.16 ** -7.84 -20.66 ** -9.65 * -16.34 ** -7.91 -17.3 ** -11.83 ** -19.51 ** -8.37 -17.63 ** -18.55 ** -24.94 ** -17.03 ** -19.8 ** -2.27 -11.96 **

-3.47 2.04 -4.22 -29.26 ** -10.07 -2.56 6.22 -11.24 * -8.9 -11.84 * 14.93 ** -9.01 9.99 5.62 10.71 * -7.54 -4.52 5.28 -5.96 -10.26 * 8.6 7.84 -6.6 -15.46 ** -5.43 -2.9 5.47 -9.2 3.39 -4.26 5.39 -5.35 0.9 -7.88 4.86 -5.73 -6.79 -14.1 ** -5.05 -8.22 11.84 * 0.75

-4.85 9.14 20.07 * 16.35 19.87 * 6.98 11.8 22.42 * 13.66 29.53 ** 30.51 ** 9.55 36.49 ** 15.01 11.55 2.87 17.67 * -2.3 15.01 * -10.48 -3.52 23.82 ** -14.52 5.57 17.93 * -4.65 4.07 9.56 -10.6 -8.18 16.45 * 14.75 -5.01 -1.45 5.24 -9.74 -10.34 -6.31 4.9 -7.85 8.68 8.44

-9.93 -1.21 12.89 9.16 11.94 3.29 10.04 22.04 * 12.48 19.66 * 25.61 ** 4.75 30.96 ** 7.79 4.78 1.25 11.28 -7.4 9.52 -17.51 * -12.66 10.8 -23.01 ** 1.66 9 -11.31 -3.53 3.94 -14.91 -8.36 11.6 10.21 -8.33 -8.01 -3.52 -18.22 * -18.22 * -8.54 -1.78 -13.17 2.06 4.27

-10.59 8.09 13.68 10.44 14.39 -1.64 0.75 8.87 1.84 25.18 ** 20.41 * 1.8 26.35 ** 9.3 18.37 * 14.39 25.72 ** 4.61 23.73 * -6.8 -1.33 25.18 ** -13.02 14.86 23.14 * 0.2 8.99 17.44 -6.53 0.66 22.6 * 21.07 * 0.7 1.06 5.98 -10.16 -10.16 0.47 7.9 -4.61 12.12 14.54

-14.66 3.17 8.51 5.41 9.18 -6.12 -3.84 3.92 -2.8 19.48 * 14.93 -2.84 20.6 * 4.33 12.99 9.18 20 * -0.15 18.1 * -11.04 -5.82 19.48 * -16.98 9.63 17.54 * -4.37 4.03 12.09 -10.78 -3.92 17.01 15.56 -3.88 -3.54 1.16 -14.25 -14.25 -4.1 2.99 -8.96 7.01 9.33

Table 13.19: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

7.58 2.17 -20.09 ** -11.6 ** 4.63 -4.76 -8.85 3.08 -9.49 * -3.72 10.27 * -10.26 * 18.54 ** 12.38 ** -7.55 -9.96 * -5.03 -19.99 ** -15.97 ** 0.97 10.23 * 8.2 -0.79 14.97 ** -9.1 21.17 ** 8.67 5.01 11.89 * 11.99 ** 20.12 ** 16.76 ** -0.71 17.61 ** 13.51 ** 11.64 * 7.42 15.71 ** 10.4 * 5.21 33.84 ** 9.46

5.36 -6.98 -25.41 ** -17.84 ** 4.59 -5.82 -8.96 -1.45 -14.7 ** -4.94 5.67 -13.66 ** 10.64 * 10.18 -9.5 -21.06 ** -14.73 ** -28.44 ** -19.39 ** -2.11 5.83 7.84 -2.59 11.63 * -9.17 12 * 5.63 2.67 5.19 -5.22 3.98 0.69 -8.43 9.55 4.76 7.47 4.93 7.93 6.02 -6.37 32.07 ** 2.79

-9.32 * -2.47 -25.93 ** -17.68 ** -9.98 * -18.95 ** -21.65 ** -15.19 ** -26.59 ** -18.19 ** -9.06 * -19.6 ** -4.78 -5.17 -25.34 ** -17.23 ** -15.32 ** -28.3 ** -30.68 ** -17.63 ** -9.13 * -14.79 ** -23.03 ** -6.36 -28.24 ** 4.28 -16.54 ** -15.09 ** -13.21 ** -0.63 3.26 0.89 -21.25 ** -7.81 -10.05 * -15.65 ** -20.1 ** -9.46 * -16.38 ** -12.82 ** -1.48 -14.99 **

3.77 11.61 * -15.23 ** -5.79 3.02 -7.24 -10.33 * -2.94 -15.99 ** -6.37 4.07 -7.99 8.97 8.52 -14.56 ** -5.28 -3.09 -17.95 ** -20.66 ** -5.73 4 -2.49 -11.92 * 7.16 -17.87 ** 19.34 ** -4.49 -2.83 -0.68 13.73 ** 18.17 ** 15.46 ** -9.88 5.51 2.94 -3.47 -8.56 3.62 -4.3 -0.23 12.75 * -2.71

5.58 24.79 ** -7.79 6.02 14.81 -6.16 8.78 8.4 1.36 0.88 12.81 23.41 ** 8.36 1.17 14.79 -0.53 8.05 11.68 3.71 8.29 16.35 19.36 * 6.25 24.55 ** 9.4 7.95 12.98 1.47 1.59 3.95 1.05 16.02 * 7.33 -2.33 4.46 6.17 0.33 3.33 20.34 * 5.25 3.27 -1.38

5.4 18.79 * -8.62 4.83 12.97 -7.91 4.74 3.08 -2.92 -1.87 11.07 22.33 * 7.04 -0.08 9.26 -9.5 2.14 5.33 -2.64 5.13 15.16 19.05 5.74 15.66 5.87 3.78 9 -4.39 1.49 -0.79 0.43 15.03 5.89 -4.4 0.31 0.71 -4.17 0.78 18.16 4.05 1.73 -2.33

4.61 29.98 ** -7.97 6.06 15.44 -8.91 3.6 1.95 -3.99 2.66 9.85 20.99 * 5.86 1.33 8.44 -0.98 2.85 6.57 -0.51 0.12 5.43 6.76 -4.26 20.99 * 1.49 0.86 5.16 -3.05 0.94 8.56 1.13 16.38 8.21 -4.93 -0.23 0.16 -4.69 5.43 17.51 3.48 1.17 -0.96

-0.15 24.07 ** -12.16 1.23 10.19 -13.06 -1.12 -2.69 -8.36 -2.01 4.85 15.49 1.04 -3.28 3.51 -5.49 -1.83 1.72 -5.04 -4.44 0.63 1.9 -8.62 15.49 -3.13 -3.73 0.37 -7.46 -3.66 3.62 -3.47 11.08 3.28 -9.25 -4.78 -4.4 -9.03 0.63 12.16 -1.23 -3.43 -5.47

Table 13.20: Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for number of filled grains per panicle at Kampasagar and Pooled. KRH-2

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

13.77 -4.5 -9.28 4.65 -5.52 -1.19 20.48 * -0.79 6.01 -9.53 -0.21 0.83 7.59 -12.78 -8.59 -2.55 -1.45 -5.48 9 -10.1 -2.17 -13.03 -11.77 -12.49 -19.42 ** 9.28 -6.64 -3.75 24.41 ** 8.41 27.16 ** 0.17 18.65 * 8.1 12.76 -3.5 1.88 13.77 1.45 11.07 -0.79 7.23

10.17 -9.22 -10.71 1.39 -6.71 -6.1 17.38 -2.92 4.01 -10.86 -6.93 -2.23 2.46 -17.05 * -8.74 -4.24 -3.24 -5.7 4.08 -11.67 -7.78 -14.1 -13.1 -14.18 -22.36 ** 2.54 -8.07 -5.36 13.95 -2.42 18.27 * -8.2 13.38 -2.71 9.18 -10.74 -5.52 5.93 -10.29 8.04 -10.53 -3.43

-1.15 -15.34 -22.52 ** -9.13 -21.6 ** -12.39 -1.36 -14.75 -9.17 -22.83 ** -9.62 -17.84 * -4.83 -22.73 ** -17.84 * -10.69 -12.88 -15.1 -6.29 -17.59 * -16.97 * -22.66 ** -21.76 ** -22.73 ** -24.6 ** -7.68 -14.61 -11.84 2.24 -8.99 2.63 -17.73 * -7.12 -9.24 -12.98 -21.62 ** -17.49 * -8.3 -12.88 -14.72 -16.9 * -10.03

13.12 -3.11 -11.33 3.99 -10.28 0.26 12.88 -2.44 3.95 -11.69 3.44 -5.97 8.91 -11.57 -5.97 2.21 -0.29 -2.83 7.25 -5.69 -4.98 -11.49 -10.45 -11.57 -13.71 5.66 -2.28 0.9 17.01 4.15 17.45 -5.85 6.3 3.87 -0.41 -10.3 -5.57 4.95 -0.29 -2.4 -4.9 2.96

3.29 -0.75 -0.01 -5.45 1.91 2 13.48 ** 5.01 5.98 3.6 17.09 ** -0.6 21.13 ** 3.9 8.23 * -3.24 4.15 -0.94 8.9 * -7.57 3.87 10.82 * -6.69 -4.33 1.62 1.58 6.03 2.24 8.18 -3.15 15.44 ** 2.8 6.47 2 9.93 * -2.69 -1.09 -0.29 4.17 -1.56 11.82 ** 8.56 *

0.88 -8.74 * -5.07 -10.86 * -0.19 -0.7 13.27 ** 4.45 5.05 0.61 14.23 ** -2.66 20.01 ** 0.45 7.26 -8.27 2.08 -3.62 7.62 -8.1 0.37 6.73 -10.44 * -4.65 0.81 0.4 3.58 2.11 5.91 -10.75 * 9.86 * -2.85 4.53 -0.46 9.45 -3.45 -2.2 -2.93 1.88 -3.36 11.07 * 5.21

-9.19 * -6.66 -9.37 * -13.63 ** -10.67 * -10.03 * -2.81 -10.37 * -9.87 * -8.39 3.04 -12.86 ** 4.92 -7.68 -1.69 -6.17 -2.55 -6.61 -1.36 -15.77 ** -8 -2.17 -17.91 ** -12.6 ** -7.6 -7.98 -5.06 -6.16 -4.66 -8.71 * 4.88 -5.87 -6.45 -9.81 * -5.61 -16.73 ** -15.66 ** -11.61 ** -8.1 -13.49 ** -2.91 -3.31

-1.97 0.77 -2.16 -6.76 -3.56 -2.87 4.93 -3.24 -2.69 -1.1 11.24 * -5.93 13.27 ** -0.34 6.13 1.29 5.2 0.82 6.49 -9.06 -0.68 5.61 -11.38 * -5.65 -0.25 -0.65 2.49 1.31 2.92 -1.44 13.23 ** 1.63 1 -2.63 1.91 -10.11 * -8.95 -4.58 -0.78 -6.6 4.82 4.39

Table 13.20: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-0.78 -2.42 2.78 7.38 19.07 * 3.6 4.3 9.58 43.88 ** 6.01 -3.68 -4.15 -5.02 3.52 -7.17 -1.34 7.97 14.4 6.89 -10.28 1.4 -2.59 3.21 3.47 -6.9 -4.52 -8.45 -9.9 9.91 -8.66 -6.61 -9.78 -3.06 -2.49 11.57 0.93 -4.33 -1.1 -0.89 13.18 -3.03 15.82 *

-6.69 -9.85 -1.8 1.04 16.98 -4.31 3.87 4.11 37.05 ** 1.4 -12.64 -4.21 -12.1 -4.32 -8.54 -4.61 7.79 12.77 3.72 -13.27 -2.89 -3 3.06 3.17 -11.71 -8.98 -11.31 -12.84 9.43 -10 -8.54 -10.23 -7.66 -3.94 4.9 -0.57 -6.02 -3.26 -4.25 5.94 -4.26 14.18

-16.28 * -15.93 * -14.79 -9.44 -4.17 -10.73 -17.21 * -8.58 19.69 * -12.22 -15.17 -24.29 ** -18.36 * -10.87 -17.94 * -11.04 -6.15 1.06 -9.69 -19.09 * -15.44 -14.82 -10 -10.17 -14.26 -20.75 * -17.63 * -18.81 * -0.95 -16.07 * -17.21 * -18.74 * -16.42 * -10.38 -5.04 -10 -14.92 -12.43 -7.02 -4.1 -11.07 6.37

-4.18 -3.79 -2.48 3.64 9.67 2.17 -5.26 4.63 36.98 ** 0.46 -2.91 -13.35 -6.57 2.01 -6.09 1.81 7.41 15.66 3.36 -7.4 -3.23 -2.52 3 2.8 -1.88 -9.3 -5.73 -7.08 13.36 -3.95 -5.26 -7 -4.34 2.56 8.68 3 -2.64 0.22 6.41 9.75 1.77 21.74 *

4.21 8.25 * -8.99 * 0.07 12.59 ** -2.47 1.11 6.97 11.7 ** 0.93 6.4 2.84 7.23 5.71 -0.14 -4.11 3.4 1.4 -1.91 -0.63 9.26 * 7.97 2.88 14.3 ** -2.4 8.58 * 3.99 -1.31 7.71 2.48 4.96 7.66 1.28 3.92 9.83 * 6.05 0.89 5.73 9.64 * 7.83 10.27 * 8.01

2.78 0.45 -12.77 ** -4.75 11.36 * -4.11 -0.08 5.35 9.62 -1.01 4.84 1.71 7.16 3.21 -2.94 -12.23 ** -2.29 -4.83 -4.39 -3.72 8.93 7.92 2.46 10.48 * -5.23 5.82 2.54 -5.03 5.79 -5.27 0.2 2.06 -0.24 1.74 9 4.88 -0.57 3.27 7.57 6.19 9.88 * 5.01

-7.48 2.75 -16.72 ** -7.71 -0.33 -13.12 ** -12.52 ** -7.77 -4.03 -9.87 * -5.43 -8.95 * -6.19 -5.15 -12.63 ** -10.22 * -6.72 -7.79 -14.43 ** -12.77 ** -6.88 -8.3 -12.93 ** 0.6 -14.51 ** -5.27 -10.36 * -12.72 ** -4.77 -3.11 -4.35 -1.11 -10.72 * -7.81 -5.38 -8.96 * -13.69 ** -5.97 -2.96 -4.93 -3.94 -3.49

-0.12 10.92 * -10.09 * -0.37 7.6 -6.21 -5.56 -0.43 3.61 -2.69 2.1 -1.7 1.28 2.4 -5.67 -3.07 0.71 -0.45 -7.62 -5.83 0.53 -1 -6 8.6 -7.71 2.27 -3.23 -5.77 2.81 4.61 3.27 6.76 -3.61 -0.48 2.15 -1.71 -6.82 1.51 4.76 2.63 3.7 4.19

Table 13.17: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for Spikelet fertility (%) at Warangal and Kunaram. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

12.63 * 10.23 * 16.07 ** -14.39 ** 4.74 4.98 -1.24 23.27 ** -14.76 ** 3.27 24.15 ** 1.49 -3.09 -1.22 26.29 ** 14.61 ** 2.16 -6.02 2.52 -8.01 26.41 ** 4.06 8.93 3.9 3.19 -8.05 22.2 ** 7.2 27.95 ** 14.2 ** 16.98 ** 1.22 20.16 ** -0.34 16.83 ** 11.66 * 10.32 * 15.45 ** 27.69 ** 20.96 ** 21.18 ** 7.74

9.49 8.11 14.2 * -15.67 ** 3.74 4.01 -2.3 21.83 ** -17.72 ** 0.18 21.32 ** -0.18 -8.04 -3.48 24.88 ** 10.52 -1.17 -8.99 1.73 -10.4 22.93 ** 1.11 3.4 -0.89 2.58 -8.11 17.9 ** 3 25.09 ** 6.62 9.56 -5.11 15.33 ** -6.05 9.97 5.02 1.45 6.68 24.19 ** 16.89 ** 20.9 ** 0.24

21.64 ** 24.91 ** 31.09 ** -3.42 15.25 * 17.72 ** 10.92 38.58 ** -1.75 18.38 ** 34.78 ** 10.89 2.17 12.37 * 33.99 ** 27.7 ** 13.44 * 4.24 10.86 1.41 39.57 ** 15.01 * 23.47 ** 17.12 ** 10.07 -1.28 26.5 ** 19.9 ** 31.22 ** 23.19 ** 25.75 ** 8.68 25.69 ** 6.34 24.86 ** 19.46 ** 21.14 ** 26.07 ** 31.67 ** 25.58 ** 21.16 ** 16.7 **

16.44 ** 19.57 ** 25.48 ** -7.55 10.32 12.68 * 6.18 32.65 ** -5.96 13.32 * 29.02 ** 6.15 -2.2 7.56 28.26 ** 22.24 ** 8.59 -0.22 6.12 -2.93 33.6 ** 10.09 18.2 ** 12.12 * 5.36 -5.51 21.09 ** 14.78 * 25.61 ** 17.93 ** 20.38 ** 4.04 20.31 ** 1.79 19.52 ** 14.35 * 15.96 ** 20.67 ** 26.04 ** 20.21 ** 15.98 ** 11.71

-5.8 * 0.41 19.64 ** 8.52 ** 7.93 ** -0.57 21.64 ** 5.24 3.78 -1.08 14.13 ** 3.77 12.01 ** -5.12 * 10.32 ** 1.65 -0.07 14 ** 13.61 ** 4.25 13.58 ** -1.11 5.55 0.11 4.79 8.45 ** 3.96 -6.45 * -7.8 ** -6.34 * 2.71 15.04 ** 6.54 * 0.52 -4.66 -6.24 * 6.64 * 0.54 -2.17 7.31 ** 0.89 3.04

-6.99 * -5.35 19.51 ** 5.49 6.1 -1.45 20.91 ** -0.94 3.39 -5.76 14.11 ** 3.58 6.85 * -13.88 ** 10.12 ** -2.85 -1.4 9.26 ** 13.31 ** 3.66 12.62 ** -5.63 3.64 -3.3 3.27 6.69 * 0.58 -13.96 ** -9.38 ** -9.13 ** -0.21 8.62 ** 5.16 -1.59 -6.92 * -9.17 ** 3.12 -1.38 -5.06 3.97 -0.89 -3.84

8.55 * 21.63 ** 36.23 ** 19.99 ** 24.92 ** 14.13 ** 39.2 ** 27.69 ** 17.61 ** 18.42 ** 29.81 ** 17.82 ** 33.87 ** 20.13 ** 28.98 ** 24.84 ** 15.47 ** 27.97 ** 33.41 ** 21.41 ** 31.9 ** 21.65 ** 21.39 ** 21.52 ** 20.95 ** 24.96 ** 26.01 ** 20.03 ** 9.52 * 16.78 ** 20.61 ** 31.29 ** 27.1 ** 18.94 ** 12.5 ** 17.09 ** 24.64 ** 23.93 ** 14.75 ** 25.66 ** 24.17 ** 34.14 **

3.93 16.45 ** 30.43 ** 14.88 ** 19.6 ** 9.27 * 33.28 ** 22.25 ** 12.6 ** 13.38 ** 24.28 ** 12.81 ** 28.17 ** 15.02 ** 23.48 ** 19.52 ** 10.56 ** 22.52 ** 27.73 ** 16.24 ** 26.28 ** 16.47 ** 16.22 ** 16.35 ** 15.8 ** 19.64 ** 20.64 ** 14.91 ** 4.86 11.8 ** 15.48 ** 25.7 ** 21.69 ** 13.88 ** 7.71 * 12.1 ** 19.33 ** 18.65 ** 9.86 ** 20.3 ** 18.88 ** 28.42 **

Table 13.17: contd… CROSS

WARANGAL Mid

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

9.38 12.74 ** -5.01 -8.49 19.12 ** -3.89 -0.38 0.97 -10.88 * -13.26 ** 11.2 * 5.57 19.07 ** 12.93 ** 20.14 ** 15.07 ** 0.06 -0.81 5.97 0.31 7.73 5.19 13.41 ** 11.81 * 23.85 ** 3.74 3.07 6.53 -0.55 -2.53 -1.41 2.8 2.64 3.36 -4.01 -5.96 -4.87 -5.77 6.46 6.9 -0.15 3.7

Better

3.28 11.54 * -6.33 -9.86 14.53 ** -5.88 -2.29 -0.88 -11.38 * -13.3 * 5.53 0.81 9.83 12.14 * 19.01 ** 10.78 * -3.36 -4.11 4.98 -2.46 4.59 2.04 7.48 6.49 23.33 ** 3.49 -0.39 2.19 -6.35 -3.85 -3.06 0.97 -1.59 0.93 -6.12 -7.95 -5.13 -6 0.75 1.8 -8.14 2.67

PA- 6201

21.95 ** 31.69 ** 10.6 6.43 35.23 ** 11.13 15.37 * 17.04 ** 5.83 2.45 24.6 ** 19.03 ** 29.68 ** 32.41 ** 27.25 ** 28 ** 10.92 9.83 14.4 * 10.39 18.75 ** 16.07 * 28.34 ** 25.85 ** 31.87 ** 11.18 6.51 18.97 ** 11.21 14.18 * 15.13 * 19.91 ** 16.87 ** 19.87 ** 11.49 9.32 13.28 * 11.63 19.65 ** 20.89 ** 9.09 21.93 **

KUNARAM KRH -2

16.73 ** 26.06 ** 5.87 1.88 29.45 ** 6.38 10.44 12.04 * 1.3 -1.93 19.27 ** 13.94 * 24.14 ** 26.75 ** 21.81 ** 22.53 ** 6.18 5.13 9.51 5.67 13.67 * 11.1 22.86 ** 20.46 ** 26.23 ** 6.43 1.96 13.88 * 6.46 9.3 10.2 14.78 * 11.88 * 14.74 * 6.73 4.65 8.44 6.86 14.53 * 15.72 ** 4.43 16.72 **

Mid

8.07 ** 9.6 ** 1.25 10.02 ** 5.96 * 3 12.86 ** 5.41 * -0.13 4.67 10.89 ** 8.25 ** 11.73 ** -3.07 7.56 ** -2.52 7.52 ** 3.71 4.25 -1.22 10.64 ** -6.7 * 6.16 * 9.71 ** 6.73 * -1.91 -3.26 -0.86 0.82 2.57 14.15 ** 22.7 ** 10.07 ** 9.87 ** 9.19 ** -4.01 7.86 ** 8.23 ** 16.62 ** 12.42 ** 11.35 ** -3.44

Better

PA- 6201

KRH -2

6.66 * 5.9 * -1.22 4.31 5.03 1.27 10.65 ** 1.7 -3.02 2.24 8.06 * 5.31 9.29 ** -9.9 ** 7.48 * -7.06 * 6.35 * -0.36 3.71 -1.53 9.97 ** -11.18 ** 4.51 5.72 5.44 -3.25 -6.64 * -9.02 ** -1.36 -4.14 13 ** 20.34 ** 7.24 * 7.91 * 7.56 * -10.42 ** 7.28 * 2.21 15.58 ** 11.6 ** 5.31 -13.06 **

27.81 ** 36.09 ** 18.37 ** 24.99 ** 25.86 ** 21.35 ** 32.59 ** 31.1 ** 16.21 ** 28.48 ** 29.49 ** 26.2 ** 36.93 ** 25.69 ** 25.44 ** 19.43 ** 23.93 ** 16.11 ** 22.11 ** 14.75 ** 28.15 ** 14.49 ** 21.78 ** 32.85 ** 22.87 ** 12.73 ** 16.96 ** 26.91 ** 15.13 ** 23.18 ** 28.8 ** 34.4 ** 26.26 ** 24.97 ** 23.83 ** 15.47 ** 21.11 ** 28.44 ** 31.44 ** 26.48 ** 31.94 ** 21.27 **

22.37 ** 30.29 ** 13.33 ** 19.67 ** 20.5 ** 16.18 ** 26.94 ** 25.52 ** 11.26 ** 23 ** 23.98 ** 20.82 ** 31.1 ** 20.33 ** 20.09 ** 14.34 ** 18.65 ** 11.16 ** 16.91 ** 9.86 ** 22.69 ** 9.61 ** 16.59 ** 27.2 ** 17.64 ** 7.93 * 11.98 ** 21.5 ** 10.23 ** 17.94 ** 23.32 ** 28.67 ** 20.88 ** 19.64 ** 18.56 ** 10.56 ** 15.96 ** 22.97 ** 25.84 ** 21.09 ** 26.32 ** 16.11 **

Table 13.18: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for Spikelet fertility (%) at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

8.2 ** -0.12 3.62 -3.42 -4.86 * -3 -2.28 -3.53 8.88 ** -2 -1.84 1.34 2.98 2.24 7.54 ** 18.84 ** 7.08 ** -0.47 -0.9 9.27 ** 18.27 ** 19.77 ** 11.87 ** 6.22 ** 18.45 ** 11.72 ** -5.07 * 7.14 ** -5.78 ** 9.93 ** -1.85 5.56 * -3 3.76 -5.87 ** -0.55 6.81 ** -2.92 0.95 7.04 ** 14.09 ** 15.2 **

7.02 ** -0.2 -2.57 -3.82 -6.76 ** -5.14 * -4.5 -7.19 ** 3.32 -5.49 * -5.69 * -1.65 -0.43 -2.13 -0.41 11.27 ** 6.52 * -6.51 ** -9.01 ** 4.43 13.1 ** 16.34 ** 10.21 ** 2.92 15.22 ** 7.57 ** -8.26 ** 4.59 -8.46 ** 8.05 ** -6.12 * 4.1 -6.6 ** 3.31 -6.34 * -2.61 3.14 -4.7 -1.28 5.76 * 12.3 ** 12.24 **

35.88 ** 23.95 ** 21 ** 19.45 ** 20.62 ** 17.81 ** 18.62 ** 15.27 ** 28.32 ** 17.38 ** 17.13 ** 22.16 ** 23.67 ** 21.56 ** 26.45 ** 37.96 ** 16.48 ** 15.13 ** 17.72 ** 23.98 ** 34.1 ** 33.53 ** 22.9 ** 18.74 ** 31.86 ** 25.73 ** 6.4 * 18.81 ** 16.23 ** 33.97 ** 12.43 ** 28.2 ** 20.83 ** 23.72 ** 12.16 ** 16.63 ** 23.51 ** 14.12 ** 18.22 ** 26.65 ** 34.48 ** 34.41 **

30.08 ** 18.66 ** 15.84 ** 14.36 ** 15.48 ** 12.79 ** 13.56 ** 10.36 ** 22.85 ** 12.38 ** 12.13 ** 16.95 ** 18.39 ** 16.37 ** 21.06 ** 32.07 ** 11.51 ** 10.22 ** 12.7 ** 18.69 ** 28.38 ** 27.84 ** 17.65 ** 13.67 ** 26.24 ** 20.37 ** 1.87 13.75 ** 11.27 ** 28.26 ** 7.63 * 22.73 ** 15.67 ** 18.44 ** 7.38 * 11.65 ** 18.24 ** 9.25 ** 13.18 ** 21.25 ** 28.74 ** 28.67 **

5* 3.42 13.1 ** -3.29 2.39 0.43 5.89 ** 8.22 ** -0.84 0.06 11.93 ** 2.19 4.19 * -1.47 14.48 ** 11.46 ** 2.96 2.44 5.13 * 1.81 19.39 ** 7.2 ** 8.72 ** 3.31 8.74 ** 4.1 6.77 ** 2.21 3.83 5.56 ** 5.84 ** 7.31 ** 7.4 ** 1.34 1.78 1.26 7.91 ** 4.18 * 8.26 ** 11.51 ** 11.48 ** 8.43 **

4.9 * 0.74 11.39 ** -3.82 1.41 0.26 5.64 * 6.92 ** -1.52 -1.39 9.56 ** 0.53 2.96 -4.23 11.93 ** 6.12 ** 2.09 0.6 1.72 -0.39 16.88 ** 3.48 6.91 ** -0.53 8.5 ** 3.35 5.51 * -2.89 2.68 1.62 5.52 * 6.59 ** 5.09 * 0.29 0.78 -1.15 7.33 ** 1.44 7.25 ** 11.03 ** 11.44 ** 4.15

21.95 ** 23.51 ** 29.5 ** 11.81 ** 20.21 ** 16.56 ** 22.81 ** 27.36 ** 14.49 ** 18.07 ** 27.37 ** 16.87 ** 19.7 ** 17.94 ** 29.87 ** 30.1 ** 15.11 ** 15.66 ** 20.58 ** 15.41 ** 35.24 ** 23.26 ** 22.59 ** 19.11 ** 20.79 ** 16.24 ** 19.78 ** 19.59 ** 19.13 ** 24.58 ** 19.7 ** 22.55 ** 24.57 ** 16.19 ** 16.61 ** 17.75 ** 23.07 ** 21.46 ** 21.67 ** 25.95 ** 26.51 ** 28.26 **

16.74 ** 18.24 ** 23.97 ** 7.04 ** 15.08 ** 11.58 ** 17.57 ** 21.93 ** 9.6 ** 13.03 ** 21.93 ** 11.88 ** 14.59 ** 12.91 ** 24.32 ** 24.55 ** 10.19 ** 10.73 ** 15.43 ** 10.49 ** 29.47 ** 18 ** 17.36 ** 14.03 ** 15.64 ** 11.28 ** 14.67 ** 14.49 ** 14.05 ** 19.27 ** 14.59 ** 17.32 ** 19.26 ** 11.23 ** 11.64 ** 12.72 ** 17.82 ** 16.28 ** 16.48 ** 20.58 ** 21.11 ** 22.79 **

Table 13.18: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-5.29 * -5.23 * 3.27 -6.05 ** -16.56 ** 0.53 -7.4 ** 2.04 8.06 ** 0.08 3.8 -0.03 -1.58 -11.44 ** 5.18 * 10.77 ** 15.05 ** 2.35 -2.46 4.43 5.22 * 10.86 ** 12.39 ** 4.66 * 8.21 ** 15.92 ** 9.35 ** 8.48 ** 3.55 2.98 7.06 ** -1.36 2.15 13 ** -0.25 12.7 ** 9.55 ** 11.39 ** 14.02 ** 10.22 ** 6.01 * 12.91 **

-6.53 ** -7.56 ** -5.06 * -8.66 ** -16.89 ** -3.97 -11.6 ** -4.07 0.24 -5.69 * -2.54 -5.21 * -7.02 ** -17.14 ** -0.93 5.51 * 13.58 ** -2.2 -8.93 ** 1.57 2.4 9.62 ** 12.05 ** 3.23 7.15 ** 13.6 ** 7.57 ** 7.82 ** -2.66 -2.1 5.91 * -5.92 * -4.8 * 9.69 ** -3.11 11.21 ** 9.42 ** 9.65 ** 12.68 ** 7.81 ** 4.08 12 **

21.88 ** 20.54 ** 23.79 ** 19.11 ** 8.38 ** 25.22 ** 15.27 ** 25.09 ** 30.71 ** 22.98 ** 27.08 ** 23.6 ** 21.25 ** 8.04 ** 25.78 ** 30.81 ** 27.45 ** 20.45 ** 17.82 ** 20.58 ** 21.41 ** 25.82 ** 25.72 ** 19.09 ** 22.63 ** 32.78 ** 24.77 ** 22.47 ** 23.6 ** 21.38 ** 18.36 ** 15.86 ** 23.16 ** 30.22 ** 14.88 ** 27.65 ** 22.29 ** 26.5 ** 28.96 ** 26.01 ** 20.72 ** 27.22 **

16.68 ** 15.4 ** 18.51 ** 14.03 ** 3.75 19.88 ** 10.36 ** 19.76 ** 25.13 ** 17.74 ** 21.66 ** 18.33 ** 16.08 ** 3.43 20.42 ** 25.23 ** 22.01 ** 15.31 ** 12.8 ** 15.44 ** 16.23 ** 20.46 ** 20.36 ** 14.01 ** 17.4 ** 27.11 ** 19.44 ** 17.25 ** 18.32 ** 16.21 ** 13.31 ** 10.91 ** 17.91 ** 24.67 ** 9.98 ** 22.21 ** 17.08 ** 21.1 ** 23.46 ** 20.63 ** 15.57 ** 21.8 **

3.78 5.6 ** -0.19 -1.77 2.28 -0.13 1.56 2.84 -1.08 -2.82 8.57 ** 4.53 * 9.51 ** -0.56 10.74 ** 7.56 ** 7.43 ** 1.74 2.51 1.16 7.88 ** 2.82 10.65 ** 8.79 ** 12.81 ** 5.88 ** 2.89 4.47 * 1.29 0.98 6.42 ** 7.72 ** 4.9 * 8.65 ** 1.54 0.62 3.86 4.38 * 12.3 ** 9.81 ** 5.83 ** 4.05 *

0.97 5.57 * -4.23 -4.85 * 0.55 -2.9 -1.33 1.35 -4.31 -3.99 3.55 0.18 5.42 * -0.75 8.74 ** 2.84 6.99 ** 0.35 -0.39 -0.6 6.07 * -0.32 9.28 ** 5.2 * 12.55 ** 5.58 * 2.13 -0.33 0.46 -2.51 5.78 * 7.32 ** 2.95 7.84 ** 0.85 -1.48 3.62 1.94 10.93 ** 9.01 ** 5.55 * 0.24

23.87 ** 29.51 ** 17.48 ** 16.73 ** 23.35 ** 19.12 ** 21.05 ** 24.33 ** 17.39 ** 17.79 ** 27.03 ** 22.9 ** 29.33 ** 22.22 ** 26.17 ** 26.08 ** 20.63 ** 15.38 ** 18.07 ** 15.16 ** 22.73 ** 18.73 ** 25.31 ** 25.96 ** 25.87 ** 18.75 ** 15.94 ** 22.75 ** 16.55 ** 19.52 ** 20.72 ** 23.39 ** 22.04 ** 24.94 ** 16.69 ** 17.35 ** 18.82 ** 22.06 ** 26.6 ** 24.41 ** 20.46 ** 23.44 **

18.58 ** 23.98 ** 12.47 ** 11.75 ** 18.09 ** 14.04 ** 15.88 ** 19.03 ** 12.39 ** 12.76 ** 21.61 ** 17.66 ** 23.82 ** 17.01 ** 20.79 ** 20.7 ** 15.48 ** 10.46 ** 13.04 ** 10.25 ** 17.5 ** 13.66 ** 19.96 ** 20.59 ** 20.5 ** 13.68 ** 10.99 ** 17.51 ** 11.58 ** 14.42 ** 15.57 ** 18.13 ** 16.83 ** 19.61 ** 11.71 ** 12.34 ** 13.75 ** 16.85 ** 21.19 ** 19.11 ** 15.32 ** 18.17 **

Table 13.21: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for Test weight at Warangal and Kunaram. CROSS

WARANGAL Mid

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

5.96 1.75 5.48 9.67 * -0.49 -11.68 ** 5.39 -0.53 8.46 ** 3.35 7.24 4.39 6.4 3.86 11.7 ** -0.4 7.18 * 17.65 ** -0.95 -9.08 ** 11.67 ** 6.56 * 8.68 ** 7.25 * 8.2 * 3.17 5.78 8.91 * 11.27 ** 9.5 * 5.24 18.2 ** 0.55 -2.69 10.61 ** 5.58 8.66 ** 7.66 * 7.85 * 2.93 11.56 ** 6.06

KUNARAM

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

0.68 -3.9 1.35 2.46 -2.76 -15.1 ** 1.58 -6.39 0.18 2.36 -0.6 3.6 5.17 3.35 4.85 -7.04 1.74 8.62 * -1.99 -11.5 ** 8.98 * 1.5 1.58 6.91 -0.87 1.11 3.24 8.07 * 8.31 5.95 3.64 13.09 ** -4.1 -8.66 * 4.09 -2.93 -1.9 4.03 2.36 1.15 10.08 * 2.95

-3.12 -7.52 -2.47 -1.41 -1.95 -11.45 ** 5.36 2.11 13.77 ** 0.42 -4.35 -0.31 1.2 0.44 3.51 -8.22 * 0.44 7.24 -1.17 -7.7 * 13.04 ** 10.72 ** 15.36 ** 5.54 -2.13 -0.18 1.93 6.69 -0.91 -3.07 -5.18 3.46 -3.31 -4.74 7.96 * 5.88 11.4 ** 2.06 -6.35 -4.14 3.46 0.05

5.56 0.77 6.27 7.43 6.83 -3.52 14.8 ** 11.26 ** 23.96 ** 9.42 * 4.23 8.62 * 10.27 * 9.44 * 12.79 ** 0 9.44 * 16.85 ** 7.69 0.57 23.17 ** 20.65 ** 25.69 ** 15 ** 6.64 8.76 * 11.06 ** 16.25 ** 7.97 5.62 3.32 12.73 ** 5.36 3.8 17.64 ** 15.37 ** 21.38 ** 11.2 ** 2.04 4.45 12.73 ** 9.02 *

6.26 11.37 10.18 14.62 * 9.75 -5.6 9.72 6.15 12.56 * 12.35 * 12.15 * 8.87 12.55 * 8.57 22.36 ** 7.12 10.18 21.01 ** 7.48 -2.75 14.61 ** 12.22 * 11.41 * 14.76 ** 11.43 * 6.04 10.21 12.2 * 12.85 * 14.6 * 5.27 18.18 ** 6.32 -0.72 10.67 * 8.42 8.53 12.25 * 7.89 2.92 13.16 * 6.31

3.66 4.64 9.98 11.54 8.54 -12.8 * 1.61 -1.77 0.1 11.1 8.18 5.18 10.68 3.91 16.15 ** -1.96 7.32 14.59 * 5.65 -7.76 9 6.65 1.62 12.8 * 4.61 5.35 8.94 10.38 8.25 5.96 3.66 13.09 * 5.66 -6.8 4.16 1.97 -2 11.56 2.36 1.14 13.09 * 3.46

-3.36 -2.45 2.9 3.98 3.47 -4.07 11.16 7.63 19.86 ** 5.92 0.85 5.18 6.72 5.98 14.63 * -3.24 5.92 13.09 * 4.27 1.48 19.24 ** 16.85 ** 21.68 ** 11.33 3.24 5.35 7.51 12.58 * 4.5 2.28 0.06 9.16 1.99 2.53 13.94 * 11.72 17.36 ** 7.68 -1.2 1.14 9.16 5.52

-0.24 0.71 6.23 7.34 6.82 -0.97 14.75 * 11.1 23.74 ** 9.34 4.11 8.58 10.16 9.4 18.33 ** -0.12 9.34 16.75 ** 7.64 4.76 23.09 ** 20.62 ** 25.62 ** 14.92 * 6.58 8.75 10.99 16.22 * 7.87 5.58 3.29 12.69 * 5.29 5.85 17.63 ** 15.33 * 21.15 ** 11.16 2 4.41 12.69 * 8.93

Table 13.21: contd… CROSS

WARANGAL Mid

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

15.46 ** 1.18 3.37 14.71 ** -6.5 -8.98 ** 6.98 * 2.53 2.94 1.21 5.51 -0.75 6.58 -4.28 20.44 ** 9.11 * 12.04 ** 3.42 2.86 -6.63 10.36 ** 6.32 7.17 * 6.57 14.48 ** 12.36 ** 19.37 ** 9.09 * 9.52 * 8.71 * 8.97 * 5.86 6.07 -7.77 * 7.19 * 1.16 2.95 2.59 7.97 * 13.16 ** -1.53 -1.25

Better

8.2 * -5.73 -2.05 5.73 -7.31 -11.26 ** 4.59 -2.17 -3.62 0.71 -3.49 -2.92 3.84 -5.2 16.68 ** 5.07 9.8 * -1.52 -1.45 -11.95 ** 4.34 -1.81 -2.82 3.48 8.14 10.96 ** 18.36 ** 6.4 3.79 2.42 4.44 -1.35 3.92 -11.11 ** 3.59 -4.56 -4.68 1.88 -0.16 12 ** -2.93 -1.47

PA- 6201

7.21 -6.59 -2.94 4.76 -6.53 -7.44 8.49 * 6.72 9.45 * -0.21 -4.37 -3.8 2.89 -6.06 7.81 * -2.92 1.46 -9.01 * -0.62 -8.17 * 8.22 * 7.11 10.36 ** 1.51 -0.08 5.15 11.24 ** 3.41 0.42 -0.91 1.04 -4.55 4.79 -7.29 7.44 4.11 8.25 * -0.05 -3.41 8.36 * -6.09 -4.24

KUNARAM KRH -2

Mid

Better

PA- 6201

KRH -2

16.82 ** 1.79 5.76 14.15 ** 1.84 0.85 18.21 ** 16.28 ** 19.26 ** 8.74 * 4.2 4.82 12.11 ** 2.35 17.47 ** 5.79 10.55 * -0.85 8.28 0.06 17.92 ** 16.7 ** 20.25 ** 10.61 * 8.88 * 14.58 ** 21.21 ** 12.68 ** 9.42 * 7.97 10.1 * 4 14.18 ** 1.02 17.07 ** 13.44 ** 17.95 ** 8.91 * 5.25 18.07 ** 2.33 4.34

20.44 ** 8.93 6.32 17.93 ** 1.49 -2.64 9.83 7.89 3.02 8.29 8.71 1.97 11.07 * -1.42 27.83 ** 19.61 ** 17.12 ** 8.27 13.6 * 0 14.9 ** 13.66 * 11.38 * 16.07 ** 19.87 ** 17.23 ** 23.48 ** 17.02 ** 14.38 * 17.16 ** 12.16 * 9 15.22 ** 0 10.12 * 6.6 5.63 9.94 11.31 * 16.25 ** 2.65 1.83

14.14 * -0.46 3.39 11.49 -0.4 -7.5 4.63 2.7 -5.89 6.26 1.9 1.48 9.6 -2.85 27.42 ** 14.73 * 14.42 * 7.65 9.97 -9.44 4.32 3.12 -2.8 12.36 18.11 ** 10.93 18.89 ** 9.71 9.73 8.31 10.44 4.3 14.5 * -6.13 3.64 0.26 -4.61 9.26 5.6 14.23 * 2.59 -0.89

13.03 * -1.42 2.39 10.42 -1.37 1.76 14.46 * 12.52 * 12.69 * 5.24 0.91 1.48 8.54 -0.91 13.72 * 2.39 7.06 -3.93 4.84 -0.37 14.11 * 12.98 * 16.39 ** 7.11 5.41 10.93 14.63 * 11.9 5.92 4.55 6.6 0.68 10.53 3.27 13.38 * 9.85 14.23 * 5.46 1.94 14.23 * -0.97 1.08

16.69 ** 1.76 5.7 13.98 * 1.82 5.05 18.16 ** 16.16 * 16.33 * 8.64 4.17 4.76 12.04 2.29 17.39 ** 5.7 10.52 -0.82 8.23 2.85 17.8 ** 16.63 ** 20.15 ** 10.58 8.81 14.51 * 18.33 ** 15.51 * 9.34 7.93 10.05 3.94 14.1 * 6.61 17.04 ** 13.4 * 17.92 ** 8.87 5.23 17.92 ** 2.23 4.35

Table 13.22: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for Test weight at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

5.97 1.77 5.52 6.72 -0.46 -11.71 ** 5.42 -0.5 8.48 ** 3.36 7.3 4.41 6.45 3.89 11.71 ** -0.39 7.23 * 17.67 ** -0.96 -9.13 ** 11.73 ** 6.58 * 8.71 ** 7.26 * 8.23 * 3.2 5.79 8.96 ** 11.25 ** 9.52 * 5.26 18.24 ** 0.57 -2.7 10.65 ** 5.59 8.66 ** 7.69 * 7.88 * 2.94 11.59 ** 6.08

0.69 -3.89 1.38 -0.28 -2.74 -15.15 ** 1.59 -6.4 0.16 2.36 -0.55 3.62 5.22 3.36 4.84 -7.08 1.75 8.64 * -1.98 -11.56 ** 9.04 * 1.51 1.59 6.91 -0.89 1.1 3.23 8.1 * 8.28 * 5.92 3.63 13.12 ** -4.08 -8.68 * 4.12 -2.95 -1.92 4.06 2.35 1.18 10.12 * 2.98

-3.16 -7.57 * -2.5 -4.09 -1.97 -11.5 ** 5.37 2.12 13.78 ** 0.4 -4.36 -0.35 1.2 0.42 3.51 -8.26 * 0.45 7.25 -1.2 -7.76 * 13.09 ** 10.76 ** 15.41 ** 5.55 -2.15 -0.19 1.91 6.72 -0.96 -3.11 -5.21 3.48 -3.32 -4.75 7.99 * 5.9 11.42 ** 2.07 -6.37 -4.17 3.45 0.05

5.56 0.75 6.28 4.55 6.86 -3.53 14.85 ** 11.32 ** 24.03 ** 9.44 * 4.26 8.63 * 10.31 * 9.47 * 12.83 ** 0 9.5 * 16.91 ** 7.7 0.55 23.28 ** 20.73 ** 25.8 ** 15.06 ** 6.66 8.8 * 11.09 ** 16.33 ** 7.96 5.62 3.33 12.8 ** 5.39 3.82 17.72 ** 15.43 ** 21.45 ** 11.26 ** 2.06 4.46 12.77 ** 9.06 *

6.06 ** 4.72 * 6.99 ** 10.25 ** 2.66 -9.75 ** 6.78 ** 1.57 9.78 ** 6.14 ** 8.82 ** 5.82 ** 8.36 ** 5.37 ** 15.1 ** 1.95 8.16 ** 18.74 ** 1.66 -7.06 ** 12.64 ** 8.36 ** 9.57 ** 9.6 ** 9.25 ** 4.11 * 7.2 ** 9.98 ** 11.77 ** 11.13 ** 5.26 * 18.2 ** 2.38 -2.05 10.65 ** 6.5 ** 8.62 ** 9.13 ** 7.88 ** 2.93 12.09 ** 6.15 **

1.6 -1.26 4.15 4.33 0.68 -14.36 ** 1.59 -4.93 * 0.15 5.07 * 2.13 5.2 * 8.06 ** 3.53 8.42 ** -5.45 * 3.51 10.51 ** 1.47 -10.3 ** 9.01 ** 3.14 1.6 8.77 ** 0.86 2.89 5.04 * 9.97 ** 8.28 ** 5.94 * 3.64 13.1 ** -0.73 -8.06 ** 4.12 -1.38 -1.94 6.81 ** 2.36 1.16 11.1 ** 3.12

-3.21 -5.93 ** -0.78 -0.61 -0.24 -9.14 ** 7.19 ** 3.86 15.7 ** 2.15 -2.71 1.41 2.94 2.19 7.02 ** -6.66 ** 2.18 9.09 ** 0.54 -4.82 * 15.02 ** 12.67 ** 17.37 ** 7.37 ** -0.44 1.56 3.69 8.56 ** 0.78 -1.39 -3.53 5.27 * -1.64 -2.45 9.86 ** 7.73 ** 13.29 ** 3.84 -4.73 * -2.48 5.26 * 1.78

3.66 0.74 6.26 * 6.44 ** 6.84 ** -2.69 14.8 ** 11.23 ** 23.91 ** 9.4 ** 4.2 8.61 ** 10.25 ** 9.44 ** 14.62 ** -0.04 9.43 ** 16.83 ** 7.68 ** 1.94 23.18 ** 20.67 ** 25.7 ** 14.99 ** 6.63 ** 8.77 ** 11.05 ** 16.27 ** 7.94 ** 5.6 * 3.31 12.74 ** 5.34 * 4.48 17.66 ** 15.38 ** 21.33 ** 11.21 ** 2.03 4.44 12.73 ** 9 **

Table 13.22: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

15.5 ** 1.22 3.4 14.73 ** -6.49 -9.01 ** 7.02 * 2.54 2.95 1.21 5.57 -0.73 6.61 -4.29 20.53 ** 9.19 * 12.12 ** 3.46 2.86 -6.65 10.4 ** 6.32 7.17 * 6.64 14.52 ** 12.4 ** 19.48 ** 9.15 * 9.58 ** 8.79 * 9.03 * 5.91 6.11 -7.8 * 7.26 * 1.2 2.96 2.65 7.99 * 13.22 ** -1.53 -1.22

8.23 * -5.71 -2.04 5.77 -7.3 -11.31 ** 4.61 -2.19 -3.65 0.72 -3.46 -2.9 3.86 -5.2 16.77 ** 5.12 9.86 * -1.47 -1.45 -11.99 ** 4.35 -1.85 -2.85 3.52 8.17 10.99 ** 18.46 ** 6.45 3.85 2.47 4.48 -1.29 3.95 -11.15 ** 3.64 -4.55 -4.7 1.92 -0.16 12.06 ** -2.94 -1.45

7.2 -6.61 -2.97 4.75 -6.56 -7.49 8.5 * 6.72 9.46 * -0.24 -4.38 -3.82 2.87 -6.11 7.84 * -2.92 1.46 -9 * -0.66 -8.21 * 8.23 * 7.09 10.36 ** 1.54 -0.11 5.13 11.29 ** 3.43 0.42 -0.9 1.04 -4.54 4.78 -7.33 7.49 4.14 8.26 * -0.03 -3.45 8.37 * -6.14 -4.25

16.85 ** 1.8 5.76 14.19 ** 1.85 0.84 18.27 ** 16.33 ** 19.31 ** 8.74 * 4.23 4.83 12.13 ** 2.35 17.54 ** 5.82 10.6 * -0.81 8.28 * 0.06 17.98 ** 16.73 ** 20.3 ** 10.68 * 8.89 * 14.59 ** 21.31 ** 12.74 ** 9.47 * 8.02 10.13 * 4.05 14.22 ** 1.01 17.17 ** 13.52 ** 18.01 ** 8.98 * 5.24 18.12 ** 2.32 4.37

17.06 ** 3.61 4.33 * 15.75 ** -4.02 * -6.95 ** 7.91 ** 4.23 * 2.97 3.43 6.56 ** 0.13 8.02 ** -3.36 22.8 ** 12.37 ** 13.69 ** 4.97 * 6.15 ** -4.52 * 11.82 ** 8.61 ** 8.51 ** 9.53 ** 16.21 ** 13.92 ** 20.7 ** 11.63 ** 11.09 ** 11.37 ** 10.01 ** 6.88 ** 8.92 ** -5.28 ** 8.16 ** 2.9 3.81 * 4.91 * 9.05 ** 14.17 ** -0.2 -0.25

10.09 ** -4.06 -0.33 7.56 ** -4.03 -10.04 ** 4.61 * -0.63 -4.37 * 2.47 -1.78 -1.21 5.66 * -3.54 20.02 ** 8.07 ** 12.96 ** 1.33 2.02 -11.14 ** 4.34 * -0.26 -2.83 6.24 ** 11.23 ** 10.96 ** 18.56 ** 7.5 ** 5.68 * 4.3 6.34 ** 0.46 7.59 ** -9.49 ** 3.62 -3.03 -4.66 * 4.61 * 1.66 14.02 ** -1.19 -1.28

9.05 ** -4.96 * -1.27 6.55 ** -4.91 * -4.55 * 10.38 ** 8.55 ** 10.48 ** 1.5 -2.71 -2.14 4.67 * -4.45 * 9.68 ** -1.24 3.23 -7.4 ** 1.09 -5.72 * 10.09 ** 8.96 ** 12.27 ** 3.29 1.65 6.97 ** 12.33 ** 6.1 ** 2.16 0.82 2.8 -2.9 6.6 ** -3.97 9.33 ** 5.93 ** 10.14 ** 1.7 -1.74 10.21 ** -4.49 * -2.56

16.79 ** 1.78 5.74 * 14.11 ** 1.84 2.22 18.21 ** 16.26 ** 18.32 ** 8.71 ** 4.2 4.81 * 12.1 ** 2.33 17.47 ** 5.77 * 10.55 ** -0.83 8.26 ** 0.97 17.9 ** 16.69 ** 20.23 ** 10.62 ** 8.86 ** 14.56 ** 20.3 ** 13.63 ** 9.41 ** 7.97 ** 10.09 ** 4 14.17 ** 2.85 17.09 ** 13.45 ** 17.96 ** 8.92 ** 5.24 * 18.04 ** 2.29 4.35

Table 10.23: Estimates of heterosis, heterobeltiosis and standard heterosis (over PA-6201 and KRH-2) for Grain yield per plant at Warangal and Kunaram. CROSS

WARANGAL Mid

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

-8.54 8.26 78.69 ** 8.45 39.23 ** 18.19 76.49 ** 30.47 ** 25.71 * 9.64 38.69 ** 16.59 71.15 ** 20.62 * 5.34 23.26 ** 24.35 ** 35.11 ** 28.84 ** 1.3 66.18 ** 48.49 ** 1.6 18.08 * 10.82 55.24 ** 28.24 ** 22.64 ** -9.51 -1.9 41.49 ** 37.73 ** 15.04 12.02 1.32 9.65 3.24 -2.93 17.24 * 11.01 40.42 ** 30.12 **

Better

-12.2 -5.85 78.62 ** -0.37 22.14 * 8.4 73.73 ** 24.73 * 10.33 -4.62 24.17 * 11.85 57.72 ** 3.75 -7.67 19.38 * 5.28 6.74 23.57 ** -20.07 * 42.51 ** 30.65 ** -22.62 * 14.31 3.96 27.02 ** 16.8 20.3 * -18.76 * -2.39 22.57 * 11.07 13.32 -9.79 -11.07 -1.17 -19.85 * -3.45 12.89 -7.18 31.16 ** 29.08 **

KUNARAM

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-38.25 ** -17.6 * 15.67 -35.53 ** 4.76 -29.86 ** 16.06 -11.49 -28.61 ** -16.59 * 1.63 -27.62 ** 21.06 * -6.78 -13.75 11.51 -1.66 -0.29 15.43 -25.34 ** 33.13 ** 22.04 ** -27.72 ** 6.78 -2.88 18.65 * 9.11 12.38 -28.17 ** -13.7 8.37 -1.8 0.19 -20.24 * -21.37 ** -12.62 -29.13 ** -14.64 -0.19 -17.93 * 15.96 15.99

-44.86 ** -26.42 ** 3.28 -42.43 ** -6.46 -37.37 ** 3.63 -20.97 ** -36.25 ** -25.52 ** -9.25 -35.37 ** 8.09 -16.76 * -22.99 ** -0.43 -12.19 -10.97 3.07 -33.33 ** 18.87 * 8.97 -35.46 ** -4.66 -13.29 5.95 -2.58 0.34 -35.87 ** -22.94 ** -3.24 -12.32 -10.54 -28.78 ** -29.79 ** -21.98 ** -36.72 ** -23.78 ** -10.88 -26.72 ** 3.54 3.56

-2.35 11.45 81.9 ** 4.76 48.99 ** 7.96 86.13 ** 26.4 ** 21.28 * 10.19 46.38 ** 22.49 * 74.83 ** 17.03 * 8.28 22.29 ** 23.8 ** 21.69 ** 42.25 ** 6.34 77.92 ** 41.25 ** -3.4 16.04 * 12.25 54.45 ** 27.76 ** 28.12 ** -9.44 -3.93 43.02 ** 28.38 ** 18.16 * 6.52 1.14 4.47 -1.85 -4.3 5.97 10.75 41.08 ** 36 **

-4.74 -4.17 78.4 ** 4.33 35.4 ** 5.19 79.76 ** 13.27 18.06 -6.78 32.08 ** 19.69 58.32 ** -0.91 -8.52 16.88 * 4.13 0.43 28.19 ** -10.08 51.61 ** 29.1 ** -21.7 ** 13.02 1.88 25.56 ** 15.54 * 24.65 ** -21.67 ** -5.62 23.14 ** 8.39 9.25 -7.77 -11.74 -1.99 -18.66 * -4.47 -1.3 -7.94 30.91 ** 35.92 **

-42.31 ** -23.29 ** 6.87 -39.91 ** -4.61 -36.14 ** 11.15 -17.65 ** -32 ** -22.4 ** -5.46 -31.06 ** 12.42 -17.69 ** -19.67 ** 2.64 -8.56 -11.81 12.56 -21.04 ** 33.13 ** 13.36 * -31.25 ** -0.75 -10.54 10.26 1.46 9.46 -35.01 ** -21.69 ** 2.16 -10.07 -9.36 -23.48 ** -26.78 ** -18.68 ** -32.52 ** -20.47 ** -18.12 ** -23.62 ** 8.61 12.89 *

-47.47 ** -30.16 ** -2.7 -45.29 ** -13.15 * -41.86 ** 1.2 -25.02 ** -38.09 ** -29.35 ** -13.92 * -37.23 ** 2.36 -25.06 ** -26.86 ** -6.56 -16.75 ** -19.71 ** 2.49 -28.11 ** 21.21 ** 3.21 -37.4 ** -9.64 -18.55 ** 0.39 -7.63 -0.34 -40.83 ** -28.71 ** -6.98 -18.12 ** -17.48 ** -30.33 ** -33.33 ** -25.96 ** -38.56 ** -27.59 ** -25.45 ** -30.46 ** -1.11 2.78

Table 13.23: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

WARANGAL

KUNARAM

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

27.18 ** 63.42 ** 9.7 41.6 ** 57.7 ** 5.66 40.97 ** 61.94 ** 12.31 -0.47 38.4 ** 62.79 ** 72.83 ** 30.59 ** 75.98 ** 60.49 ** 43.45 ** 15.66 24.89 * 24.34 100 ** 101.34 ** 23.99 75.22 ** 27.36 ** 66.2 ** 81.7 ** 18.22 20.03 34.82 ** 26.48 * 83.02 ** 51.33 ** 16.74 39.17 ** 44.14 ** 41.93 ** 29.55 ** 59.5 ** 86.98 ** 47.18 ** 20.62 *

22.47 * 52.62 ** 1.61 21.3 * 48.68 ** -9.62 32.47 ** 56.61 ** -7.72 -7.01 33.42 ** 45.09 ** 71.94 ** 20.49 * 55.98 ** 30.07 ** 31.92 * 15.48 2.02 23.93 81.36 ** 77.78 ** 17.74 42.06 ** 5.96 59.08 ** 55.18 ** -5.14 12.34 14.64 23.13 72.36 ** 29.76 ** 9.76 33.47 ** 34.35 ** 27.52 * 10.2 39.5 ** 84.12 ** 32.38 ** 1.47

-6.97 33.58 ** -22.81 ** -7.86 27.52 ** -31.35 ** 0.63 18.97 * -29.9 ** -18.68 * 9.21 10.22 31.97 ** 8.27 9.71 13.85 -14.57 -37.24 ** -12.5 -32.64 ** 21.15 * 26.15 ** -36.01 ** 24.23 ** -13.27 -5.43 19.11 * -14.76 -20.99 * 0.34 -20.26 * 5.7 11.3 -32.69 ** -10.84 -4.66 -21.8 ** -3.63 14.18 12.91 1.61 -8.82

-16.93 * 19.27 ** -31.08 ** -17.73 * 13.87 -38.7 ** -10.15 6.22 -37.41 ** -27.39 ** -2.49 -1.59 17.84 * -3.33 -2.04 1.65 -23.72 ** -43.96 ** -21.87 ** -39.86 ** 8.18 12.64 -42.86 ** 10.93 -22.56 ** -15.56 * 6.35 -23.89 ** -29.45 ** -10.41 -28.8 ** -5.62 -0.62 -39.9 ** -20.39 ** -14.87 * -30.18 ** -13.95 1.95 0.82 -9.27 -18.59 *

31.95 ** 66.53 ** 0.04 27.76 ** 69.86 ** 1.79 45.67 ** 56.22 ** 6.5 -1.62 43.04 ** 75.36 ** 76.35 ** 39.64 ** 83.35 ** 79.66 ** 89.38 ** 10.32 28.9 ** 21.3 * 103.05 ** 55.64 ** 36.06 ** 71.34 ** 34.63 ** 68.79 ** 84.17 ** 20.09 * 19.37 * 27.73 ** 32.59 ** 108.16 ** 41.74 ** 17.26 44.36 ** 31.53 ** 15.16 22.74 ** 63.38 ** 82.02 ** 43.25 ** 16.39 *

22.5 * 56.79 ** -7.59 15.51 69.57 ** -5.39 36.55 ** 54.05 ** -5.66 -9.04 42.14 ** 55.86 ** 75.94 ** 29.24 ** 65.97 ** 44.91 ** 72.27 ** 2.55 9.35 9.69 82.12 ** 30.36 ** 29.25 * 36.18 ** 13.48 59.76 ** 55.73 ** -4.48 17.23 13.99 29.51 ** 98.73 ** 34.07 ** 15.28 43.22 ** 22.59 * 7.57 7.69 53.39 ** 70.64 ** 34.99 ** 2.21

-13.41 * 25.51 ** -34.68 ** -18.35 ** 19.86 ** -33.13 ** -3.48 12 -33.32 ** -24.28 ** 1.74 10.16 24.94 ** 7.34 0.52 16 * 3.2 -41.41 ** -22.96 ** -33.41 ** 12.61 * -5.22 -29.51 ** 13.36 * -18.78 ** -12.19 10.59 -20.66 ** -26.35 ** -8.75 -18.64 ** 24.85 ** -5.55 -27.58 ** -10.02 -10.87 -32.42 ** -10.35 9.79 7.2 -4.14 -15.11 *

-21.17 ** 14.27 * -40.53 ** -25.66 ** 9.13 -39.12 ** -12.13 * 1.97 -39.29 ** -31.06 ** -7.37 0.3 13.75 * -2.27 -8.48 5.61 -6.04 -46.66 ** -29.86 ** -39.37 ** 2.53 -13.71 * -35.82 ** 3.21 -26.05 ** -20.05 ** 0.69 -27.76 ** -32.95 ** -16.92 ** -25.92 ** 13.67 * -14.01 * -34.06 ** -18.08 ** -18.85 ** -38.47 ** -18.38 ** -0.04 -2.4 -12.72 * -22.71 **

Table 13.24: Estimates of heterosis, heterobeltiosis and standard heterosis (over KRH-2 and PA-6201) for Grain yield per plant at Kampasagar and Pooled. CROSS

IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

-28.83 ** 46.71 ** 12.26 12.53 0.64 8.84 10.19 1.22 14.51 23.37 ** 11.96 -4.16 34.88 ** -11.09 -17.04 ** 45.91 ** 87.52 ** 25.16 * 11.03 44.95 ** 39.43 ** 58.69 ** 89.35 ** 37.92 ** 6.28 44.56 ** 65.53 ** 7.99 -16.32 ** -4.48 76.55 ** 7.54 48.63 ** 6.62 28.55 ** 3.02 -3.29 16.12 -7.42 -1.48 30.57 ** 101.88 **

-42.39 ** 34.84 ** 9.58 -6.91 -4.07 7.18 -4.4 1.02 8.81 9.62 3.73 -10.23 34.15 ** -18.02 * -35.57 ** 27.6 ** 73.55 ** 8.42 10.24 39.27 ** 27.07 ** 50.54 ** 88.64 ** 28.92 ** 3.87 42.91 ** 57.53 ** 5 -33.43 ** -14.03 68.52 ** -9.37 44.89 ** 5.8 13.77 0.88 -6.03 5.32 -12.35 -5.68 28.29 ** 90.21 **

-6.88 60.98 ** 15.15 -6.85 -4 7.25 -4.34 1.08 8.88 9.69 3.8 -10.17 34.24 ** -17.97 * 4.14 52.34 ** 82.37 ** -3.05 0 35.12 ** 13.63 50.03 ** 69.97 ** 15.29 -7.12 27.8 ** 55.93 ** -6.1 7.59 2.64 77.08 ** -13.42 38.41 ** 2.64 8.68 0.54 -10.24 0.61 -16.27 -9.9 26.98 ** 81.69 **

-11.1 53.69 ** 9.94 -11.07 -8.35 2.39 -8.67 -3.5 3.95 4.72 -0.91 -14.24 28.16 ** -21.68 * -0.58 45.44 ** 74.11 ** -7.44 -4.53 29 ** 8.48 43.24 ** 62.27 ** 10.06 -11.33 22.01 * 48.87 ** -10.36 2.72 -2.01 69.06 ** -17.35 * 32.14 ** -2.01 3.75 -4.01 -14.3 -3.95 -20.06 * -13.98 21.23 * 73.46 **

-15.38 ** 22.6 ** 55.2 ** 8.58 29.76 ** 11.48 * 57.94 ** 19.06 ** 20.15 ** 13.93 ** 32.59 ** 11 59.95 ** 9.75 -1.83 29.63 ** 43.65 ** 27.52 ** 28.61 ** 16.45 ** 63.16 ** 48.88 ** 26.77 ** 22.29 ** 10.11 * 51.81 ** 38.76 ** 20.87 ** -12.04 ** -3.38 53.29 ** 25.76 ** 25.68 ** 8.39 8.97 5.84 -0.6 1.57 6.41 7.05 37.69 ** 51.48 **

-24.35 ** 8.25 52.89 ** -1.33 21.71 ** 8.7 52.92 ** 13.16 * 12.11 5.64 26.13 ** 6.17 50.85 ** 0.37 -1.89 27.73 ** 30.24 ** 4.88 22.23 ** 1.87 41.85 ** 39.64 ** 6.7 17.6 ** 3.18 30.58 ** 31.15 ** 17.95 ** -13.09 ** -5.86 40.43 ** 4.38 20.76 ** -4.23 -4.32 0.35 -15.55 ** -1.23 0.8 -7.02 31.57 ** 49.5 **

-31.62 ** 0.68 12.24 ** -29.72 ** -1.02 -22.57 ** 8.93 * -10.53 * -20.14 ** -11.94 ** -0.46 -24.38 ** 21.25 ** -13.77 ** -11.32 * 18.79 ** 17.58 ** -5.32 10.35 * -8.03 28.06 ** 26.07 ** -3.67 6.17 -6.85 17.89 ** 18.41 ** 6.49 -21.44 ** -12.45 ** 23.89 ** -7.91 6.54 -15.51 ** -15.59 ** -11.47 * -25.49 ** -12.86 ** -11.07 * -17.98 ** 16.07 ** 31.89 **

-37.44 ** -7.89 2.69 -35.7 ** -9.45 * -29.16 ** -0.35 -18.14 ** -26.94 ** -19.43 ** -8.93 * -30.81 ** 10.93 ** -21.11 ** -18.87 ** 8.68 * 7.57 -13.38 ** 0.96 -15.86 ** 17.16 ** 15.33 ** -11.87 ** -2.87 -14.78 ** 7.85 8.33 * -2.58 -28.13 ** -19.9 ** 13.34 ** -15.75 ** -2.53 -22.7 ** -22.78 ** -19.01 ** -31.84 ** -20.28 ** -18.64 ** -24.96 ** 6.19 20.67 **

Table 13.24: contd… CROSS

IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17 IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56

KAMPASAGAR

POOLED

Mid

Better

PA- 6201

KRH -2

Mid

Better

PA- 6201

KRH -2

40.26 ** -20.86 ** -28.74 ** -2.45 -7.81 -22.78 ** -7.23 -13.64 * -11.13 24.81 ** 41.4 ** 36.48 ** 1.73 9.38 -14 * 13.09 96.92 ** 27.02 * 36.29 ** 26.75 ** 24.63 * 23.28 * 122.44 ** 67.15 ** 35.06 ** 66.84 ** 93.19 ** 38.88 ** -7.04 24.31 ** 23.59 ** 31.35 ** 34.79 ** 48.75 ** 115.51 ** 25.71 ** 58.11 ** 49.04 ** 110.59 ** 94.01 ** 17.86 * 33.93 **

25.67 ** -23.52 ** -35.12 ** -26.27 ** -21.24 ** -32.12 ** -26.96 ** -23.2 ** -24.28 ** 0.32 17.85 * 14.83 * -9.8 -9.22 -38.05 ** -9.71 65.23 ** 21.88 21.67 * 9.92 22.67 5.71 99.17 ** 60.16 ** 23.91 * 51.44 ** 66.13 ** 28.01 ** -32.42 ** 0.34 4.94 24.31 * 21.9 * 30.61 ** 115.21 ** 9.12 43.42 ** 44.81 ** 95.79 ** 78.43 ** 2.6 25.12 *

103.12 ** -2.1 -16.95 -5.63 0.81 -13.12 -6.51 -1.69 -3.08 28.41 ** 50.85 ** 46.98 ** 15.46 16.2 0.14 7.8 73.63 ** -13.15 10.37 6.64 -9.76 5.36 79.46 ** 24.54 ** 5.76 32.34 ** 64.44 ** 8.14 9.22 19.8 * 10.27 -8.81 10.58 26.71 ** 58.31 ** 8.75 29.22 ** 12.61 67.12 ** 55.93 ** 1.56 5.69

93.92 ** -6.54 -20.71 * -9.9 -3.75 -17.06 * -10.74 -6.15 -7.48 22.59 ** 44.01 ** 40.32 ** 10.23 10.94 -4.4 2.91 65.76 ** -17.09 * 5.37 1.81 -13.85 0.58 71.33 ** 18.9 * 0.97 26.34 ** 56.99 ** 3.24 4.27 14.37 5.28 -12.94 5.57 20.97 * 51.13 ** 3.82 23.37 ** 7.51 59.55 ** 48.87 ** -3.04 0.91

34.03 ** 34.4 ** -7.69 21.87 ** 39.46 ** -6.27 26.12 ** 33.27 ** 1.59 7.05 40.88 ** 57.02 ** 48.98 ** 26.84 ** 41.05 ** 51.01 ** 76.64 ** 17.32 * 29.66 ** 24.18 ** 78.07 ** 60.51 ** 62.76 ** 71.62 ** 32.09 ** 67.24 ** 86.21 ** 24.72 ** 9.21 29.09 ** 27.54 ** 77.06 ** 43.25 ** 27.59 ** 63.12 ** 33.95 ** 38.07 ** 32.2 ** 75.49 ** 87.56 ** 36.8 ** 22.71 **

31.89 ** 30.42 ** -15.12 ** 1.48 34.54 ** -16.89 ** 11.13 * 26.85 ** -13.39 ** 4.52 33.97 ** 36.85 ** 42.92 ** 25.69 ** 14.82 ** 21.59 ** 56.62 ** 15.86 * 10.09 14.18 * 64.81 ** 37.88 ** 56.26 ** 44.24 ** 13.55 * 56.63 ** 58.87 ** 3.57 -6.13 9.66 * 20.24 ** 67.81 ** 28.88 ** 25.08 ** 61.05 ** 22.04 ** 34.56 ** 17.65 ** 60.02 ** 87.53 ** 23.72 ** 7.78

19.21 ** 21.29 ** -25.73 ** -11.21 * 17.72 ** -27.28 ** -2.76 10.99 * -24.22 ** -8.55 17.23 ** 19.74 ** 25.05 ** 9.98 * 3.79 13.08 ** 14.98 ** -32.54 ** -10.48 * -22.73 ** 9.93 * 9.01 * -3.59 20.25 ** -10.39 * 1.85 27.69 ** -11.02 * -15.15 ** 1.99 -11.73 ** 9.09 * 4.81 -15.35 ** 7.42 -3.5 -12.53 ** -1.93 26.29 ** 21.95 ** -0.55 -7.4

9.06 * 10.97 ** -32.05 ** -18.76 ** 7.7 -33.47 ** -11.04 ** 1.55 -30.67 ** -16.33 ** 7.25 9.55 * 14.41 ** 0.62 -5.05 3.45 5.19 -38.29 ** -18.1 ** -29.31 ** 0.57 -0.27 -11.8 ** 10.01 * -18.02 ** -6.82 16.82 ** -18.6 ** -22.37 ** -6.69 -19.24 ** -0.19 -4.12 -22.56 ** -1.72 -11.72 ** -19.97 ** -10.28 * 15.54 ** 11.56 ** -9.02 * -15.29 **

Table 14 a: ANOVA of variance for yield and yield components for stability in rice Source Days to 50% Flowering 109 33.896**

Plant Height (cm) 55.257**

Unproductive Tillers per Plant 0.299

Panicle Length (cm) 4.850**

220 22.359** 2 560.619**

133.770** 4.050 11836.830** 60.907**

1.051** 82.855**

3.477** 21.088** ** 173.170 1708.484**

218 17.421** 26.402* 3.528** ** ** 1 1121.238 23673.660 121.814**

0.300 165.709**

1.893 5.608 352.340** 3416.968**

109 29.421** 110 5.371** 329 1.022

0.296 0.302** 0.020

1.657 2.110** 0.526

d.f

Genotypes Environment + (Genotype X Environment) Environments Genotype X Environment Environments(linear) Genotype X Environment (linear) Pooled Deviation Pooled Error

32.752** 19.871** 4.493

Productive Tillers per Plant 3.332

3.528 3.496** 0.537

Flag Leaf Length (cm) 16.820**

6.265 4.905** 1.966

Table 14 b: ANOVA of variance for yield and yield components for stability in rice

Source

Genotypes Environment + (Genotype X Environment) Environments Genotype X Environment Environments(linear) Genotype X Environment (linear) Pooled Deviation Pooled Error

d.f

109

Flag Leaf Width (cm) 0.015*

Panicle Weight (g) 0.265**

Filled Grains per Panicle 38.013

Spikelet Fertility % 161.324

220 2

0.018** 0.994**

0.037 0.234*

23.422 102.595*

149.735 0.214** ** 1615.585 16.197**

9.872** 161.384**

218 1

0.009 1.998**

0.035 0.467**

22.695 205.191**

136.287 0.067** 3231.170** 32.395**

8.482** 322.769**

109 110 329

0.008 0.010** 0.004

0.016 0.054** 0.020

16.901 28.231 4.680

147.862 123.577** 51.031

Test Weight (g) 4.938**

0.098** 0.036 0.354

Grain Yield per Plant (g) 35.899**

15.213** 1.736** 1.062

Table 15: Environmental indices for yield and yield components in rice Characters

Locations Warangal

Kunaram

Kampasagar

Days to 50% flowering

Ij

1.866

-2.522

0.656

Plant height (cm)

Ij

-1.374

-9.589

10.963

Number of productive

Ij

0.218

0.623

-0.842

Spikelet fertility (%)

Ij

-0.285

1.076

-0.791

Number of filled

Ij

-0.256

3.954

-3.698

Test weight (g)

Ij

0.386

-0.380

-0.006

Grain yield/plant (g)

Ij

1.041

0.344

-1.385

tillers/plant

grains/panicle

Ij-environmental index

Table 16.1: Mean performance and stability parameters for Days to 50% flowering and Plant height (cm) in rice Parent/hybrid Days to 50% flowering Plant height(cm) 2 Mean bi S di Mean bi S2di

IR 58025A IR 68897A IR 79128A IR 79156A IR 80155A IR 80555A R7 R17 R19 R21 R24 R25 R27 R31 R32 R34 R35 R36 R53 R56 IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36 IR 68897A x R53

92.25 90.67 95.42 95.50 93.92 94.67 95.67 94.25 92.00 92.92 92.67 90.33 96.00 94.42 83.75 91.75 93.58 91.42 91.92 95.17 89.67 85.42 89.42 87.92 88.33 86.50 84.08 88.50 88.67 87.50 84.83 99.00 86.00 88.50 88.58 88.92 86.92 88.17 90.42 87.25 86.08 84.00 89.00 89.75 85.25 88.25 83.83

-0.24 3.20 2.93 2.09 3.09 1.47 1.56 0.73 2.91 4.06 4.45 -0.34 2.33 2.93 2.32 4.80 2.00 5.04 1.93 1.72 -0.86 1.28 -0.87 -0.75 -1.67 -1.45 1.92 1.08 -0.55* -0.15 -0.61 0.5 -0.77 0.37 -1.99 -0.6* -0.7 -0.68 -0.66* 0.53 0.29 2.88 0.25 1.02 0.78 -0.76 1.10

7.68** 15.96** 4.73* 9.94** 7.42** 0.60 -0.07 24.25** -0.55 -0.39 6.99** 0.86 -0.75 4.73* 2.40 7.74** 3.22* 1.85 17.74** 1.22 -0.53 1.72 -0.85 -0.39 42.75** 13.76** 0.21 11.34** -1.05 -0.86 -0.81 2.53 5.24* -1 22.75** -0.99 7.92** 6.77** -1.00 -0.91 -0.67 2.22 1.75 1.08 0.44 13.29** -0.15

87.90 85.93 93.12 92.27 95.10 78.73 90.47 94.93 87.83 78.17 91.23 82.43 90.97 89.67 95.93 89.47 89.87 91.68 92.63 101.17 91.64 93.73 89.27 82.87 88.65 84.88 90.57 92.55 90.37 87.83 93.47 94.97 96.23 95.90 89.80 91.80 89.00 85.10 90.68 89.40 95.10 88.73 88.20 91.73 93.20 94.53 89.63

0.14 0.60 1.03 1.03 1.15 0.36 0.87 0.96 1.45 0.45 0.7 0.53 0.83 0.76 0.05 1.12 0.82* 0.82 0.85 1.16 0.89 1.40 0.50 0.82 1.41 1.32 1.06 0.45 1.28 1.37 1.39 0.46 1.58 0.91 0.95 0.97 1.1 0.73 0.97 1.50 0.31 1.26 0.64 0.51 0.92 1.17 1.43

215.74** -3.51 19.19* -4.2 30.85** 1.18 2.62 -0.56 28.19** -4.06 67.13** -3.57 48.94** 54.3** 10.76 83.9** -4.51 3.94 36.07* 4.74 28.55** 35.21** 19.62* -4.44 -1.07 -2.43 5.73 -3.82 0.38 -4.21 77.55** -3.63 64.6** 26.31** 6.57 35.57** 18.75* -4.38 1.83 0.01 28.11** 4.92 -3.60 17.74* 1.78 37.09** 43.79**

Table 16.1contd… Parent / hybrid

IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17

Days to 50% flowering Mean bi S2di

Mean

92.25 87.92 89.25 83.08 84.25 87.42 84.25 84.58 86.75 88.83 85.33 86.75 94.67 89.58 91.58 90.33 88.50 87.25 84.50 87.42 87.67 89.67 88.00 88.17 86.58 86.08 91.17 85.67 94.83 88.17 88.75 88.67 83.08 87.33 84.50 83.83 86.67 89.83 88.08 82.83 91.92 87.25 87.50 87.67 89.33

99.50 101.67 96.83 90.50 87.90 90.67 88.43 89.70 89.99 90.80 93.43 88.67 91.87 92.27 102.17 102.40 95.03 97.00 89.12 92.87 91.03 93.93 95.13 90.12 89.76 91.52 91.40 94.67 98.67 92.48 89.35 88.70 82.93 85.05 88.93 87.20 91.58 91.33 88.73 89.27 89.00 93.77 98.25 92.53 90.07

4.80 1.24 -0.17 2.96 1.7* 2.23 1.29 2.09 1.83 -1.81 2.55 -0.94 2.61 -0.53 3.20* -0.86 -1.82 0.98 1.44 0.57* 0.90 -0.74 -0.71 1.29 -0.08 -0.29 4.57 1.66 1.83 1.14 0.10 0.40 0.97 1.32 0.79 2.08 1.14 -1.10* -0.08 0.85 4.37 -1.31 -1.08 -1.13* 0.43

7.74** -1.08 -0.52 6.80** -1.09 12.07** 4.36* -0.31 7.35** 6.24* 2.47 1.95 6.09* 2.56 -1.10 3.88* 16.39** 22.11** -0.80 -1.11 15.71** 3.41* 9.14** 2.42 -0.13 -0.45 7.62** 3.76* 0.61 0.78 1.33 -0.59 -0.66 4.07* 1.14 -0.97 0.78 -0.87 -0.13 3.65** 2.34 3.21* 11.34** -1.10 0.14

Plant height(cm) bi S2di

1.09 0.65 1.09 0.65 0.65* 1.28 1.44 1.30 1.61 1.13 1.05 1.37 1.10 1.55 1.23 1.24* 0.98 1.16 0.81 1.33 0.15 10.7 1.16 0.46 1.21 0.84 1.00 1.05 1.39 0.82 0.65 1.15 0.91 0.86* 0.74 1.28 0.92 0.65 0.83 1.16 1.14 1.82 1.65 1.94* 1.73

0.99 8.47 44.25** -1.13 -4.52 18.44* 8.62 -2.37 22.52* 10.56 -2.01 20.03* -4.21 84.77** 43.55** -4.46 3.66 22.37* -2.31 32.97** 0.28 1.83 13.73* -2.45 14.65* 79.72** 85.02** 94.47** 10.57 12.62 -0.12 0.30 0.33 -4.50 -1.90 2.56 -0.06 13.52* 1.54 -4.48 -0.43 34.00** -3.75 -4.49 -3.32

Table 16.1contd... Parent / hybrid

Days to 50% flowering Mean bi S2di

Plant height(cm) Mean bi S2di

IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 Checks ANNADA IR64 JAYA DRRH2 KRH2 PA6201

86.42 86.67 86.33 88.50 87.33 86.42 88.25 86.00 89.58 89.25 86.42 94.17

1.24 -1.63 1.34 -0.45 0.24 -0.79 3.34 -1.41 0.69 2.94 0.26 3.50

-1.08 9.67** 1.94 7.32** 0.46 6.28* 35.89** 2.85 1.24 14.01** 0.01 13.64**

85.93 84.63 90.70 87.13 84.44 87.67 84.88 87.67 90.83 88.53 87.70 92.40

1.61 0.30 0.80 0.92 0.34 0.88 0.39 1.10 0.88 0.39 1.42 1.19

8.39 5.60 -3.01 9.85 -1.20 -3.42 -3.02 2.53 -3.59 -3.54 3.87 7.94

85.17 91.00 86.33 86.25 89.50 86.83

2.11 1.16 2.20 2.09 2.98 2.27

-0.62 -1.02 -0.14 -0.31 18.98** 0.53

89.00 91.70 89.93 91.23 91.94 88.93

0.71 1.60 0.44 0.63 1.31 1.44

1.64 16.33* -3.54 -1.26 3.49 3.40

SE m CD (5%)

1.688 2.60

0.745

3.161 5.32

0.30

Table 16.2: Mean performance and stability parameters for Number of productive tillers per plant and rice Parent / hybrid Number of productive tillers per plant Mean bi S2di

1IR 58025A IR 68897A IR 79128A IR 79156A IR 80155A IR 80555A R7 R17 R19 R21 R24 R25 R27 R31 R32 R34 R35 R36 R53 R56 IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36

10.40 11.93 9.75 12.77 10.23 12.10 11.20 10.70 10.77 12.23 9.60 11.60 10.43 11.37 11.77 12.20 11.63 10.60 8.83 13.37 12.56 13.23 11.77 12.60 11.92 11.78 11.72 12.17 13.87 11.30 12.10 12.22 11.10 13.43 10.98 10.68 12.28 13.77 12.00 11.50 12.00 12.00 10.73 12.13 10.87 11.83

-1.44 3.30* 2.46 -1.31 1.03 2.32 0.62 1.15 1.22 0.42 0.63 -0.19 -2.58 2.57 2.9 2.85 1.25 -0.06 0.96 3.52 -3.26 -2.36* 1.68 3.14 -3.69 0.96 0.33 4.58* 0.27 -0.45 1.01 2.21 -0.22* 6.01 2.73 4.70 -0.07 0.99 1.69 1.74 0.62 0.24 -1.88 0.99 0.62 -0.91

-0.28 -0.52 5.30** 8.81** 3.33** 0.72 15.46** 10.67** 1.38 2.47* 6.25** -0.51 4.8** 6.99** 11.98** 0.28 6.45** 0.78 7.59** -0.34 4.85** -0.54 0.79 -0.48 9.14** 15.35** 0.63 -0.55 -0.47 0.47 2.07 5.84** -0.55 -0.24 -0.39 -0.42 3.90** -0.53 1.63 3.96** -0.25 -0.36 12.19** -0.36 -0.49 0.31

Parent / hybrid

IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17

Number of productive tillers per plant Mean bi S2di

10.97 12.17 13.27 11.03 12.10 12.23 11.53 12.03 11.53 11.67 12.73 11.73 10.30 12.23 10.97 11.98 10.63 11.97 10.57 12.83 11.60 13.07 12.67 11.97 11.22 12.83 12.93 11.17 11.07 10.07 11.90 9.28 11.03 11.73 12.73 13.23 12.37 11.13 11.03 10.97 14.53 11.90 11.83 10.17 11.80 11.43

-1.46 1.15 0.85 0.92 -0.34 3.63 -0.07 1.05 2.29 2.74 3.64 1.95 0.83 2.32 1.39 1.52 0.75 -1.23* 2.15 2.09 -0.63 2.60 -0.30 -0.19 0.57 2.60 0.85 -1.53 0.51 -1.41 0.82 2.17 2.11 -0.93 -1.18 0.61 -1.12 -0.98 -0.26 -0.97* 3.66 0.14 -0.05 -1.96* 1.77 1.00

0.34 -0.55 8.30** 1.88* 7.37** -0.44 1.45 8.38** 6.72** 6.08** 10.48** 0.37 -0.55 1.52 -0.34 -0.13 2.28** -0.56 8.18** 1.71* -0.44 -0.25 -0.41 4.21** 1.53 0.74 5.11** -0.1 -0.02 1.98* 4.51** -0.15 2.18* 5.04** 0.53 2.43* -0.39 -0.12 5.69** -0.55 8.42** 7.4** 0.53 -0.55 1.43 4.94**

Table 16.2contd... Parent / hybrid

Number of productive tillers per plant Mean bi S2di

IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 Checks ANNADA IR64 JAYA DRRH2 KRH2 PA6201

13.00 13.10 12.47 11.73 13.40 11.57 12.10 10.77 11.90 10.03 12.53 13.23

0.01 0.83 2.14 3.86 -0.94 2.19 0.29 -0.21 2.28 0.14 1.53 0.16

7.20** 0.27 -0.53 6.67** 9.49** 0.11 -0.51 0.8 -0.41 1.51 2.01* 2.72*

12.10 11.50 9.90 9.47 10.33 13.23

2.94 2.81 3.10 2.26 3.18 3.73

0.10 7.81** 2.69* 6.10** -0.03 9.82**

SE m CD (5%)

1.32 2.09

1.74

Table 16.3: Mean performance and stability parameters for Test weight (g) and Grain yield per plant (g) in rice Parent/hybrid Test weight (g) Grain yield per plant(g) 2 Mean bi S di Mean bi S2di

IR 58025A IR 68897A IR 79128A IR 79156A IR 80155A IR 80555A R7 R17 R19 R21 R24 R25 R27 R31 R32 R34 R35 R36 R53 R56 IR 58025A x R7 IR 58025A x R17 IR 58025A x R19 IR 58025A x R21 IR 58025A x R24 IR 58025A x R25 IR 58025A x R27 IR 58025A x R31 IR 58025A x R32 IR 58025A x R34 IR 58025A x R35 IR 58025A x R36 IR 58025A x R53 IR 58025A x R56 IR 68897A x R7 IR 68897A x R17 IR 68897A x R19 IR 68897A x R21 IR 68897A x R24 IR 68897A x R25 IR 68897A x R27 IR 68897A x R31 IR 68897A x R32 IR 68897A x R34 IR 68897A x R35 IR 68897A x R36

17.66 18.30 17.25 18.36 16.94 17.92 16.17 15.64 16.72 15.76 18.37 19.67 19.56 20.25 21.41 18.02 15.49 17.87 17.56 18.29 17.94 17.44 18.39 18.42 18.49 16.84 19.87 19.25 21.45 18.93 18.03 18.80 19.08 18.94 19.84 17.30 18.94 20.22 18.64 17.64 21.32 20.88 21.75 19.90 18.45 18.83

2.73 2.11 0.8 2.12 2.69 2.11 1.38 2.64 0.78 0.72 3.40 0.92 0.92 2.21 1.01 2.72 0.74 0.83 1.45 0.98 2.12 0.82 0.86 0.88 0.86 0.21 0.93 0.92 1.04 0.89 0.86 0.88 0.90 0.88 -0.32 0.82 0.89 0.95 0.87 -0.12 1.00 0.97 1.02 0.93 0.86 0.87

0.00 -0.21 -0.35 -0.22 -0.03 -0.21 -0.32 -0.03 -0.35 -0.35 0.25 -0.35 -0.35 -0.21 -0.35 -0.03 -0.35 -0.35 -0.32 -0.35 -0.21 -0.35 -0.35 -0.15 -0.35 -0.30 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.16 -0.35 -0.35 -0.35 -0.35 -0.23 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35

13.49 17.09 16.70 16.57 10.75 12.31 17.11 17.61 13.90 11.02 15.40 12.81 12.63 14.97 11.68 15.78 14.94 12.31 15.22 16.27 12.95 19.06 21.25 13.31 18.74 14.66 20.62 16.94 15.12 16.67 18.85 14.32 22.96 16.33 16.79 22.49 22.26 17.93 20.89 17.41 24.25 23.87 18.24 20.10 17.64 22.32

-0.71 2.68 1.82 -1.45 0.26 0.92 -4.28 0.13 -0.98 0.81 1.66 -1.18 1.27 0.01 -1.23 2.93 1.77 -0.31 0.51 2.65 -0.46 -3.02 2.99 -0.22 3.22 -0.66 4.39 1.45 -0.58 0.42 2.47 0.76 2.25 3.03* 1.05 0.17 -2.97 2.64* 4.10 -1.82* 4.92 1.30 -4.5 2.19 2.75 2.45

0.52 -0.42 -0.93 0.67 -0.81 -0.24 11.12** -0.41 0.03 0.04 0.52 -0.68 -1.06 -0.76 -0.9 0.21 -0.89 -0.63 -0.92 -0.72 -0.63 3.63* -0.78 -0.73 -0.79 0.11 2.43 -1.07 -0.72 -0.90 -0.83 -1.06 -1.03 -1.05 -1.06 -0.20 4.12* -1.06 3.07 -1.07 7.71** -0.99 5.80* -0.98 -0.78 -0.96

Table 16.3 contd… Parent / hybrid

IR 68897A x R53 IR 68897A x R56 IR 79128A x R7 IR 79128A x R17 IR 79128A x R19 IR 79128A x R21 IR 79128A x R24 IR 79128A x R25 IR 79128A x R27 IR 79128A x R31 IR 79128A x R32 IR 79128A x R34 IR 79128A x R35 IR 79128A x R36 IR 79128A x R53 IR 79128A x R56 IR 79156A x R7 IR 79156A x R17 IR 79156A x R19 IR 79156A x R21 IR 79156A x R24 IR 79156A x R25 IR 79156A x R27 IR 79156A x R31 IR 79156A x R32 IR 79156A x R34 IR 79156A x R35 IR 79156A x R36 IR 79156A x R53 IR 79156A x R56 IR 80155A x R7 IR 80155A x R17 IR 80155A x R19 IR 80155A x R21 IR 80155A x R24 IR 80155A x R25 IR 80155A x R27 IR 80155A x R31 IR 80155A x R32 IR 80155A x R34 IR 80155A x R35 IR 80155A x R36 IR 80155A x R53 IR 80155A x R56 IR 80555A x R7 IR 80555A x R17

Test weight (g) Mean bi S2di

19.22 20.12 18.68 18.28 17.88 19.51 18.23 18.08 20.36 19.97 21.00 19.25 17.66 18.07 19.51 18.87 20.21 17.61 18.30 19.75 17.62 17.69 20.46 20.12 20.48 18.81 18.03 18.14 19.40 17.71 20.33 18.31 19.13 17.16 18.74 17.48 20.40 20.20 20.81 19.15 18.84 19.83 20.82 19.66 18.93 18.69

0.90 0.93 0.88 0.85 0.83 0.91 0.86 0.38 0.94 0.93 1.02 0.89 0.82 0.84 0.91 0.89 0.96 0.82 0.86 0.95 0.82 -0.12 0.95 0.95 1.59 0.89 0.84 0.85 0.91 0.83 0.95 0.86 0.89 0.78 0.88 0.18 0.97 0.95 0.98 0.89 0.88 0.93 1.60 0.27 0.89 0.87

-0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.31 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.23 -0.35 -0.35 -0.32 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.29 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.32 -0.29 -0.35 -0.35

Grain yield per plant(g) Mean bi S2di

22.42 20.16 14.87 16.58 23.46 17.44 20.17 16.00 15.98 16.76 14.11 16.50 16.84 15.53 21.98 24.97 22.57 22.97 14.06 16.81 22.29 13.77 18.41 21.01 14.35 17.31 22.20 22.67 23.68 20.82 19.65 21.41 21.77 12.77 16.95 14.63 20.81 20.64 18.25 22.77 16.97 19.28 24.18 16.85 16.07 19.31

-0.26 4.22 -0.54 1.10 -1.68 3.25 0.01 0.61 0.06 1.39* 0.62 1.20* 3.36 1.59 2.28 -1.20 -4.81 5.8 1.45 2.13 5.06 0.64 3.12 4.44 0.08 -0.99 0.09 0.61 4.53 2.42 3.41 3.56 -3.02 0.04 0.65 -0.75 5.14 4.08 -5.66 3.12 1.00 -0.04 0.09 0.69 0.06 1.26

-0.13 3.24* 0.16 -0.91 1.10 -0.58 0.26 -1.07 -0.76 -1.07 -1.07 -1.07 -0.51 -1.03 -0.91 -0.56 8.96** 3.57* -0.33 -1.01 2.23 -0.99 0.6 1.43 -1.00 0.17 -0.49 -0.63 1.68 1.04 -0.62 5.38* 1.22 -0.89 -0.04 -0.99 1.82 4.69* 1.72 -0.97 -1.07 -0.48 -0.27 -0.99 -0.77 -0.87

Table 16.3 contd… Parent / hybrid Mean

Test weight (g) bi S2di

IR 80555A x R19 IR 80555A x R21 IR 80555A x R24 IR 80555A x R25 IR 80555A x R27 IR 80555A x R31 IR 80555A x R32 IR 80555A x R34 IR 80555A x R35 IR 80555A x R36 IR 80555A x R53 IR 80555A x R56 Checks ANNADA IR64 JAYA DRRH2 KRH2 PA6201

19.05 18.00 19.76 17.80 20.26 19.63 20.41 18.85 18.21 20.43 17.70 18.06

0.89 0.84 0.93 -0.43 0.94 0.91 0.95 0.87 0.84 0.97 0.84 0.83

-0.35 -0.35 -0.35 -0.16 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35 -0.35

19.00 20.15 19.60 19.69 17.31 18.53

0.33 0.95 0.92 0.93 0.80 2.13

-0.3 -0.35 -0.35 -0.35 -0.35 -0.21

SE m CD (5%)

0.13 1.63

0.34

Grain yield per plant(g) Mean bi S2di

16.71 20.65 19.84 16.03 20.34 18.27 16.56 18.57 23.91 23.09 18.83 17.53

0.22 4.29 2.70 -1.93* -2.07 1.58 -1.45 1.41* -0.45 0.14 2.65 1.4*

-0.67 29.69** -0.29 -1.07 -0.67 -1.05 3.54* -1.07 -0.78 -0.87 -0.44 -1.07

13.93 15.50 19.33 11.66 20.69 18.93

1.79 -0.65 2.11 -1.19 3.49 2.74

-0.48 -0.15 0.53 0.04 2.25 1.93

0.91 2.87

0.73

CHAPTER V SUMMARY AND CONCLUSIONS The research work entitled “Genetic analysis of yield and yield contributing characters in hybrid rice (Oryza sativa L.)” was carried out at the Regional Agricultural Research Station, Warangal with an aim to develop more heterotic hybrids of wider compatibility with good grain quality .The main objectives of the investigation were to study variability, heritability, genetic advance, study the combining ability of parents and crosses, estimate the magnitude of heterosis , assess the stability and grain quality of experimental hybrids for yield and yield components. Based on the pedigree records 20 parents (14 identified restorer lines and six CMS lines) were selected which were having ideal characters of restorer and CMS lines, in addition to yield. The selected 14 restorer lines were crossed with six male sterile lines in line x tester mating design during kharif, 2009. The resulting 84 F1 hybrids along with 20 parents and six checks including three hybrid checks (DRRH-2, PA 6201 and KRH 2) and three varietal checks (Annada, IR 64 and Jaya) were sown during rabi, 2009-2010 at three different locations situated at three different agro-climatic regions of Andhra Pradesh viz., Agricultural Research Station, Kunaram for Northern Telangana Zone, Agricultural Research Station, Warangal for Central Telangana Zone and Regional Agricultural Research Station, Kampasagar for Southern Telangana Zone for studying combining ability, heterosis and stability.

The genotypic coefficient of variance was high for the characters viz., number of unproductive tillers per plant, (30.12), flag leaf length (32.55), panicle weight (25.89) and grain yield per plant (46.52). For the characters plant height (11.38), number of productive tillers per plant (19.57), panicle length 911.9), flag leaf width (11.41), number of grains per panicle (10.48) and test weight (16.28) recorded moderate genotypic coefficient of variation values. And the characters days to 50% flowering (9.28) and spikelet fertility % (9.13) recorded low genotypic coefficient of variation and similar results were observerd in case of phenotypic coefficient of variation. Most of the characters exhibited moderate heritability and low genetic advance.

The pooled analysis of variance for combining ability over three locations revealed significant differences for locations for all the characters. Significant differences were also recorded for replications x locations for days to 50% flowering, number of unproductive tillers per plant, panicle length, flat leaf length, panicle weight and number of filled grains per panicle. Treatments and parents were significant for all the twelve characters. The significant differences among parents and hybrids were observed for all twelve characters. Comparison of parents vs. hybrids found to be significant for all twelve characters. Interaction effects of (parents vs. Crosses) x locations were significant for all the characters except panicle length and panicle weight. Significant variances for parents x locations interactions and crosses x locations were recorded for all the character under study except test weight. The gca effects of the parents in pooled analysis revealed that lines viz., IR-79156A and IR-80155A and testers viz., R-21,R-27,R-53 and R-56 were found to be promising general combiners for grain yield per plant and other traits. Based on significant sca effects in pooled analysis, per se performance, and heterosis for yield and its attributes six cross combinations viz., IR 79128A x R56, IR 80155A x R53, IR 68897A x R31, IR 79156A x R53, IR 79128A x R19, and IR-79156A X R-36 have been identified as promising based. Among the twelve characters analysed for stability, the GE interactions were significant for five characters viz., days to 50% flowering, plant height, number of productive tillers per plant, test weight and grain yield per plant implying differential behaviour of genotypes under three locations for these characters. Partitioning of sum of squares into that of varieties, Environments + (Genotypes X Environments) and pooled error revealed that mean squares due to Environments + (Genotypes X Environments) were significant for all the five characters viz., days to 50% flowering, plant height, number of productive tillers per plant, test weight and grain yield per plant re-emphasizing the existence of G X E interactions for these traits. Sum of the squares due to E + (G X E) was further partitioned into that of Environment (Linear), Genotype X Environment (Linear) and pooled deviation.

Significant variation due to environment (Linear) for all the characters under study revealing the linear contribution of environmental effects and additive environmental variance on these characters. Environmental indices revealed Warangal was found to be most suitable location for the characters viz., plant height, number of productive tillers per plant, test weight and grain yield per plant. Kunaram was found to be most favourable for days to 50% flowering, plant height, number of productive tillers per plant and grain yield per plant. Kampasagar location was found to be favourable for only plant height and days to 50% flowering. From the present studies of stability, among the stable parents, none could register significantly higher grain yield per plant than the best check KRH-2 (20.69g). However lines IR-80555A (12.31g) and IR-80155A (11.23g) exhibited average stability, lines IR-68897A (17.09g) and IR-79128A (15.84g) exhibited less than average stability and the lines IR-79156A (15.07g) and IR-58025A (13.49g) exhibited more than average stability. Among testers R-17(17.61g), R-21(11.02g) and R-53(16.31g) exhibited average stability, testers R-24 (15.40g), R-27(12.63g),R-34(15.78g), R-35(14.94g) and R56(16.27g) exhibited less than average stability and the testers R-19 (13.90g),R-25 (12.81g), R-32(11.68g) and R-36 (13.51g) exhibited more than average stability. Among hybrids, only one hybrid IR-79156A x R-36 (22.67g) possessed significantly higher grain yield than the best check KRH-2 (20.69g) and recorded nearer to unit bi value, hence it is considered to be ideal and highly adaptable hybrid having average stability and expected to perform well in all the environments. Eleven hybrids recorded significantly higher or on par yields and regression coefficient of more than one and hence are adaptable for favourable environments. The hybrids, IR-79128A x R-56 (24.97g), IR-80555A x R-35 (23.91g), IR-79128A x R-17 (23.46g), IR-68897A x R-53 (22.42g) and IR-80155A x R-19 (21.77g) recorded bi values of less than one and considered to be adaptable to poor environments. Grain quality characteristics of six CMS lines and fourteen restorer lines and their respective 84 hybrids were analyzed for eight physio-checimal and cooking quality traits and compared with the national varietal checks and hybrid checks along with MTU-1010 and BPT-5204. Hulling percentage of hybrids ranged from 64.29 % to 87.48 % with a

general mean of 77.52 %. Milling percentage of hybrids ranged from 45.99 % to 78.50 %. Most of the hybrids exhibited high milling percentage and only few hybrids recorded high head rice recovery i.e., IR-79156A X

R-53 (55.38 %), IR-80155A X R-53 (54.85

%) and IR-80555A X R-36 (52.69 %) when compared with the best check Jaya (53.63 %). Most of the hybrids were classified as long slender and only eleven hybrids were categorized as long bold. Almost all the hybrids recorded high kernel elongation after cooking, which implies that most of the hybrids would be suitable for biryani preparation. Sixty-six hybrids recorded intermediate alkali spreading values and intermediate gelatinization temperature and rest of the ten hybrids recorded low intermediate alkali value. Pertaining to the character aroma, only eight hybrids were recorded as nonaromatic and remaining as mildly scented. Among the parents, IR-80155A, R- 17, R-19, R-21,R-24, R27 and R-34 were non-aromatic.

Conclusion and future strategy: Based on the present study, it can be emphasized that IR 68897A x R56, IR 79156A x R53, IR 80555A x R19,IR 80155A x R53 and IR 80555A x R36 are with the desirable sca effects, heterosis, per se performance for grain yield and with good grain quality. These hybrids may be further tested over locations, seasons and years and recommended for commercial release.

LITERATURE CITED Ahmed, M.I., Vijayakumar, C.H.M., Viraktamath, B.C., Ramesha, M.S and Singh, S. 1998. Yield stability in rice hybrids. International Rice Research Notes. 23(1): 12.

Alam, M.F., Khan, M.R., Nuruzzaman, M., Parvez, S., Swaraz, A.M., Alam, I and Ahsam, N. 2004. Genetic basis of heterosis and inbreeding depression in rice (Oryza sativa L.). Journal of Zhejiang University Science. 5(4): 406-411.

Allard, R.W and Bradshaw, A.P. 1964. Implications of genotype environment interactions in applied plant breeding. Crop Science. 4: 503-507.

Allard, R.W. 1960. Principles of Plant Breeding. John Wiley and Sons Inc., New York. 485.

Amudha, K., Thiyagarajan, K., Robin, S., Prince, S.J.K., Poornima, R and Suji, K.K. 2010. Heterosis under aerobic condition in hybrid rice. Electric Journal of Plant Breeding. 1(4): 769-775.

Anbanandan, V., Saravanan, K and Sahesan, T. 2009. Variability, heritability and genetic advance in rice. International Journal of Plant Sciences. 4(1): 61-63.

Anjuchaudhry, Sharma, P., Singh, H., Pradhan, S.K and Pandey, M.P. 2007. Study on heterosis for yield and physiological characters in rice hybrids. Oryza. 44(1): 7-13.

Annadurai, A and Nadarajan, N. 2001a. Heterosis for yield and its component traits in rice. Madras Agricultural Journal. 88(1-3): 184-186. Annadurai, A and Nadarajan, N. 2001b. Combining ability for yield component and physiological traits in hybrid rice. Madras Agricultural Journal. 88(4-6): 300-303.

Annadurai, A. 2002. Heterosis for physiological traits in hybrid rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding. 64(4): 331-333.

Awasthi, L.P and Pandey, V.K. 2000. Genetic variation in morphological traits of aromatic rice. Crop Research, Hisar. 19(2): 361-363.

Babu, G.K., Satyanarayana, P.V., Rao, C.P and Rao, V.S. 2010. Combining ability for yield and quality traits in hybrid rice (Oryza sativa L.). The Andhra Agricultural Journal. 57(2): 143147.

Babu, M.S., Satyanarayana, P.V., Madhuri, J and Kumar, R.V. 2000. Combining ability analysis for identifying elite parents for heterotic rice hybrids. Oryza. 37(1): 19-22.

Babu, S., Anbumalarmathi, J., Sheeba, A., Yogameenakshi, P and Rangasamy, P. 2005. Stability in performance of salt tolerant rice hybrids. Oryza. 42(3): 222-224.

Babu, S., Sheeba, A., Yogameenakshi, P., Anbumalarmathi, J and Rangasamy, P. 2007. Quality studies on rice (Oryza sativa L.) hybrids developed for salt affected areas. Crop Improvement. 44(1): 68-70.

Bagheri, N and Jelodan, N.B. 2010. Heterosis and combining ability analysis for yield and related-yield traits in hybrid rice. International Journal of Biology. 2(2): 222-231.

Banumathy, S and Prasad, M.N. 1991. Studies of combining ability for development of new hybrids in rice. Oryza. 28: 439-442.

Banumathy, S., Thiyagarajan, K and Vaidyanathan, P. 2003. Combining ability for yield and yield components in three line hybrid rice. Oryza. 40(3&4): 75-77. Bhandarkar, S., Rastogi, N.K and Arvindkumar. 2005. Study of heterosis in rice (Oryza sativa L.). Oryza. 42(3): 218-219.

Bharadwaj, C., Mishra, R., Satyavathi, C.T., Rao, S.K and Kumar, K.S. 2007. Genetic variability, heritability and genetic advance in some new plant type based crosses of rice (Oryza sativa L.). Indian Journal of Agricultural Research. 41(3): 189-194.

Bhonsle S. J and Krishnan, S. 2010. Grain quality evaluation and organoleptic analysis for aromatic rice varieties of Goa, India. Journal of Agricultural Sciences. 2(3): 99-107.

Binodh, A.K., Kalayarasi, R., Thiyagarajan, K and Manonmani, S. 2006. Physio- chemical and cooking quality characteristics of promising varieties and hybrids in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding. 66(2): 107-112.

Bisne, R and Motiramani, N.K. 2005. Study on gene action and combining ability in rice. Oryza. 42(2): 153-155.

Bisne, R and Motiramani, N. K. 2006. Estimation of heritability, genetic advance and variability for yield contributing characters in rice (Oryza sativa L.). Annals of Agricultural Research 27(4): 397-400.

Blum, A. 1980. Genetic improvement of drought adaptation. In N.C. Turner and P.J. Kramer (eds.) - Adaptation of plants to water and high temperature stress. John Wiley and Sons, New York. 450-452.

Bobby, T.P.M and Nadarajan, N. 1994. Heterosis and combining ability studies in rice hybrids involving CMS lines. Oryza. 31: 5-8.

Bull, J.K., Cooper, M., Delacy, I.H., Bassford, K.E and Woodruff, D.R. 1992. Utility of repeated checks for hierarchical classification of data from plant breeding trials. Field Crop Research. 30: 79-95. *Burton, G.W. 1952. Quantitative inheritance in grasses. Proceedings of 6th International Grass Congress held at Pennsylvania State College, Pa, US. 1: 277-283. Chakraborthy, S., Hazarika, M.H and Hazarika, G.N. 1994. Combining ability analysis in rice. Oryza. 31: 281-283.

Chandra, B.S., Reddy, T.D and Kumar, S.S. 2009. Variability parameters for yield, its components and quality traits in rice (Oryza sativa L.). Crop Research. (1, 2&3): 144-146.

Chikkalingaiah., Shridhara, S., Lingaraju, S and Radhakrishna, R.M. 1999. Genetic variability of plant and quality traits in promising genotypes of scented rice (Oryza sativa L.). Mysore Journal of Agricultural Sciences. 33(4): 338-431.

Dalvi, V.V and Patel, D.V. 2009. Combining ability analysis for yield in hybrid rice. Oryza. 46: 97-102.

Das, S., Mandal, N.P., Sharma, S.G and Sinha, P.K. 2005. Grain quality evaluation of improved upland rice cultures. Oryza. 42(3): 206-209.

Deoraj., Singh, D.N., Madhuviarya and Singh, P. 2007. Heterosis in rainfed transplanted rice. Oryza. 44(3): 264-267.

Deshpande, V.N and Dalvi, V.V. 2006. Genotype X Environment interactions in hybrid rice. Oryza. 43(4): 318-319.

Deshpande, V.N., Dalvi, V.V., Awadoot, G.S and Desai, S.B. 2003. Stability analysis in hybrid rice. Journal of Maharashtra Agricultural Universities. 28(1): 87-88.

Deshpande, V.N., Waghmode, B.D., Rewale, A.P and Vanave, P.B. 2002. Stability performance of different rice hybrids at different locations in Maharashtra state. Crop Improvement. 29(2): 203-207.

Devaraj, M and Nadarajan, N. 1996. Evaluation of rice hybrids. Oryza. 33: 230-235.

Devasia, J and Rangasamy, R. 1999. Heterosis in rice hybrids. Madras Agricultural Journal. 86(7): 467-469.

Dhaliwal, T.S and Sharma, H.L. 1990. Combining ability and maternal effects for agronomic and grain characters in rice. Oryza. 27: 122-128.

Dhanakodi, C.V and Subramanian, M. 1994. Genetic analysis of yield components in short duration rice (Oryza sativa L.) varieties. Madras Agricultural Journal. 81(7): 370-373.

Dhillon, B.S. 1975. The application of partial-diallel crosses in plant breeding: A review. Crop Improvement. 2: 1-8.

Eberhart, S.A and Russel, W.A. 1966. Stability parameters for comparing varieties. Crop Science. 6: 36-40.

Eradasappa, E., Ganapathy, K.N., Satish, R.G., Shanthala, J and Nadarajan, N. 2007. Heterosis studies for yield and yield components using CMS lines in rice (Oryza sativa L.). Crop Research. 34(1, 2 & 3): 152-155.

Faiz, F.A., Sabar, M., Awan, T.H., Ijaz, M and Manzoor, Z. 2006. Heterosis and combining ability analysis in basmati rice hybrids. Journal of Animal and Plant Sciences. 16(1-2): 5659.

Fisher, R.A and Yates, F. 1967. Statistical tables for biological, agricultural and medical research, Longman Group Limited, London.

Ganesan, K., Wilfred Manuel, W., Vivekanandan, P and Armugam Pillai. 1997. Combining ability, heterosis and inbreeding depression for quantitative traits in rice. Oryza. 34: 13-18.

Ganesan, K., Wilfred Manuel, W., Vivekanandan, P and Pillai, M.A. 1997. Combining ability, heterosis and inbreeding depression for quantitative traits in rice. Oryza. 34: 13-18.

Ganesan, K.N and Rangaswamy, M. 1998a. Combining ability studies in rice hybrids involving wild abortive (WA) and Oryza perennis sources of CMS lines. Oryza. 35(2): 113-116.

Ganesh, K.N and Rangaswamy, M. 1997. Heterosis in rice hybrids bred with wild abortive source of CMS lines. Crop Research. 13(3): 603-607.

Ghosh, A. 1993. Combining ability for yield and its related traits in upland rice. Oryza. 30: 275279.

Ghosh, A. 2002. Studies on heterosis in upland rice. Oryza. 39: 5-8.

Gnanasekaran, M., Vivekanandan, P and Muthuramu, S. 2006. Combining ability and heterosis for yield and grain quality in two line rice (Oryza sativa L.) hybrids. Indian Journal of Genetics and Plant Breeding. 66(1): 6-9.

Gopinath, M and Reddy, P.R. 2005. Stability analysis for agronomic traits in CMS lines of rice (Oryza sativa L.). Crop Improvement. 42(4): 253-255.

Hariprasanna, K., Zaman, F.U., Singh, A.K and Tomar, S.M.S. 2006. Analysis of combining ability status among parents and hybrids in rice (Oryza sativa L.). Indian Journal of Genetics. 66(1): 28-30.

Hasib, K.M. 2005. Genetic variability, interrelations and path analysis for panicle characters in scented rice. Crop Research. 30(1): 37-39.

Hegde, S and Vidyachandra, B. 1998. Yield stability analysis of rice hybrids.

International Rice

Research Notes. 23(2): 14.

Hossain, M.S., Singh, A.K and Zaman, F.U. 2009. Milling properties, grain dimension and appearance of newly identified some new plant type based inter sub specific rice (indica/japonica) hybrids. International Journal of Agriculture, Environment and Biotechnology. 2(2): 151-155.

Jaiswal, H.K., Srivastava, A.K and Dey, A. 2007. Variability and association studies in indigenous aromatic rice (Oryza sativa L.). Oryza. 44(4): 351-353.

Jayamani, P., Thiyagarajan, K., Rangaswamy, M and Sreerangaswamy, S.R. 1997. Utilization of anther derived lines in hybrid rice. Oryza. 34: 1-3.

Jayasudha, S and Sharma, D. 2010. Combining ability and gene action analysis for yield and its components in rice (Oryza sativa L.). Journal of Rice Research. 2(2): 105-111.

Jayasudha, S and Sharma, D. 2010. Genetic parameters of variability. Correlation and pathcoefficient for grain yield and physiological traits in rice (Oryza sativa L.) under shallow lowland situation. Electronic Journal of Plant Breeding. 1(5): 1332-1338.

Johnson, H.W., Robinson, H.F and Comstock, R.E. 1955. Estimates of genetic and environmental variability in soybean. Agronomy Journal. 47: 314-318.

Jones, J.W. 1926. Hybrid vigour in rice. Journal of American Society for Agronomy.18: 423428.

Joshi, B., Singh, H and Pandey, M.P. 2004. Study of heterosis and inbreeding depression in rice (Oryza sativa L.). Oryza. 41(3&4): 64-67.

Joshi, B.K. 2001. Heterosis for yield and yield components in rice. Nepal Agricultural

Research

Journal. (4&5): 6-12.

Karad, S.R and Pol, K.M. 2008. Character association, genetic variability and path coefficient analysis in rice (Oryza sativa L.). International Journal of Agricultural Sciences. 4 (2): 663-666.

Kaw, R.N., Aquino, R.C., Moon, H.P., Yae, J.D and Haw, N. 1999. Variability and inter -relations in rice under cold stress environments. Oryza. 36 (1): 1-4.

Kempthorne, O. 1957. An introduction to genetic statistics. John Wiley and Sons, Inc: New York.

Khan, A. S., Imran, M and Ashfaq, M. 2009. Estimation of genetic variability and correlation for grain yield components in rice (Oryza sativa L.). American Eurasian Journal of Agriculture and Environmental Sciences. 6 (5): 585-590.

Kishore, N.S., Babu, V.R., Ansari, N.A and Prasad, A.R. 2008. Genetic variability, heritability and genetic advance in rice (Oryza sativa L.) genotypes of different eco-geographical region. Research on Crops. 9(1): 147-150.

Krishna, L., Raju, Ch.D and Raju, Ch.S. 2008. Genetic variability and correlation in yield and grain quality characters of rice germplasm. The Andhra Agriculture Journal. 55 (3): 276279.

Kshirasagar, R.M., Vashi, P.S., Bagade, A.B., Dalvi, V.V and Chauhan, D. 2005. Combining ability analysis for yield and its components in rice. Madras Agricultural Journal. 92(1-3): 154-157.

Kumar, A., Singh, N.K and Sharma, V.K. 2006. Combining ability analysis for identifying elite parents for heterotic rice hybrids. Oryza. 43(2): 82-86.

Kumar, P and Ramesh, B. 2008. Genetic variability and character association in rice. Progressive Agriculture. 8(2): 260-262.

Latha, R., Senthilvel, S and Thiyagarajan, K. 2005. Grain and cooking quality characteristics of two line hybrids in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding. 65(1): 45-46.

Lavanya, C and Vijaykumar, R. 1999. Heterosis and combining ability studies in hybrid rice. Madras Agricultural Journal. 86(10-12): 630-631.

Lavanya, C. 2000. Combining ability for yield and its components in hybrid rice. Oryza. 37(1): 11-14.

Lavanya, C., Vijayakumar, R and Reddy, S. 2005. Choice of rice hybrids for varying environments. Oryza. 42(1): 1-4.

Lavanya, C., Vijaykumar, R and Sitadevi, B. 1997. Evaluation of rice hybrids in varying environments. International Rice Research Notes. 22(2): 15-16.

Leenakumary, S. 1994. Studies on cytoplasmic male sterility, fertility restoration and its inheritance and heterosis in rice (Oryza sativa L.). Ph. D. Thesis. University of Agricultural Sciences, Bangalore, India.

Liang, G.H., Reddy, C.R and Dayton, A.D. 1971. Heterosis, inbreeding depression and heritability estimates in a systematic series of grain sorghum genotypes. Crop Science. 12: 400-411.

Lingaraju, S., Vidyanchandra, B., Sridhara, S and Chikkalingaiah. 1999. Heterosis breeding in rice (Oryza sativa L.) for higher yields. Mysore Journal of Agricultural Science. 33: 328332. Lingaraju, S. 1997. Combining ability studies in hybrid rice (Oryza sativa L.). M. Sc. (Ag.) Thesis. University of Agricultural Sciences, Bangalore, India.

Little, R.R., Hilder, G.B and Dawson, E.H. 1958. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chemistry. 35: 111-126.

Lohithaswa, H.C., Bhushana, H.O., Basavarajaiah, D., Prasanna, H.C and Kulkarni, R.S. 1999. Stability analysis of rice (Oryza sativa L.) hybrids. Karnataka Journal of Agricultural Sciences. 12(1-4): 48-54.

Lokaprakash, R., Shivashankar, G., Mahadevappa, M., Shankaregowda, B.T and Kulkarni, R.S. 1991, Combining ability for yield and its components in rice. Oryza. 28: 319-322.

Lokaprakash, R., Shivashankar, G., Mahadevappa, M., Shankaregowda, B.T and Kulkarni, R.S. 1992. Heterosis in rice. Oryza. 29: 293-297.

*Lush, J.L. 1949. Inter-size correlation and regression of off-spring on dams as a method of estimating heritability of characters. Proceedings of American Society of Animal Production. 33: 293-301.

Madhavilatha, L., Sekhar, M.R., Suneetha, Y and Srinivas, T. 2005. Genetic variability, correlation and path analysis for yield and quality traits in rice (Oryza sativa L.). Research on Crops. 6(3): 527-537.

Malini, N., Sundaram, T., Ramakrishnan, S.H and Saravanan, S. 2006. Genetic interpretation of yield related traits in rice (Oryza sativa L.). Research Journal of Agriculture and Biological Sciences. 2(4): 153-155.

Manonmani, S and Ranganathan, T.B. 1998. Genetic analysis in early lines of indica rice. Oryza. 35(4): 358-360.

Manonmani, S., Rangasamy, S.R.S and Ranganathan, B. 1996. Variability and heritability in early lines of Indian rice. Madras Agricultural Journal. 83(1): 75-76.

Manuel, W.W and Prasad, M.N. 1992. Combining ability and heterosis in rice

(Oryza

sativa L.). Oryza. 29: 15-18.

Manuel, W.W and Rangaswamy, M. 1994. Stability performance of hybrid rice. Oryza. 31: 16-21.

Manuel, W.W and Rangaswamy, M. 1995. Combining ability for grain yield and its components in hybrid rice. Madras Agricultural Journal. 82(5): 329-333.

Meenakshi, T and Devarathinam, A.A. 1999. Combining ability for yield and physiological characters in semi dry rice. Oryza. 36(2): 111-113.

Mehrajuddin and Salgotra, R.K. 2009. Heterobeltiosis for important yield attributing traits in wild-abortive CMS bred basmati rice. International Rice Research Notes. 1-5.

Melchinger, A.E and Gumber, R.K. 1998. Over view of heterosis and heterotic groups in agronomic crops. Crop Science Society of America. 25: 29-44.

Mishra, D., Mishra, N.S., Das, G.B and Patra, G.J. 1996. Genetic variability, inter-relationship and performance of some scented rice genotypes. Environment and Ecology. 14(1): 150153.

Mishra, M and Pandey, M.P. 1998. Heterosis breeding in rice for irrigated sub-humid tropics in North India. Oryza. 35(1): 8-14.

Munisonnappa, S., Vidyachandra, B and Kulkarni, R.S. 2004. Stability analysis in newly developed rice hybrids across dates of sowing during kharif. Karnataka Journal of Agricultural Sciences. 17(4): 696-700.

Murthy, N., Kulkarni, R.S and Kumar, M.U. 1999. Genetic variability, heritability and genetic advance for morpho-physiological traits in rice. Oryza. 36(2): 159-160.

Muthuramu, S., Jebaraj, S., Kumari, R.U and Gnanashekaran, M. 2010. Estimation of combining ability and heterosis for drought tolerance in different locations in rice (Oryza sativa L.). Electronic Journal of Plant Breeding. 1(5): 1279-1285.

Nagaraju, M., Mohanthy, K.K., Choudhary, D and Gangadharan, C. 1991. A simple technique to detect scent in rice. Oryza. 28: 108-110.

Nandan, R., Swetha and Singh, S.K. 2010. Character association and path analysis in rice (Oryza sativa L.) genotypes. World Journal of Agriculture Sciences. 6(2): 206-210.

Narasimman, R., Thirugnanakumar, S., Eswarn, R., Praveen, C., Sampath Kumar and Anandan, A. 2007. Combining ability and heterosis for grain yield and its component characters in rice (Oryza sativa L.). Crop Improvement. 34(1): 16-18.

Nath, N and Talukdar, P. 1997. Genetic variability and correlation studies in segregating populations of indigenous Scented X High yielding non-scented crosses of rice. Oryza. 34(2): 91-93.

Nayak, A.R., Chaudhary, D and Reddy, J.N. 2002. Genetic variability, heritability and genetic advance in scented rice. Indian Agriculturist. 46(1&2): 45-47.

Nayudu, K.S.R., Varline, Y.A and Vennila, S. 2007. Studies on variability, heritability and genetic advance for certain yield compounds in rice. Crop Improvement. 34(2): 142-144.

Pandey, M.P., Rongbai, L., Gupta, S., Singh, P.N and Singh, J.P. 2001. Inter and intra-subspecific heterosis from two line hybrids using thermo-sensitive genetic male sterility system in rice. Oryza. 38(3&4): 102-105. Pandey, M.P., Singh, J.P and Singh, H. 1995. Heterosis breeding for grain yield and other agronomic characters in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding. 55(4): 438-445.

Panse, V.G and Sukhatme, P.V. (Revised by Sukhatme, P.V and Amble, V.N.). 1985. Statistical Methods for Agricultural Workers, Indian Council of Agricultural Research, New Delhi. 187-202

Panwar, D.V.S., Rakeshkumar., Singh, A and Mehla, B.S. 2002. Studies on heterosis in hybrid rice. Oryza. 39: 54-55.

Panwar, L.L. 2005. Line x tester analysis of combining ability in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding. 65(1): 51-52.

Panwar, L.L., Joshi, V.N and Ali, M. 2008. Genotype x Environment interaction in scented rice. Oryza. 45(1): 103-109.

Parihar, A and Pathak, A.R. 2008. Heterosis for various quantitative traits in rice. Oryza. 45(3): 181-187.

Patil, D.V., Thiyagarajan, K and Kamble, P. 2003. Combining ability of parents for yield and yield contributing traits in two line hybrid rice (Oryza sativa L.). Crop Research. 25(3): 520-524.

Patil, P.V and Sarawgi, A.K. 2005. Studies on genetic variability, correlation and path analysis in traditional aromatic rice accessions. Annals of Plant Physiology. 19(1): 92-95.

Patil, R.S. 1993. Evaluation of induced mutants for different reaction to environment for pollen sterility in rice (Oryza sativa L.) and estimation of standard heterosis in experimental hybrids. M. Sc. (Ag.) Thesis. University of Agricultural Sciences, Bangalore, India. Patnaik, R.N., Pande, K., Ratho, S.N and Jachuck, P.J. 1990. Heterosis in rice hybrids. Euphytica. 49: 43-47.

Patra, B.C., Pradhan, K.C., Nayak, S.K and Patnaik, S.S.C. 2006. Genetic variability in long awned rice genotypes. Environment and Ecology. 24S: special 1, 27-31.

Peng, J.Y and Virmani, S.S. 1990. Combining ability for yield and yield related traits in relation to breeding in rice. Oryza. 27: 1-10.

Peng, J.Y and Virmani, S.S. 1991. Heterosis in some inter-varietal crosses of rice. Oryza. 28: 31-36.

Pradhan, S.K and Singh, S. 2008. Combining ability and gene action analysis for morphological and quality traits in basmati rice. Oryza. 45: 193-197.

Prakash, N., Mishra, C.H., Giri, S.P and Dixit, S. 2003. Combining ability analysis for yield and other yield contributing traits in rice (Oryza sativa L.) using CMS system. Annals of Agricultural Research. 24(3): 552-558.

Qamar, Z.U., Cheema, A.A., Ashraf, M., Rashid, M and Tahir, G.R. 2005. Association analysis of some yield influencing traits in aromatic and non-aromatic rice. Pakistan Journal of Botany. 37(3): 613-627.

Radhakrishna, R.M. 1992. Heterosis in widely contrasting rice (Oryza sativa L.) genotypes. M. Sc. (Ag.) Thesis. University of Agricultural Sciences, Bangalore, India.

Raju, Ch. S., Rao, M.V.B and Sudarshanam, A. 2006. Heterosis and genetic studies on yield and associated physiological traits in rice (Oryza sativa L.). Oryza. 43: 264-273.

Raju, Ch.S. 2002. Study of genetic divergence, variability, stability, gene action and character association for certain physiological, quality and yield components in Rice (Oryza sativa L.). Ph.D. Thesis. Acharya N.G. Ranga Agricultural University, Hyderabad, India.

Ram, T., Singh, J and Singh, R.M. 1998. Combining ability for yield and its components in rice. Oryza. 35(3): 237-241.

Ramaiah. 1969. Systematic classification of rice. Rice Research in India. ICAR. New Delhi.

Ramakrishnan, S.H., Kumar, C.R.A., Malini, N and Saravanan, S. 2009. Interpretation of hybrid vigour and inbreeding depression of certain crosses in rice (Oryza sativa L.). Crop Research. 38(1, 2 & 3): 138-140.

Ramalingam, J., Nadarajan, N., Vanniarajan, C and Rangasamy, P. 1997. Combining ability studies involving CMS lines in rice. Oryza. 34: 4-7.

Ramalingam, J., Vivekanandan, P and Subramanian, M. 1993. Combining ability in rice. Oryza. 30: 33-37.

Rani, N.S., Rao, L.V.S., Pandey, M.K., Sudharashan, I and Prasad, G.S.V. 2008. Grain quality variation for physico-chemical, milling and cooking properties in Indian rices (Oryza sativa L.). Indian Journal of Crop Science. 3(1): 133-136.

Reddy, C.D.R and Nerkar, Y.S. 1995. Heterosis and inbreeding depression in upland rice crosses. Indian Journal of Genetics and Plant Breeding. 55(1): 94-97.

Reddy, J.N and De, R.N. 1996. Genetic variability in low land rice. Madras Agricultural Journal. 83(4): 269-270.

Reddy, J.N. 2002. Combining ability for grain yield and its components in lowland rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding. 62(3): 251-252.

Rogbell, J.E and Subbaraman. 1997. Line x tester analysis for combining ability in saline rice cultivars. Madras Agricultural Journal. 84(1): 22-25.

Rojas, B.A and Sprague, G.F. 1952. A comparison of variance components in corn yield trials III. General and specific combining ability and their interactions with location and years. Agronomy Journal. 44: 462-466.

Rosamma, C.A and Vijayakumar, N.K. 2005. Heterosis and combining ability in rice (Oryza sativa L.) hybrids developed for Kerala state. Indian Journal of Genetics and Plant Breeding. 65(2): 119-120.

Rosamma, C.A and Vijayakumar, N.K. 2007. Variation in quantitative characters and heterosis in F1 rice (Oryza sativa L.) hybrids as affected by male sterile cytoplasm. Indian Journal of Genetics and Plant Breeding. 67(1): 23-27.

Roy, B and Mandal, A.B. 2001. Combining ability of some quantitative traits in rice. Indian Journal of Genetics and Plant Breeding. 61(2): 162-164.

Roy, S.K., Senapathi, B.K., Sinhamahapatra, S.P and Sarkar, K.K. 2009. Heterosis for yield and quality traits in rice. Oryza. 46(2): 87-93.

Sahai, V.N and Chaudhary, R.C. 1991. A study of commercial exploitation of heterosis in rice. Oryza. 28: 27-30.

Saidaiah, P., Kumar, S.S and Ramesha, M.S. 2010. Combining ability studies for development of new hybrids in rice over environments. Journal of Agricultural Sciences. 2(2): 225-233.

Saidaiah, P., Kumar, S.S and Ramesha, M.S. 2011. Stability analysis of rice (Oryza sativa L.) hybrids and their parents. Journal of Agricultural Sciences. 81(2): 109-115.

Salgotra, R.K., Katoch, P.C and Sood, M. 2005. Performance of rice hybrids for yield and quality traits in mid hills of Himachal Pradesh, India. Crop Improvement. 42(2): 93-96.

Salgotra, R.K., Gupta, B.B and Singh, P. 2009. Combining ability studies for yield and yield components in Basmati rice. Oryza. 46: 12-18.

Sandhyakishore, N., Ramesha, M.S., Reddy, T.D and Shankar, A.S. 2010. Study of heterosis by utilizing male sterility-restoration system in rice (Oryza sativa L.). Journal of Rice Research. 2(2): 93-98.

Sanjeevkumar, Singh, H.B., Sharma, J.K and Sood, S. 2010. Heterosis for morpho-physiological and qualitative traits in rice. Oryza. 47(1): 17-21.

Sanjeevkumar, Singh, H.B and Sharma, J. K. 2007. Combining ability analysis for grain yield and other associated traits in rice. Oryza. 44(2): 108-114.

Sankar, P.D., Sheeba, A and Anbumalarrnathi, J. 2006. Variability and character association studies in rice (Oryza sativa L.). Agricultural Science Digest. 26(3): 182-184.

Sao, A and Motiramani, N.K. 2006. Combining ability analysis for yield and yield contributing traits using cytoplasmic male sterility–fertility restoration system in rice hybrids. Jordan Journal of Agricultural Sciences. 2(1): 29-34.

Sarial, A.K., Sarial, S.S and Singh, V.P. 2007. Combining ability of new Basmati fertility restorers for grain yield and its components in rice. Indian Journal of Genetics and Plant Breeding. 67(2): 156-160.

Sarkar, C.K.G., Zaman, F.U and Singh, A.K. 2001. Heterosis for yield and yield attributes in ‘WA’ type rice hybrids (Oryza sativa L.) on multilocation performance. Crop Research. 22(2): 262-266.

Sarkar, C.K.G., Zaman, F.U and Singh, A.K. 2003. Stability analysis for fertility restoration, grain yield and other traits in hybrid rice (Oryza sativa L.). SABRAO Journal of Breeding and Genetics. 35(2): 113-122.

Sarma, M.K., Sharma, A.K., Agrawal, R.K and Richharia, A.K. 2007. Combining ability and gene action for yield and quality traits in Ahu rices of Assam. Indian Journal of Genetics and Plant Breeding. 67(3): 278-280.

Sathya, A., Kandasamy, G and Ramalingam, J. 1999. Heterosis in hybrid rice. Crop Research. 18(2): 243-246.

Satyanarayana, P.V., Reddy, M.S.S., Kumar, I and Madhuri, J. 2000. Combining ability studies on yield and yield components in rice. Oryza. 37(1): 22-25.

Satyavathi, C.T., Bharadwaj, Ch and Subramanyam, D. 2001. Variability, correlation and path analysis in rice varieties under different spacings. Indian Journal of Agricultural Research. 35(2): 79-84.

Selvaraj, C.I., Nagarajan, P., Thiyagaran, K., Bharathi, M and Rabindran, R. 2011.Genetic parameters of variability, correlation and path coefficient studies for grain yield and other yield attributes among rice blast disease resistance genotypes of rice (Oryza sativa L.). African Journal of Biotechnology. 10(17): 3322-3334.

Shankar, V.G., Ansari, N.A and Ahmed, I. 2008. Stability analysis using thermo-

sensitive

genic male sterility (TGMS) system in rice (Oryza sativa L.). Research on Crops 9(1): 141146.

Shanmuganathan, M and Ibrahim, S.M. 2005. Stability analysis for yield and its components in hybrid rice (Oryza sativa L.). Crop Research. 30(1): 40-45.

Shanthala, J., Latha, J and Hittalmani, S. 2006. Heterosis of rice (Oryza sativa L.) hybrids for growth and yield components. Research on Crops. 7(1): 143-146.

Shanthi, P., Shanmugasundaram, P and Nagarajan. 2003. Combining ability analysis in rice. Oryza. 40(1&2): 11-13.

Sharma, J.P and Mani, S.C. 1990. A study of heterosis by utilizing male sterility-restoration system in rice (Oryza sativa L.). Oryza. 27: 202-204.

Sharma, R.K and Mani, S.C. 1996. Comparative efficiency of diallel, partial diallel and line X tester analysis in the study of gene action in rice. Oryza. 33: 157-162.

Sharma, R.K and Mani, S.C. 2008. Analysis of gene action and combining ability for yield and its component characters in rice. Oryza. 45: 94-97.

Shihang, T., Shuijin, Z., Ruixia, D., Dong, Y., Hongguang, X and Jiatuan, Z. 2008. Analysis of combining ability and heritability of the major agronomic characters in some parents of three-line indica hybrid rice. Journal of Fujian Agriculture and Forestry University. 37(3): 230-234.

Shikari, A.B., Hussain, S.Z., Parray, G.A., Rather, A.G and Wani, S.A. 2008. Physio -chemical and cooking properties of non-basmati temperate rice (Oryza sativa L.). Crop Improvement. 35(2): 109-114.

Shivani, D and Reddy, N.S.R. 2000. Variability, heritability and genetic advance for morphological and physiological traits in certain rice hybrids. Oryza. 37(3): 231-233.

Shukla, S.K and Pandey, M.P. 2008. Combining ability and heterosis over environments for yield and yield components in two line hybrids involving thermosensitive genic male sterile lines in rice (Oryza sativa L.). Plant Breeding. 127: 28-32.

Shull, G.S. 1952. The composition of a field of maize. Am. Breed. Assoc. Rep 4: 296-301.

Singh, A.K., Maurya, D.M and Giri, S.P. 1992. Estimation of heterosis in rice. Oryza. 29: 259261.

Singh, M and Maurya, D.M. 1999. Heterosis and inbreeding depression in rice for yield and yield components using CMS system. Oryza. 36(1): 24-27.

Singh, N.K and Kumar, A. 2004. Combining ability analysis to identify suitable parents for heterotic rice hybrid breeding. International Rice Research Notes. 29: 21-22.

Singh, N.K., Singh, S., Singh, A.K., Sharma, C.L., Singh, P.K and Singh, O.N. 2007. Study of heterosis in rice (Oryza sativa L.) using line x tester mating system. Oryza. 44(3): 260-263.

Singh, P.K., Thakur, R., Chaudhary, V.K and Singh, N.B. 1996. Combining ability for grain yield and its components in relation to rice breeding. Crop Research. 11(1): 62-66.

Singh, R,K and Chaudhary, B.D. 1985 Biometrical methods in quantitative genetic analysis. Kalyani Publishers, Ludhiana, pp. 205-214.

Singh, R.K., Omkar, S and Prasad, B.K. 2006a. Heterosis in long grain aromatic rice for yield and quality components. Annals of Agricultural Research. 27(2): 128-132.

Singh, R.V., Verma, O.P., Dwivedi, J.L and Singh, R.K. 2006. Heterosis studies in rice hybrids using CMS systems. Oryza. 43(2): 154-156.

Singh, S and Chaudhary, B.S. 1996. Variability, heritability and genetic advance in cultivars of rice (Oryza sativa L.). Crop Research. 12(2): 165-167.

Singh, S.K and Haque, M.F. 1999. Heterosis for yield and yield components in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding. 59(2): 237-238.

Sinha, S.K., Tripathi, A.K and Bisen, U.K. 2004. Study of genetic variability and correlation coefficient analysis in midland land races of rice. Annals of Agricultural Research. 25(1): 1-3. Souframanien, J., Rangasamy, P., Vaidyanathan, P and Thangaraj, M. 1998. Heterosis under drought condition in hybrid rice. Oryza. 35(2): 120-123.

*Sprague, G.F and Tatum, L.A. 1942. General vs. specific combining ability in single crosses of corn. Journal of American Society of Agronomy. 3: 923-932.

Sreedhar, M and Kulkarni, N. 1993. Heterosis in rice. Journal of Research. APAU 21(3): 138141.

Sreedhar, M and Kulkarni, N. 1997. Combining ability analysis using cytoplasmic genetic male sterile lines in rice (Oryza sativa L.). Journal of Research ANGRAU. 25(3): 5-9.

Sreedhar, S., Dayakar Reddy, T and Ramesha, M.S. 2011. Genotype x environment interaction and stability for yield and its components in hybrid rice cultivars (Oryza sativa L.). International Journal of Plant Breeding and Genetics: 1-15.

Subramanian, S.S and Menon, P.M. 1973. Genotypic and phenotypic variability in rice. Madras Agricultural Journal. 60: 1093-1096.

Swain, B., Acharya, B and Pande, K. 2003. Combining ability analysis for yield and yield components in low land rice. Oryza. 40(3&4): 70-72.

Swaminathan, M.S., Siddique, E.A and Sharma, S.D. 1972. Outlook for hybrid rice in India. 609613. International Rice Breeding. IRRI, Los Banos.

Swamy, M.H., Rao, M.R.G and Vidyachandra, B. 2003. Studies on combining ability in rice hybrids involving new CMS lines in rice (Oryza sativa L.). Mysore Journal of Agricultural Science. 16(2): 228-233.

Thakre, I.S., Metha, A.M., Patel, J.S and Takle, S.R. 2010. Combining ability analysis for yield and grain quality traits in rice hybrids. Journal of Rice Research. 3(1): 1-4.

Tiwari, V.N and Sarathe, M.L. 2000. Heterosis and inbreeding depression in direct seeded rainfed rice. Oryza. 37(2): 37-38. Tripathi, A.K., Sinha, S.K and Bhandarkar, S. 1999. Studies on variability, heritability and genetic advance of semideep water rice. Advances of Plant Sciences. 12(1): 235.

Ullah, M.Z., Bashar, M.K., Bhuiyan, M.S.R., Khalequzzaman, M., and Hasan, M. J. 2011. Interrelationship and cause-effective analysis among morphophysiological traits in Biroin rice of Bangladesh. International Journal of Plant Breeding and Genetics. 1-9.

Umadevi, M., Veerabadhiran, P and Manonmani, S. 2010. Stability analysis for grain yield and its component traits in rice (Oryza sativa L.). Journal of Rice Research. 3(1): 10-12.

Umma, K.M., Jamil, H.M., Akter, A., Rahman, H and Biswas, P. 2013. Genotype-Environment interaction and stability analysis in hybrid rice: An application of additive main effects and multiplicative interaction. Bangladesh Journal of Botany. 42(1): 73-81.

Vanaja, T and Babu, L.C. 2004. Heterosis for yield and yield components in rice (Oryza sativa L.). Journal of Tropical Agriculture. 42(1-2): 43-44.

Vanaja, T and Babu, L.C. 2006. Variation for grain quality characteristics in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding. 66(1): 13-15.

Vange, T and Ojo, A.A. 1997. Variability and heritability estimates of yield and yield components in some Nigerian low land rice genotypes. International Rice Research Newsletter: 6.

Vange, T., Ojo, A.A and Bellow, L.L. 1999. Genetic variability, stability and correlation studies in lowland rice (Oryza sativa L.) genotypes. Indian Journal of Agricultural Sciences. 69(1): 30-33.

Venkatesan, M., Anbuselvam, Y., Elangaimannan, R and Karthikeyan, P. 2007. Combining ability for yield and physical characters in rice. Crop Improvement. 44(4): 296-299.

Venkatesan, M., Anbuselvam, Y., Murugan, S and Palaniraja. 2008. Heterosis for yield, its components and grain traits in rice (Oryza sativa L.). Oryza. 45(1): 76-78.

Verma, R.S., Yadav, R.D.S., Singh, R.S., Giri, S.P and Dwivedi, J.L. 2004. Studies on heterosis and inbreeding depression in rice (Oryza sativa L.). Oryza. 41(3&4): 131-132.

Vidyachandra, B. 1991. Studies on hybrid rice (Oryza sativa L.). Ph.D. Thesis. University of Agricultural Sciences, Bangalore, India.

Vijayakumar, S.B., Kulkarni, R.S and Murthy, N. 1994. Line x tester analysis for combining ability in ratooned F1 rice. Oryza. 31: 8-11.

Viraktamath, B.C., Ahmed, M.I and Ramesha, M.S. 2006. Current status and future prospects of hybrid rice in India. Journal of Rice Research. 1(1): 52-60.

Virmani, S.S., Aquino, R.O and Khush, G.S. 1982. Heterosis breeding in rice (Oryza sativa L.). Theoretical and Applied Genetics. 63: 373-380.

Vishwakarma, D.N., Maurya, D.M., Mishra, S.K., Verma, G.P and Kumar, R. 1998. Heterosis studies in rice using CMS system. Annals of Agricultural Research. 19(4): 370-374.

Vivekanandan, P. 1991. Comparative studies on grain yield and its component characters in certain rice hybrids. Oryza. 28: 443-445.

Yadav, L.S., Maurya, D.M., Giri, S.P and Singh, S.B. 2004. Nature and magnitude of heterosis for growth, yield and yield components in hybrid rice. Oryza. 41(1&2): 1-3.

Yadav, P., Rangare, N.R., John Anurag, P and Chaurasia, A.K. 2010. Quantitative analysis of rice (Oryza sativa L.) in Allahabad agro climate zone. Journal of Rice Research. 3(10): 16-18.

Yolanda, J.L and Vijendradas, L.D. 1996. Heterosis in hybrid rice. Madras Agricultural Journal. 83(2): 115-117.

Young, Y.B and Virmani, S.S. 1990. Stability analysis of agronomic traits in rice hybrids and their parents. Oryza. 27: 109-121. _____________________________________________________________________ The pattern of “Literature cited “presented above is in accordance with the guidelines for the Thesis presentation for Acharya N.G. Ranga Agricultural University, Hyderabad.

* Originals not seen

Plate no.1: Panicle of high heterotic hybrids

Jaya

Jaya

IR 79128A x R56

IR 68897A x R27

KRH-2

KRH-2

Plate no.2: Panicle of high heterotic hybrids

Jaya

Jaya

IR 80155A x R53

IR 79156A x R53

KRH-2

KRH-2

View more...

Comments

Copyright © 2017 PDFSECRET Inc.