October 30, 2017 | Author: Anonymous | Category: N/A
with significant increases of wave power from Ning Li and Kwok Fai Cheung WAVE POWER ANALYSIS FOR SELECT SITE ......
WAVE ENERGY RESOURCE CHARACTERIZATION AT THE US NAVY WAVE ENERGY TEST SITE AND OTHER LOCATIONS IN HAWAI‘I Prepared by: Ning Li and Kwok Fai Cheung Department of Ocean and Resources Engineering University of Hawai‘i Prepared for:
[email protected] Hawai‘i National Marine Renewable Energy Center Hawai‘i Natural Energy Institute University of Hawai‘i
This material is based upon work supported by the US Department of Energy under Award Number DE-FG36-08GO18180 November 1, 2014
Summary Numerical wave hindcasting from surface winds provides an important source of information for wave energy resource assessment and climate research. We utilized the third-generation ocean and coastal wave models, WAVEWATCH III and SWAN (Simulating WAves Nearshore), in a system of nested grids to provide high-resolution wave parameters around the islands of Oahu, Maui, Kauai, and Hawai‘i from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled winds by the Weather Research and Forecasting (WRF) model around the Hawaiian Islands. Measurements from 14 buoys provide validation of the hindcast across the Hawai‘i region. The hindcast reproduces the wave climate, statistical distributions, and episodic events recorded at both offshore and nearshore buoys. After validation, the sea state and wave power parameters are compiled at six sites around the islands. Two of the sites are located within the US Navy Wave Energy Test Site (WETS) offshore of the Marine Corps Base in Kaneohe, Oahu. One is collocated with a Waverider buoy at 81 m water depth, where tests will be conducted and the other at a shallower depth of 58 m is a potential site. The other 4 are potential sites at Kilauea, Pauwela, Upolu, and South Point at the north shore of Kauai, the north shore of Maui, and the north and south shores of Hawai‘i Island, respectively. The results show year-round wave activities with significant increases of wave power from the summer to the winter months accompanied by a transition from the wind waves to swells. At WETS, the analysis shows 60% of the energy resources come from conditions with significant wave height above 2 m that occur less than 25% of the time during 1979 to 2013. The diversified and persistent wave activities make WETS and the other five potential sites suitable for testing and development of wave energy convertors.
ii
Table of Contents Summary..................………………….……………………………………………………..... ii List of Figures...……………………………………………………………………………..... iv List of Tables..………………………………………………………………………………... viii 1. Introduction………………………………………………………………………………. 1 2. Methodology......…………………………………………………………………………. 6 2.1 Model Setup ......…………………………………………………………………....... 6 2.2 Wave Energy Parameters ......………………………………………………………. 6 2.3 Error Metrics ......…………………………………………………………………..… 7 3. Hindcast Waves and Validation ....………………………………………………………. 9 3.1 Regional Wave Climate …………………………………………………………… 9 3.2 Validation with Regional Buoys ……………………………………………………. 14 3.3 Validation with Nearshore Buoys …………………………………………………. 15 4. Wave Energy Resource Assessment……………………………………………………. 54 4.1 WETS and Kaneohe II, Oahu..................……………………………………………. 54 4.2 Potential Sites on Neighbor Islands.....………………………………………………. 55 5. Conclusions....................…………………………………………………………………. 95 References..................……………….……………………………………………………..... 96 Appendix A..................……………….……………………………………………………..... 97 Appendix B..................……………….……………………………………………………..... 100
iii
List of Figures 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
Hawaiʻi wave climate, buoys, and hindcast coverage....................................................................... Locations of buoys, WETS and a potential site around Oahu......…................................................. Locations of a buoy and a potential site around Kauai.................................................................... Locations of buoys and a potential site around Maui..................................................................... Locations of a buoy and potential sites around Hawaiʻi Island........................................................ Wind velocity, significant wave height, and peak period during a trade wind event at 3:00 AM June 28, 2012UTC............................................................................................................................. Wind velocity, significant wave height and peak period during a south swell event at 0:00 AM August 30, 2007 UTC....................................................................................................................... Wind velocity, significant wave height, and peak period during a northwest swell event at 9:00 AM March 16, 2010 UTC................................................................................................................. Wind velocity, significant wave height, and peak period during a Kona storm at 9:00 AM January 11, 1980UTC........................................................................................................................ Comparison of recorded and hindcast wave parameters at buoy #51001 from 1980 to 1989.......... Comparison of recorded and hindcast wave parameters at buoy #51001 from 1990 to 1999.......... Comparison of recorded and hindcast wave parameters at buoy #51001 from 2000 to 2009.......... Comparison of recorded and hindcast wave parameters at buoy #51003 from 1984 to 1993.......... Comparison of recorded and hindcast wave parameters at buoy #51003 from 1994 to 2003.......... Comparison of recorded and hindcast wave parameters at buoy #51003 from 2004 to 2013.......... Comparison of recorded and hindcast wave parameters at buoy #51002 from 1984 to 1993.......... Comparison of recorded and hindcast wave parameters at buoy #51002 from 1994 to 2003.......... Comparison of recorded and hindcast wave parameters at buoy #51002 from 2004 to 2013.......... Comparison of recorded and hindcast wave parameters at buoy #51004 from 1984 to 1993.......... Comparison of recorded and hindcast wave parameters at buoy #51004 from 1994 to 2003.......... Comparison of recorded and hindcast wave parameters at buoy #51004 from 2004 to 2013.......... Comparison of recorded and hindcast wave parameters at buoy #51100 from 2009 to 2013.......... Comparison of recorded and hindcast wave parameters at buoy #51101 from 2009 to 2013.......... Scatter plot of recorded and hindcast significant wave heights at buoy #51001.............................. Scatter plot of recorded and hindcast significant wave heights at buoy #51003.............................. Scatter plot of recorded and hindcast significant wave heights at buoy #51002.............................. Scatter plot of recorded and hindcast significant wave heights at buoy #51004.............................. Scatter plot of recorded and hindcast significant wave heights at buoy #51100.............................. Scatter plot of recorded and hindcast significant wave heights at buoy #51101.............................. Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51001............. Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51003.............. Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51002.............. Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51004.............. Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51100.............. Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51101.............. Rose plots of recorded and hindcast significant wave heights at buoy #51001................................ Rose plots of recorded and hindcast peak periods at buoy #51001................................................... Rose plots of recorded and hindcast significant wave heights at buoy #51004................................ Rose plots of recorded and hindcast peak periods at buoy #51004................................................... Rose plots of recorded and hindcast significant wave heights at buoy #51100................................ Rose plots of recorded and hindcast peak periods at buoy #51100................................................... Rose plots of recorded and hindcast significant wave heights at buoy #51101................................ Rose plots of recorded and hindcast peak periods at buoy #51101................................................... Comparison of recorded and hindcast wave parameters at the Waimea buoy.................................. Comparison of recorded and hindcast wave parameters at the Barbers Point buoy......................... iv
1 2 2 3 3 10 11 12 13 17 18 18 19 19 20 20 21 21 22 22 23 24 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 32 33 33 33 34 34 35 35
46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89.
Comparison of recorded and hindcast wave parameters at the Mokapu buoy.................................. Comparison of recorded and hindcast wave parameters at the WETS buoy.................................... Scatter plot of recorded and hindcast significant wave heights at the Waimea buoy....................... Scatter plot of recorded and hindcast significant wave heights at the Barbers Point buoy............... Scatter plot of recorded and hindcast significant wave heights at the Mokapu buoy....................... Scatter plot of recorded and hindcast significant wave heights at the WETS buoy......................... Quantile-quantile plot of recorded and hindcast significant wave heights at the Waimea buoy...... Quantile-quantile plot of recorded and hindcast significant wave heights at the Barbers Point buoy................................................................................................................................................... Quantile-quantile plot of recorded and hindcast significant wave heights at the Mokapu buoy...... Quantile-quantile plot of recorded and hindcast significant wave heights at the WETS buoy......... Comparison of recorded and hindcast wave parameters at the Barking Sands buoy........................ Comparison of recorded and hindcast wave parameters at the Pauwela buoy.................................. Comparison of recorded and hindcast wave parameters at the Kaumalapau buoy........................... Comparison of recorded and hindcast wave parameters at the Hilo buoy........................................ Scatter plot of recorded and hindcast significant wave heights at the Barking Sands buoy............. Scatter plot of recorded and hindcast significant wave heights at the Pauwela buoy....................... Scatter plot of recorded and hindcast significant wave heights at the Kaumalapau buoy................ Scatter plot of recorded and hindcast significant wave heights at the Hilo buoy............................. Quantile-quantile plot of recorded and hindcast significant wave heights at the Barking Sands buoy................................................................................................................................................... Quantile-quantile plot of recorded and hindcast significant wave heights at the Pauwela buoy...... Quantile-quantile plot of recorded and hindcast significant wave heights at the Kaumalapau buoy.................................................................................................................................................. Quantile-quantile plot of recorded and hindcast significant wave heights at the Hilo buoy............ Rose plots of recorded and hindcast significant wave heights at the Waimea buoy......................... Rose plots of recorded and hindcast peak periods at the Waimea buoy........................................... Rose plots of recorded and hindcast significant wave heights at the Barbers Point buoy................ Rose plots of recorded and hindcast peak periods at the Barbers Point buoy................................... Rose plots of recorded and hindcast significant wave heights at the Mokapu buoy......................... Rose plots of recorded and hindcast peak periods at the Mokapu buoy........................................... Rose plots of recorded and hindcast significant wave heights at the WETS buoy........................... Rose plots of recorded and hindcast peak periods at the WETS buoy.............................................. Rose plots of recorded and hindcast significant wave heights at the Pauwela buoy........................ Rose plots of recorded and hindcast peak periods at the Pauwela buoy........................................... Rose plots of recorded and hindcast significant wave heights at the Kaumalapau buoy.................. Rose plots of recorded and hindcast peak periods at the Kaumalapau buoy.................................... Rose plots of recorded and hindcast significant wave heights at the Hilo buoy............................... Rose plots of recorded and hindcast peak periods at the Hilo buoy.................................................. Two-dimensional spectra estimated from WETS Waverider records and hindcast model at 4:00 PM May 5, 2013................................................................................................................................ One-dimensional spectra estimated from WETS Waverider records and hindcast model at 4:00 PM May 5, 2013................................................................................................................................ Two-dimensional spectra estimated from WETS Waverider records and hindcast model at 1:00 AM January 4, 2013.......................................................................................................................... One-dimensional spectra estimated from WETS Waverider records and hindcast model at 1:00 AM January 4, 2013.......................................................................................................................... Monthly statistics of significant wave height at WETS................................................................... Monthly statistics of wave power at WETS..................................................................................... Monthly statistics of energy period at WETS................................................................................... Monthly statistics of spectral width at WETS.................................................................................. v
36 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 46 46 47 47 47 48 48 48 49 49 49 50 50 50 51 51 52 52 53 53 57 57 58 58
90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 125. 136.
Monthly statistics of direction of maximum directionally resolved wave power at WETS............ Monthly statistics of directionality coefficient at WETS................................................................. Monthly statistics of significant wave height at site Kaneohe II...................................................... Monthly statistics of wave power at site Kaneohe II........................................................................ Monthly statistics of energy period at site Kaneohe II..................................................................... Monthly statistics of spectral width at site Kaneohe II..................................................................... Monthly statistics of direction of maximum directionally resolved wave power at site Kaneohe II Monthly statistics of directionality coefficient at site Kaneohe II................................................... Monthly statistics of wavelength at WETS...................................................................................... Monthly statistics of wave steepness at WETS................................................................................ Monthly statistics of wavelength at site Kaneohe II......................................................................... Monthly statistics of wave steepness at site Kaneohe II................................................................... Cumulative distributions of significant wave height and the associated wave energy in terms of the percentage total at WETS and site Kaneohe II........................................................................... Cumulative distributions of wave energy period and the associated wave energy in terms of the percentage total at WETS and site Kaneohe II................................................................................. Cumulative distributions of wave power and the associated wave energy in terms of the percentage total at WETS and site Kaneohe II................................................................................. Monthly statistics of significant wave height at site Kilauea........................................................... Monthly statistics of significant wave height at the site Pauwela .................................................... Monthly statistics of significant wave height at site Upolu ............................................................. Monthly statistics of significant wave height at site South Point..................................................... Monthly statistics of wave power at site Kilauea............................................................................. Monthly statistics of wave power at site Pauwela............................................................................ Monthly statistics of wave power at site Upolu................................................................................ Monthly statistics of wave power at site South Point....................................................................... Monthly statistics of energy period at site Kilauea........................................................................... Monthly statistics of energy period at site Pauwela.......................................................................... Monthly statistics of energy period at site Upolu............................................................................. Monthly statistics of energy period at site South Point.................................................................... Monthly statistics of spectral width at site Kilauea.......................................................................... Monthly statistics of spectral width at site Pauwela......................................................................... Monthly statistics of spectral width at site Upolu............................................................................. Monthly statistics of spectral width at site South Point.................................................................... Monthly statistics of direction of maximum directionally resolved wave power at site Kilauea..... Monthly statistics of direction of maximum directionally resolved wave power at site Pauwela.... Monthly statistics of direction of maximum directionally resolved wave power at site Upolu........ Monthly statistics of direction of maximum directionally resolved wave power at site South Point................................................................................................................................................... Monthly statistics of directionality coefficient at site Kilauea.......................................................... Monthly statistics of directionality coefficient at site Pauwela......................................................... Monthly statistics of directionality coefficient at site Upolu............................................................ Monthly statistics of directionality coefficient at site South Point................................................... Monthly statistics of wavelength at site Kilauea.............................................................................. Monthly statistics of wavelength at site Pauwela............................................................................. Monthly statistics of wavelength at site Upolu................................................................................. Monthly statistics of wavelength at site South Point........................................................................ Monthly statistics of wave steepness at site Kilauea......................................................................... Monthly statistics of wave steepness at site Pauwela........................................................................ Monthly statistics of wave steepness at site Upolu........................................................................... Monthly statistics of wave steepness at site South Point.................................................................. vi
58 59 59 59 60 60 60 61 61 61 62 62 63 63 64 64 65 65 65 66 66 66 67 67 67 68 68 68 69 69 69 70 70 70 71 71 71 72 72 72 73 73 73 74 74 74 75
137. Cumulative distributions of significant wave height and the associated wave energy in terms of the percentage total at site Kilauea, Pauwela, Upolu, and South Point............................................. 138. Cumulative distributions of wave energy period and the associated wave energy in terms of the percentage total at site Kilauea, Pauwela, Upolu, and South Point.................................................. 139. Cumulative distributions of wave power and the associated wave energy in terms of the percentage total at site Kilauea, Pauwela, Upolu, and South Point.................................................. A1. Average daily significant wave height and wave power at WETS................................................... A2. Average daily significant wave height and wave power at the Kaneohe II site................................ A3. Average daily significant wave height and wave power at the Kilauea site..................................... A4. Average daily significant wave height and wave power at the Pauwela site.................................... A5. Average daily significant wave height and wave power at the Upolu site........................................ A6. Average daily significant wave height and wave power at the South Point site...............................
vii
75 76 76 97 97 98 98 99 99
List of Tables 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. B1. B2. B3. B4. B5. B6.
Locations of 14 Buoys for Model Validation and Sites for Wave Energy Assessment ................... Occurrence (hours) of Hindcast Te Versus Hs at WETS during 1979-2013.................................... Occurrence (hours) of Hindcast Te Versus Hs at the Kaneohe II site during 1979-2013................. Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at WETS during 1979-2013............... Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the Kaneohe II site during 19792013................................................................................................................................................... Average Hindcast Wave Power (kW /m) by Te and Hs at WETS during 1979-2013...................... Average Hindcast Wave Power (kW /m) by Te and Hs at the Kaneohe II site during 1979-2013... Occurrence (hours) of Hindcast Te Versus Hs at the Kilauea site during 1979-2013...................... Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the Kilauea site during 1979-2013 Average Hindcast Wave Power (kW/m) by Te and Hs at the Kilauea site during 1979-2013......... Occurrence (hours) of Hindcast Te Versus Hs at the Pauwela site during 1979-2013..................... Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the Pauwela site during 1979-2013 Average Hindcast Wave Power (kW/m) by Te and Hs at the Kilauea site during 1979-2013......... Occurrence (hours) of Hindcast Te Versus Hs at the Upolu site during 1979-2013........................ Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the Upolu site during 1979-2013.... Average Hindcast Wave Power (kW/m) by Te and Hs at the Upolu site during 1979-2013........... Occurrence (hours) of Hindcast Te Versus Hs at the South Point site during 1979-2013................ Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the South Point site during 19792013................................................................................................................................................... Average Hindcast Wave Power (kW/m) by Te and Hs at the South Point site during 1979-2013... Monthly Average Wave Energy Parameters at WETS..................................................................... Monthly Average Wave Energy Parameters at the Kaneohe II site.................................................. Monthly Average Wave Energy Parameters at the Kilauea site....................................................... Monthly Average Wave Energy Parameters at the Pauwela site...................................................... Monthly Average Wave Energy Parameters at the Upolu site.......................................................... Monthly Average Wave Energy Parameters at the South Point site.................................................
viii
4 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 100 100 100 101 101 101
1. Introduction The wave climate in Hawai‘i is unique because of the mid-Pacific location and massive archipelago. Figure 1 provides a location map and an illustration of the wind wave and swell patterns around the major Hawaiian Islands. Extratropical storms near the Kuril and Aleutian Islands generate swells from the northwest to north during the winter months. The south facing shores experience gentle swells from the year-round Southern Hemisphere Westerlies that are augmented by mid-latitude cyclones off Antarctica during the summer. The trade winds generate waves from the northeast to east throughout the year. In addition, passing cold fronts and subtropical storms might generate wind waves and short-period swells toward the islands from different directions during the winter months. The wave conditions are recorded by a number of nearshore and offshore buoys across the state. The diversified and persistent wave activities indicate the potential for development of wave energy resources in Hawai‘i. The Wave Energy Test Site (WETS) on windward Oahu, developed and operated with funding from the Department of Energy and the Department of Navy, provides the infrastructure for testing and development of wave energy convertors. Figure 2 shows the location of WETS and buoys around Oahu. A WaveriderTM buoy is deployed at WETS in 81 m of water. Kaneohe II at about 1 km to the southeast is a potential site. Both sites are exposed to the north swells and east wind waves, but are sheltered from the south swells. Three other buoys are currently in operation to provide the wave conditions around the Oahu. Preliminary assessment of wave records (Li and Cheung, 2014) and local logistics identify a number of neighbor island locations for wave energy resources development. Figure 3 shows the locations of a potential site off Kilauea, Kauai and an adjacent buoy that was in operation from 1982 to 1996. The site on the
Figure 1- Hawai‘i wave climate, buoys, and hindcast coverage. 1
North-facing shore is exposed to the north swells and the year round wind waves. A site off Pauwela, Maui is exposed to similar wave conditions. Figure 4 shows its location along with those of two buoys currently in operation. Hawai‘i Island has two potential sites off Upolu and South Point and a buoy near Hilo as shown in Figure 5. These two sites are exposed to heightened wind waves due to acceleration of the east trade winds around the island (Stopa et al., 2011).
Figure 2- Locations of buoys (pin), WETS, and a potential site (balloon) around Oahu.
Figure 3- Locations of a buoy (pin) and a potential site (balloon) around Kauai. 2
Figure 4- Locations of buoys (pin) and a potential site (balloon) around Maui.
Figure 5- Locations of a buoy (pin) and potential sites (balloon) around Hawaiʻi Island.
3
Table 1 list the water depths and coordinates of the sites and buoys along with their data coverage. The long records at offshore buoys #51001, #51003, #51002, #51004, #51100 and #51101 provide general wave conditions for the state. The nearshore buoys, Waimea #51201, Barbers Point #51204, Barking Sands #39, Kaumalapau #51203, and Hilo #51206 do not record the wave conditions directly relevant to the sites located on different sides of the islands. Other buoys such as #51205 and #51207 are close to Pauwela and WETS, but do not have sufficient wave data for wave energy analysis. The buoy Mokapu # 51202 is close to WETS and Kaneohe II. Its location southeast of the Kaneohe headland is in the shadow of the northwest swells despite its long record. The wave energy resources assessment at WETS and other sites are best accomplished by numerical models, while the extensive records provide a good opportunity to validate the model results. Third generation spectral wave models, such as WAVEWATCH III of Tolman (2008) and SWAN (Simulating WAves Nearshore) of Booij et al. (1999) and SWAN Team (2011), can provide a reliable tool for modeling of the multi-modal sea states in Hawaiʻi. Despite being developed for open oceans and shelf seas, WAVEWATCH III is able to describe shadowing of the wave field by the Hawaiian Islands and heightened seas with small fetches in interisland channels and around headlands (Stopa et al., 2011, 2013b; Foster et al., 2014). The SWAN model is better suited for near-shore environments due to the ability to account for triad wave interactions and depth-limited wave breaking in shallow water. Filipot and Cheung (2012) provided additional parameterizations in SWAN to model coastal processes in tropical island environments. The nesting of WAVEWATCH III and SWAN has become a standard to model wave generation and propagation from the open ocean to the shore. Table 1 - Locations of 14 Buoys for Model Validation and Sites for Wave Energy Assessment
1
Buoy/Site
Location
Latitude (°N)
Longitude (°W)
Depth (m)
Temporal Coverage
51001 51002 51003 51004 51100 51101 WETS 1 (51207) Kaneohe II 51204 51201 51202 39 Kilauea 51205 51203 Pauwela 51206 Upolu South Point
Northwestern Hawaiʻi Southwest Hawaiʻi Western Hawaiʻi Southeastern Hawaiʻi Northern Hawaiʻi Northwestern Hawaiʻi Oahu Oahu Oahu Oahu Oahu Kauai Kauai Maui Lanai Maui Hawaiʻi Hawaiʻi Hawaiʻi
23.445 17.094 19.018 17.602 23.558 24.321 21.4775 21.472 21.281 21.669 21.414 22.00667 22.236 21.0195 20.78778 20.958 19.78143 20.275 18.91
162.279 157.808 160.582 152.395 153.900 162.058 157.7526 157.747 158.124 158.120 157.679 159.8333 159.422 156.4272 157.0098 156.322 154.968 155.863 155.681
3430 5002 4919 5230 4754.9 4791.5 81 58 302 200 82 109.8 53 193 201 73 347 47 40
1981.2-2009.12 1984.9-2013.1 1984.11-2013.6 1984.11-2013.6 2009.4-2013.6 2008.2-2013.6 2012.10-2013.6 2010.10-2013.6 2001.12-2013.6 2000.8-2013.6 1982.10-1996.11 2011.12-2013.6 2007.5-2013.6 2012.3-2013.6 -
Kaneohe Bay Waverider Buoy (CDIP #198/NDBC 51207) deployed at the Wave Energy Test Site (WETS).
4
High-quality global and regional wind forcing is critical in modeling of the ocean wave conditions in Hawaiʻi. The newly released Climate Forecast System Reanalysis (CFSR) of Saha et al. (2010) contains clear signals of climate cycles and provides better descriptions of the upper percentile winds among available global reanalysis datasets (Stopa et al., 2013a; Stopa and Cheung, 2014). The state-of-the-art dataset was generated from a suite of coupled ocean, land and atmospheric models with assimilation of observations from many data sources like buoy, ship, aircraft, and satellite observations. It provides hourly surface winds at 0.5° resolution on a spherical global grid from 1979 to 2010 and 0.25° resolution from 2011 onward. The Hawaiʻi archipelago modifies the trade wind flow and creates localized weather patterns that are not amenable to the global models in CFSR. The Weather Research and Forecasting (WRF) model of Skamarock and Klemp (2008) with proper initial and boundary conditions from CFSR can describe mesoscale phenomena such as diurnal thermal forcing of sea and land breezes, flow acceleration and deceleration around topographic features, and wakes on the leeside of islands. In this report, we describe a long-term hindcast study using the spectral models WAVEWATCH III and SWAN in a system of global, regional, and nearshore computational grids to characterize the wave conditions and energy resources at WETS and the other potential sites. The wind forcing includes CFSR for the entire globe and downscaled WRF winds for the Hawaiʻi region to account for the multi-modal sea state. Section 2 describes the setup of the spectral wave and atmospheric models and defines the characteristic wave energy parameters. Section 3 provides validation of the hindcast with measurements from available offshore and nearshore buoys across the state. The standard wave parameters and 2D spectra at WETS and the other potential sites are used in a detailed wave resource assessment in Section 4. This is followed by a summary of the findings in Section 5.
5
2. Methodology 2.1 Model Setup The present study utilizes a system of nested global, regional, and island-scale spectral wave models based on WAVEWATCH III and SWAN with wind forcing from the global CFSR and Hawaiʻi regional WRF datasets. Figure 1 illustrates the setup of the regional and island-scale nested grids within global WAVEWATCH III. The series of nested grids capture physical processes at increasing temporal and spatial resolution toward each island. Global WAVEWATCH III, which resolves the oceans from 77.5°S to 77.5°N latitude at 0.5 arc-degree (~55 km near Hawai‘i) resolution, is coupled with the Hawai‘i regional grid from 199 to 206°E and 18 to 23°N at 3 arc-min (~5.5 km) resolution. The coupled model outputs 2D wave spectra along the boundary of the SWAN domain for Oahu, Kauai, Maui and Hawai‘i Island. The Oahu SWAN domain extends from 201.65 to 202.40°E and 21.2 to 21.75°N at 18 arc-sec (~550 m) resolution. With the same grid resolution, the Kauai SWAN domain extend from 199.65 to 200.8°E and 21.7 to 22.35°N, the Maui SWAN domain from 202.6 to 204.1°E and 20.4 to 21.3°N, and the Hawai‘i Island domain from 203.8 to 205.3°E and 18.85 to 20.35°N. The bathymetry comes from a blended datasets comprising ETOPO1, multibeam, and LiDAR data at 1 arcmin (~1,800 m), 50 m, and 3 m resolution respectively (Cheung et al., 2013). Hydrographic surveys and digitized nautical charts supplement the near-shore bathymetry, where the water lacks clarity for LiDAR surveys. The Generic Mapping Tools (GMT) of Wessel and Smith (1991) blends the datasets for development of the computational grids. The SWAN spectrum is discretized by 24 equal directional bins from 0 to 360° and 25 exponentially increasing frequency bins from 0.0418 to 1 Hz. The Hawai‘i regional wind forcing was developed by Prof. Yi-Leng Chen and his team in the UH Department of Meteorology. A two-way nested grid system with horizontal resolution of 18 and 6 km and 196 × 185 and 292 × 196 cells covers the central Pacific and the Hawaiian Islands in the WRF model, which is forced and initialized by the global CFSR dataset. The WRF model produced daily 36-h simulations, which were combined to produce a continuous dataset from 1979 to 2013. The 6 km WRF winds for the Hawai‘i region together with the 0.5° CFSR winds for the entire globe define the forcing for the wave model system, which in turn outputs hourly wave parameters over the computational grid system and wave spectra at the buoy and the site locations showed in Table 1 for model validation and computation of energy parameters. 2.2 Wave Energy Parameters For consistency with the methodology proposed by Lenee-Bluhm et al (2011) to characterize sea state and wave energy resources off Oregon, we use the following six parameters: omnidirectional wave power (also referred as wave power flux), significant wave height, energy period, spectral width, direction of the maximum directionally resolved wave power, and directionality coefficient.
6
The omnidirectional wave power is defined by 𝐽 = ∑𝑖𝑗 𝜌𝑔𝐶𝑔𝑖 𝑆𝑖𝑗 ∆𝑓𝑖 ∆𝜃𝑗 (Watts/m)
(1)
𝐻𝑠 = 4�𝑚0
(2)
where S = wave spectrum, θ = wave direction, f = wave frequency, Cg = group speed, g = gravitational acceleration, ρ = water density, and i and j are indices for frequency and direction bins. The significant wave height Hs, energy period Te , and spectral width 𝜖0 are given by:
Te =
m−1 m0
𝑚0 𝑚−2
𝜖0 = �
(3) −1
(4)
𝑚𝑛 = ∑𝑖 𝑓𝑖𝑛 𝑆𝑖 ∆𝑓𝑖
(5)
2 𝑚−1
in which the nth spectral moment is defined as The spectral width measures the spread of energy over frequency and its value would increase disproportionately for multi-modal spectra. The directionally resolved wave power can be calculated by 𝐽𝜃 = ∑𝑖𝑗 𝜌𝑔𝐶𝑔𝑖 𝑆𝑖𝑗 ∆𝑓𝑖 ∆𝜃𝑗 cos�𝜃 − 𝜃𝑗 � 𝛿 �
𝛿 = 1 if cos (𝜃 − 𝜃𝑗 ) ≥ 0 𝛿 = 0 if cos (𝜃 − 𝜃𝑗 ) < 0
(6)
The directionality coefficient is the ratio of the maximum directionally resolved wave power max(Jθ) to the omnidirectional wave power J 𝑑𝜃 =
max(𝐽𝜃 )
(7)
𝐽
which has a maximum value of one for unidirectional seas. These wave energy parameters are supplemented by the wavelength λ computed from Te and water depth using the linear dispersion relation. The steepness defined by Hs/λ provides a general indication of the nonlinearity in the wave field. In addition to the significant wave height, we utilize the peak period Tp and peak direction defined at the highest spectral density for wave data analysis and sea state characterization. 2.3 Error Metrics We use a number of error metrics to measure the difference between the recorded and hindcast significant wave heights. These include the mean error, root-mean-square error, and normalized root-mean-square error defined as 1
𝑀𝐸 = 𝑛 ∑𝑛𝑖=1(𝑦𝑖 − 𝑥𝑖 )
(7)
1
𝑅𝑀𝑆𝐸 = �𝑛 ∑𝑛𝑖=1(𝑦𝑖 − 𝑥𝑖 )2
(8)
7
1 𝑛
2 � ∑𝑛 𝑖=1(𝑦𝑖 −𝑥𝑖 )
𝑁𝑅𝑀𝑆𝐸 = max(𝑥 )−min (𝑥 ) 𝑖
(9)
𝑖
where (xi, yi) denote the recorded and hindcast data pairs and n is the number of data pairs. It should be noted that the records are not continuous and might not exactly match the model output times. We utilized the hindcast wave height at the nearest time stamp of the record to compile the data pair sequence. In addition, the overall agreement between the recorded data and wave hindcast can be illustrated by the correlation coefficient and scattered index as 𝐶𝑂𝑅 = 1
∑𝑛 �)(𝑥𝑖 −𝑥̅ ) 𝑖=1(𝑦𝑖 −𝑦
(10)
2 �)2 �∑𝑛 �∑𝑛 𝑖=1(𝑦𝑖 −𝑦 𝑖=1(𝑥𝑖 −𝑥̅ )
1
𝑆𝐼 = 𝑥̅ �𝑛 ∑𝑛𝑖=1[(𝑦𝑖 − 𝑦�) − (𝑥𝑖 − 𝑥̅ )]2
(11)
where the over bar indicates time average. The correlation coefficient has a value of one while the scattered index becomes zero for perfect match. The bias between the data pairs can be illustrated through a regression line in the scatter plot. The quantile-quantile plot compares the percentile distributions of the recorded and hindcast datasets independent of the time stamps. The error metrics provide an overall assessment of the hindcast against the recorded data for validation and quality control. It should be noted that the observations also contain errors and are simply used as a reference for comparison.
8
3. Hindcast Waves and Validation 3.1 Regional Wave Climate The WAVEWATCH III and SWAN hindcast produces 34 years of significant wave height, peak period, and direction at one hour intervals in the Hawai‘i region as well as wave spectra at locations of the near-shore buoys and potential sites. The long-duration hindcast provides a comprehensive dataset on the Hawai‘i wave climate, which comprises north and south swells as well as occasional subtropical storm waves superposed on the year-round northeast wind seas. Trade wind waves are the most common in Hawai‘i. Figure 6 shows the hindcast wind and wave fields of a typical event at 3:00 AM June 28, 2012 UTC. The 8~12 m/s steady wind flow from the northeast generates 2.0~2.8 m significant wave height with 7.1~8.1 s peak period around the Hawaiian Islands. The Hawaiian Islands play a dominant role in the local wind pattern characterized by deceleration of the approaching flow, speed-up in the channels, and leeward wake formation. Heightened wave activities are evident in channels between the islands due to local acceleration of the winds. Shadows of the dominant wind waves develop leeward of the islands and expose a small-amplitude south swell in the background. Figure 7 provides a better illustration of the south swell when the wind waves are weaker at midnight August 30, 2007 UTC. This is a relatively strong south swell with a significant wave height close to 2 m and a peak period of 16 s. The swell energy propagates through the island chain into the incoming wind waves. The episodic northwest swell is much more energetic. Figure 8 shows a major swell with 4.6 m significant wave height and 16.8 s peak period at 9 AM March 16, 2010 UTC. The swell dominates the seas generated by 6~12 m/s winds from the east. Background wind waves are evident in the shadows of the swell especially along the ʻAlenuihāhā Channel between Maui and Hawaiʻi Island . The subtropical region around Hawai‘i experiences on average two local (Kona) storms per winter (Caruso and Businger, 2006). The centers of these events are typically located north of the Hawaiian Islands. These slow-moving systems can bring strong winds and large waves from different directions to Hawai‘i over a period of several days. Figure 9 shows the wind and wave fields from a selected Kona storm. The cyclonic system covers most of the Central North Pacific with a strong southwesterly flow of 12~15 m/s toward the Hawaiian Island chain at 9:00 AM January 11, 1980 UTC. The winds accelerate in the ʻAlenuihāhā Channel. A swell of 5~7 m significant wave height with 11~12.5 s peak period approaches the west. Locally generated wind waves from the southwest are evident in the channel and leeward of Hawai‘i Island. The selected events have demonstrated the multi-modal sea states and the need to model the basin-wide processes to reproduce the wave conditions in Hawai‘i. The modification of the wind flow by the Hawaiian Islands has profound effects on the local wave conditions especially in the channels. In addition, island sheltering is an important factor defining the wave field along the island chain.
9
Figure 6- Wind velocity, significant wave height, and peak period during a trade wind event at 3:00 AM June 28, 2012UTC.
10
Figure 7- Wind velocity, significant wave height and peak period during a south swell event at 0:00 AM August 30, 2007 UTC.
11
Figure 8- Wind velocity, significant wave height, and peak period during a northwest swell event at 9:00 AM March 16, 2010 UTC.
12
Figure 9- Wind velocity, significant wave height, and peak period during a Kona storm at 9:00 AM January 11, 1980UTC.
13
3.2 Validation with Regional Buoys The 29 years of records from buoys #51001, #51003, #51002, #51004 located northwest, southwest, south, and southeast of the island chain as well as the recent 5 years of records from buoys #51100 and #51101 to the northeast and northwest provide a comprehensive dataset to validate the WAVEWATCH III hindcast (see Figure 1 for buoy locations). Figures 10 to 23 compare the time series of significant wave height, peak period, and available peak direction from the hindcast and the recorded data. The hindcast accurately reproduces the seasonal patterns as well as the individual events over the entire period albeit with several gaps in the records when the buoys were not in operation. The data shows a general decrease of the wave height from north to south due to sheltering of the north swells by the island chain. The highly seasonal wave conditions show large northwest swells in the winter and moderate wind waves and south swell throughout the year. The peak direction at #51001 after 2005 and #51004, #51100 and #51101 after 2009 provides a better illustration of the dominating components. Although south swells occur year round, their low energy levels are masked by the more energetic north swells or wind waves and usually have little influence on the peak period or direction. Figures 24-29 provides the scatter plots of the recorded and hindcast significant wave heights at buoys #51001, #51003, #51002, #51004, #51100 and #51101. Since the hindcast predicts the wave height reasonably well, the apparent large scatter might be due to offset of the swell arrival times. The timing offsets should be similar across the Hawaiian Islands and consequently lead to the small range of scattered indices from 0.16 to 0.17 at five of the six buoys. Nevertheless, 90% of the hindcast wave heights are within ±0.58 m of the measurements, the RMSEs are less than 0.21 m, and the NRMSE is less than 3.1% among the six buoys. The small mean errors of 0.06 to 0.28 m and the high correlation coefficients of 0.85 to 0.91 indicate minimal biases and good overall agreement between the two datasets. The quantile-quantile (Q-Q) plots in Figures 30-35 eliminate the timing errors and compare directly the percentile distributions of the hindcast and recorded wave heights. Hindcast wave heights up to 3 m are generally within ±5% of the recorded values and account for 80 to 89% of the occurrence at the buoys. The model produces increasing overestimation of the wave heights above 3 m likely associated with the north swell events. An exception occurs at buoy #51004 to the southeast of Hawai‘i Island in the shadow of the northwest swells probably due to the lack of diffraction in WAVEWATCH III. The underestimation of the extreme record of 12 m at buoy #51001 is due to the resolution of the parameterized atmospheric processes and the global computational grid (Stopa and Cheung, 2014). Both the hindcast and recorded wave heights show a decreasing trend of the large events from west to east and from north to south due to sheltering by the islands. A convenient way to illustrate the multi-modal sea states off Hawai‘i is through comparison of “rose” plots at the four buoys with directional measurements. Figures 36-37, 38-39, 40-41 and 42-43 compare the rose plots of the recorded and hindcast significant wave heights and peak periods at buoy # 51001 from 2005 to 2009, buoy #51004 from 2012 to 2013, and buoys #51100 and #51101 from 2009 to 2013. The peak period and direction associated with the spectral density correspond to the dominant component and might not fully characterize a multi-modal sea state. The spectral peak might also be influenced by the model parameterization and resolution. Nevertheless, parameters estimated with WAVEWATCH III are representative of the 14
actual measurements under open ocean conditions. The results illustrate the dominant north swells and east wind waves as well as their variation from west to east along the island chain. The year-round south swells are masked by the dominant components most of the time. The occasional wind waves and short-period swells from north, northwest, and west are likely associated with passing cold fronts or Kona storms around the islands. Kona storms can also generate similar wave activities from north to east that cannot be easily differentiated from the trade wind waves. 3.3 Validation with Nearshore Buoys There are eight near-shore buoys listed in Table 1 and their records allow validation of the hindcast wave conditions from SWAN for each island or island group. Figures 44 to 47 compare the hindcast and recorded significant wave heights, peak periods, and directions and Figures 48 to 51 show the scattered plots of the significant wave heights at the Waimea, Barbers Point, Mokapu, and WETS buoys around Oahu. The model captures the individual swell and wind wave events as well as the seasonal patterns in the time series comparison. At the Waimea buoy, the recorded significant wave height and peak period of the north swell reach 7 m and 22 s in winter. Northeast wind waves of typical 1 to 2 m height and 5 to 12 s period dominate during the summer. The corresponding scattered plot shows small mean and root-mean-square errors of 0.18 and 0.13 m of the computed significant wave height. The two datasets have a high correlation coefficient of 0.92, but the largest scatter index of 0.19 among the buoys. The nearly parallel linear regression and best match lines illustrate the relationship between hindcast model estimates and buoy measurements for both the wind wave and swell events. Despite the large spread, 90% of the hindcast estimates are within ±0.45 m of the regressed line. There is a decreasing trend of the wave height from north to south. Compared to the exposed Waimea buoy, the Barbers Point buoy recorded lower significant wave heights of 3 to 4 m from northwest swells due to sheltering by Kauai and Oahu. The hindcast model resolves the peak period and direction of the swells reasonably well, but could not fully capture the short-period wind waves wrapped around Diamond Head from southeast and some of the south swells. However, the scatter plot shows good agreement of the hindcast and recorded significant wave heights for the smaller events, but underestimate the more energetic northwest swells likely due to the low spatial resolution, which cannot fully resolve the steep seafloor near the buoy. This results in a small slope of 0.65 for the regression line and a low correlation coefficient of 0.78 despite the small mean error of -0.06 m. The proximity of the Mokapu and WETS buoys results in similar records of the wave conditions. The former also recorded occasional southeast wind waves due to its more open location. The hindcast model reproduces the persistent east wind waves reasonably well, but slightly underestimates the significant wave height of the intermittent north swells, which reach of up to 4 to 6 m in the record. The corresponding scatter plots show slopes of 0.89 and 0.92 for the regression lines and 90% of the hindcast wave heights are within ±0.34 and 0.31 m of the records at Mokapu and WETS. The correlation coefficient of 0.94 at WETS is the highest among the four buoys around Oahu. The Q-Q plots in Figures 52-55 sort the computed and recorded significant wave heights for comparison of their percentile distributions at the buoys around Oahu. The difference between 15
hindcast and recorded values are within ±0.5 m for wave height up to 6 m at Waimea Buoy, 3.5 m at Barbers Point, 6.2 m at Mokapu, and 4.0 m at WETS. The hindcast model yields slight overestimates of wave height at Waimea, but shows underestimates at Barbers Point, Mokapu, and WETS for wave heights above 1.3, 4.5, and 3.5 m corresponding to the 60.0, 99.9, and 99.2 percentiles respectively. The underestimation at Barbers Point is likely due to the low resolution of the steep seafloor, where the buoy is located. The lower predictions of the large events at Mokapu and WETS might be explained by the lack of diffraction in SWAN for the energetic northwest swells. The records from the buoys off Barking Sands, north Kauai; Pauwela and Kaumalapau, north and west Maui; and Hilo, east Hawai‘i Island provide additional validation of the nearshore wave conditions from SWAN. Figures 56-59 compare the time series of hindcast and recorded wave parameters for these buoys. The buoy at Barking Sand recorded large winter swell events with significant wave heights up to 7 m due to its exposed location to the northwest. The records at Pauwela and Hilo, which are sheltered from the more energetic northwest swells, show less distinct seasonal variations. Kaumalapau only recorded south swells and small amplitude northwest swells that wrapped around Kauai from the west. The large recorded wave height of 4.3 m on Dec 05, 2007 coincides with a Kona storm (http://earthobservatory.nasa.gov/ NaturalHazards/view.php?id=19423). With reference to the scatter plots in figures 60-63, the mean errors of the hindcast significant wave height are 0.37, 0.2, -0.12, and -0.006 m with 90% of data within ±0.67, ±0.48, ±0.89, ±0.37 m of the measured data at Barking Sands, Pauwela, Kaumalapau, and Hilo respectively. The slopes of the regression lines are close to one at more open locations such as Barking Sands and Pauwela, while the smaller slopes at Kaumalapau and Hilo indicates underestimations of the large northwest swell events due to the lack of diffraction in SWAN. The large scatter and low correlation at Kaumalapau is likely due to its sheltered location from the north swells and trade wind waves. Figures 64-67 shows the Q-Q plots to compare the distributions of the hindcast and recorded datasets. The hindcast at Barking Sands, which is open to the north swells and northeast wind waves, overestimates the significant wave height as in the case of the offshore buoys open to those events. Pauwela has similar exposure and shows the same patterns as Waimea that slightly overestimates the wave height before tapering off at the extreme events. Kaumalapu located to the southwest of Lanai show overall underestimation of the hindcast wave height as at Barbers Point in a similar environment. Hilo is similar to Mokapu, which is shielded to some extent from the northwest swells. This results in underestimation of large events with wave height above 3.0 m. Figures 68 to 81 compare the rose plots of the significant wave height and peak period at the near-shore buoys. The comparisons show overall agreement of the directional distribution and occurrences of the dominating wave components on the respective sides of the island. Located at 200 m water depth north of Oahu, the Waimea buoy is exposed to northeast wind waves and north swells. The Barbers Point and Kaumalapau buoys, located off the southwest shore of the respective islands, are open to swells from the northwest and south, and former also experiences some refracted wind waves from the east. Mokapu and WETS off east Oahu and Pauwela off north Maui, which are sheltered from the south swells and to a certain extent the northwest swells, mainly comprise wind waves from the northeast and swells from the north. The Hilo buoy off the northeast-facing shore of Hawai‘i Island experiences the northwest swells and east 16
wind waves. The hindcast model, in general, captures the trend and reproduces the majority of the measurements. The results have better agreement with the large events recorded at locations exposed to the northwest swells, but shows underestimation at locations sheltered by headlands and islands. A convenient approach to illustrate the sea state is through the wave spectrum. Figures 82 and 83 provide the recorded and hindcast 2D and 1D spectra from WETS at 4:00 PM May 5, 2013 to illustrate typical trade wind waves in the summer months. The recorded 2D spectrum is from an image downloaded from http://cdip.ucsd.edu/?ximg=search&xsearch=198&xsearch_type= Station_ID. Because of different spectral resolution, the hindcast spectrum has a different color scale to highlight the detailed features for a qualitative comparison. Despite the different values of the peak energy density, the recorded and hindcast estimates provide good agreement of the peak direction and period and essentially the same significant wave heights of 1.19 and 1.17 m respectively. North swells occur along with trade wind waves during the winter months. Figures 84 and 85 compare the recorded and computed 2D and 1D spectra at 1:00 AM January 4, 2013 for illustration. The spectra have a distinct peak from the north-northwest as well as broadbanded signals of the wind waves from the east-northeast. The agreement between the recorded and computed spectra is also maintained for a multi-modal sea state.
Figure 10- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51001 from 1980 to 1989.
17
Figure 11- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51001 from 1990 to 1999.
Figure 12- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51001 from 2000 to 2009. 18
Figure 13- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51003 from 1984 to 1993.
Figure 14- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51003 from 1994 to 2003.
19
Figure 15- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51003 from 2004 to 2013.
Figure 16- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51002 from 1984 to 1993.
20
Figure 17- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51002 from 1994 to 2003.
Figure 18- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51002 from 2004 to 2013.
21
Figure 19- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51004 from 1984 to 1993.
Figure 20- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51004 from 1994 to 2003.
22
Figure 21- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51004 from 2004 to 2013.
23
Figure 22- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51100 from 2009 to 2013.
24
Figure 23- Comparison of recorded (red) and hindcast (black) wave parameters at buoy #51101 from 2009 to 2013.
25
Figure 24- Scatter plot of recorded and hindcast significant wave heights at buoy #51001.
Figure 25- Scatter plot of recorded and hindcast significant wave heights at buoy #51003. 26
Figure 26- Scatter plot of recorded and hindcast significant wave heights at buoy #51002.
Figure 27- Scatter plot of recorded and hindcast significant wave heights at buoy #51004. 27
Figure 28- Scatter plot of recorded and hindcast significant wave heights at buoy #51100.
Figure 29- Scatter plot of recorded and hindcast significant wave heights at buoy #51101. 28
Figure 30- Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51001. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression.
Figure 31- Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51003. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression. 29
Figure 32- Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51002. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression.
Figure 33- Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51004. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression. 30
Figure 34- Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51100. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression.
Figure 35- Quantile-quantile plot of recorded and hindcast significant wave heights at buoy #51101. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression. 31
Figure 36- Rose plots of recorded (left) and hindcast (right) significant wave heights at buoy #51001.
Figure 37- Rose plots of recorded (left) and hindcast (right) peak periods at buoy #51001.
Figure 38- Rose plots of recorded (left) and hindcast (right) significant wave heights at buoy #51004. 32
Figure 39- Rose plots of recorded (left) and hindcast (right) peak periods at buoy #51004.
Figure 40- Rose plots of recorded (left) and hindcast (right) significant wave heights at buoy #51100.
Figure 41- Rose plots of recorded (left) and hindcast (right) peak periods at buoy #51100. 33
Figure 42- Rose plots of recorded (left) and hindcast (right) significant wave heights at buoy #51101.
Figure 43- Rose plots of recorded (left) and hindcast (right) peak periods at buoy # 51101.
34
Figure 44- Comparison of recorded (red) and hindcast (black) wave parameters at the Waimea buoy.
Figure 45 - Comparison of recorded (red) and hindcast (black) wave parameters at the Barbers Point buoy.
35
Figure 46- Comparison of recorded (red) and hindcast (black) wave parameters at the Mokapu buoy.
Figure 47- Comparison of recorded (red) and hindcast (black) wave parameters at the WETS buoy. 36
Figure 48- Scatter plot of recorded and hindcast significant wave heights at the Waimea buoy.
Figure 49- Scatter plot of recorded and hindcast significant wave heights at the Barbers Point buoy. 37
Figure 50- Scatter plot of recorded and hindcast significant wave heights at the Mokapu buoy.
Figure 51- Scatter plot of recorded and hindcast significant wave heights at the WETS buoy. 38
Figure 52- Quantile-quantile plot of recorded and hindcast significant wave heights at the Waimea buoy. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression.
Figure 53- Quantile-quantile plot of recorded and hindcast significant wave heights at the Barbers Point buoy. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression. 39
Figure 54- Quantile-quantile plot of recorded and hindcast significant wave heights at Mokapu buoy. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression.
Figure 55- Quantile-quantile plot of recorded and hindcast significant wave heights at the WETS buoy. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression. 40
Figure 56- Comparison of recorded (red) and hindcast (black) wave parameters at the Barking Sands buoy.
Figure 57- Comparison of recorded (red) and hindcast (black) wave parameters at the Pauwela buoy.
41
Figure 58- Comparison of recorded (red) and hindcast (black) wave parameters at the Kaumalapau buoy.
Figure 59- Comparison of recorded (red) and hindcast (black) wave parameters at the Hilo buoy.
42
Figure 60- Scatter plot of recorded and hindcast significant wave heights at the Barking Sands buoy.
Figure 61- Scatter plot of recorded and hindcast significant wave heights at the Pauwela buoy. 43
Figure 62- Scatter plot of recorded and hindcast significant wave heights at the Kaumalapau buoy.
Figure 63- Scatter plot of recorded and hindcast significant wave heights at the Hilo buoy. 44
Figure 64- Quantile-quantile plot of recorded and hindcast significant wave heights at the Barking Sands buoy. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression.
Figure 65- Quantile-quantile plot of recorded and hindcast significant wave heights at the Pauwela buoy. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression. 45
Figure 66- Quantile-quantile plot of recorded and hindcast significant wave heights at the Kaumalapau buoy. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression.
Figure 67- Quantile-quantile plot of recorded and hindcast significant wave heights at the Hilo buoy. Blue crosses represent data pair at 0.002 percentile increment, black line denotes perfect match, black dash lines delineate the ±5% error bounds, and red line is the linear regression. 46
Figure 68- Rose plots of recorded (left) and hindcast (right) significant wave heights at the Waimea buoy.
Figure 69- Rose plots of recorded (left) and hindcast (right) peak periods at the Waimea buoy.
Figure 70- Rose plots of recorded (left) and hindcast (right) significant wave heights at the Barbers Point buoy.
47
. Figure 71- Rose plots of recorded (left) and hindcast (right) peak periods at the Barbers Point buoy.
Figure 72-Rose plots of recorded (left) and hindcast (right) significant wave heights at the Mokapu buoy.
Figure 73- Rose plots of recorded (left) and hindcast (right) peak periods at the Mokapu buoy. 48
Figure 74- Rose plots of recorded (left) and hindcast (right) significant wave heights at the WETS buoy.
Figure 75- Rose plots of recorded (left) and hindcast (right) peak periods at the WETS buoy.
Figure 76- Rose plots of recorded (left) and hindcast (right) significant wave heights at the Pauwela buoy. 49
Figure 77- Rose plots of recorded (left) and hindcast (right) peak periods at the Pauwela buoy.
Figure 78- Rose plots of recorded (left) and hindcast (right) significant wave heights at the Kaumalapau buoy.
Figure 79- Rose plots of recorded (left) and hindcast (right) peak periods at the Kaumalapau buoy. 50
Figure 80- Rose plots of recorded (left) and hindcast (right) significant wave heights at the Hilo buoy.
Figure 81- Rose plots of recorded (left) and hindcast (right) peak periods at the Hilo buoy.
51
Figure 82- Two-dimensional spectra estimated from WETS Waverider records (left) and hindcast model (right) at 4:00 PM May 5, 2013.
Figure 83- One-dimensional spectra estimated from WETS Waverider records and hindcast model at 4:00 PM May 5, 2013.
52
Figure 84- Two-dimensional spectra estimated from WETS Waverider records (left) and hindcast model (right) at 1:00 AM January 4, 2013.
Figure 85- One-dimensional spectra estimated from WETS Waverider records and hindcast model at 1:00 AM January 4, 2013.
53
4. Wave Energy Resource Assessment After validating the model with offshore and nearshore buoy measurements, we compiled statistics of the sea state and wave power parameters from the SWAN hindcast at WETS and the other five potential sites around the islands. Although the climate is not stationary, the 34-year hindcast covers several interannual cycles to reduce biases in the statistics (Stopa et al., 2013a). WETS and the potential site Kaneohe II, which are located offshore of the Marine Corps Base in Kaneohe, Oahu, share similar wave conditions. The other 4 potential sites at Kilauea, Pauwela, Upolu, and South Point of the neighbor islands are exposed to different wave components to contrast the statistics of the Oahu sites. 4.1 WETS and Kaneohe II, Oahu WETS and the adjacent site Kaneohe II on the windward shore of Oahu are dominated by yearround wind waves from the east and swells from North Pacific storms in the winter. We compiled monthly statistics of the hindcast wave parameters from 1979 through 2013 to characterize the sea state and energy resource. Figures 86 to 91 illustrate the seasonal distributions of the significant wave height, wave power, energy period, spectral width, direction of the maximum directionally resolved wave power, and the directionality coefficient at WETS (see Section 2.2 for definition). The plots show the monthly mean values as well as the 5th and 95th percentiles to indicate the range. The north swells augment the wave energy during the winter months. The monthly average significant wave height increases from 1.47 m in August to 2.0 m in December. The mean wave power flux follows the same pattern with 7.7 kW/m in August and 21.7 kW/m in December. The monthly average parameters highlight seasonal wave characteristics useful for planning and operations of wave energy converters. Since the wind wave and swell events have time scale of several days, their variations can be better illustrated with the daily mean significant wave height and power in Figures A1 and A2 for WETS and Kaneohe II (see Appendix A). The wind waves become dominant in the summer resulting in shorter energy periods. The monthly mean energy period decreases from 9.7 s in January to 6.6 s in July. The swells have a lesser influence on the spectral width due to their narrow frequency bands, but dominate the mean direction of the maximum resolved wave power. The mean direction varies from ENE in the summer to NNE in the winter associated with the arrival of the north swells amidst the background wind waves. The 5th and 95th percentage range corresponds to the window of incident wave directions at the semi-sheltered site. The wind waves show a slightly higher directionality coefficient in the summer in the absence of the north swells. Kaneohe II in shallower water follows the same seasonal patterns with slightly lower wave power, but the same energy period and spectral width and similar directional characteristics as shown in Figures 92 to 97. Tables B1 and B2 in Appendix B provide the monthly mean wave energy parameters estimated for WETS and Kaneohe II. The six wave energy parameters are supplemented by the wavelength and wave steepness to illustrate the wave characteristics. Figures 98 and 99 show the monthly average as well as the 5 and 95 percentile at WETS. The wavelength decreases, while the steepness increases, from the winter to the summer due to transition of the swell to wind-wave dominated ocean conditions. The larger wave steepness indicates more nonlinear wave characteristics that might pose an issue 54
for scaling of wave power from predefined linear transfer functions. Figures 100 and 101 show similar patterns for Kaneohe II. Overall, the monthly statistics show a larger range during the winter months due to the episodic north swell events. Tables 2 and 3 sort the 1979-2013 wave hindcast by binned significant wave heights and energy periods, while Tables 4 and 5 provide the total wave energy flux (kWh/m) for WETS and Kaneohe II. The results for the two sites are very similar due to their proximity. The wind waves, in the range of 1-2 m significant wave height and 6-8 s energy period, have high occurrence of 40% and contribute to 23 % of the total energy at WETS. Tables 6 and 7 summarize the average wave power flux (kW/m) for the two sites. Despite the lower occurrence, the northwest swells have higher average wave power due to their longer energy periods and larger wave heights (Power ≈𝐻𝑠2 𝑇𝑒 ). Since typical wave energy converters are tuned to specific periods, the energy flux and power estimated from a multi-modal sea state require additional interpretations. A rational approach would be to develop those parameters for the respective wave components through partition of the wave spectrum (e.g., Arinaga and Cheung, 2012). Figure 102 plots the cumulative distributions of the hindcast significant wave height and the associated wave energy in terms of the percentage total at each site. WETS consists of slightly larger waves due to its more exposed location and deeper water. The waves at WETS and Kaneohe II are greater than 2.0 m for 25% and 19% of the time, but account for 69% and 61% of the total energy respectively. The wave period is not sensitive to the water depth. Figure 103 shows very similar cumulative distributions of the wave energy period and the associated wave energy contribution to the total at the two sites. The occurrences with wave energy period greater than 8 s is 42%, but contribute to approximately 65% of total energy at both locations. Figure 104 shows that the wave power flux at WETS and Kaneohe II is over 15 kW/m for 31% and 26% of time and that those events account for 63% and 59% of total energy respectively. In summary, the results at WETS show strong seasonal variations of the wave conditions and resources for testing and evaluation of a wide variety of wave energy convertors. 4.2 Potential Sites on Neighbor Islands The wave climate varies along the Hawaiian Island chain and the shores of the same island. The four potential sites on the neighbor islands present a range of wave conditions to supplement WETS. Figures 105 to 108 show the monthly statistics of the significant wave height at Kilauea, Pauwela, Upolu and South Point. The mean significant wave height increases from 1.2 to 2.56 m at Kilauea and 1.55 to 2.67 m at Pauwela from August to January and maintains in a small range of 1.37-1.79 m throughout the year at Upolu. South Point has the largest monthly average wave height of 1.83 m among the four sites in the summer and a gradual increase to 2.2 m in the winter. The wave power in Figures 109 to 112 follows the same trend as the significant wave height at each site. Kilauea and Pauwela off the north shores of Kauai and Maui have similar seasonal patterns as WETS dominated by energetic winter swells. The mean wave power increases from less than 10 to over 50 kW/m from summer to winter. Upolu, which is located at the northern tip of Hawaiʻi Island, is shielded from the energetic northwest swells in the winter months and the south swells throughout the year. The monthly statistics show a lower level of power with more subtle seasonable variations compared to other sites. South Point is exposed to the heightened 55
trade wind flow around Hawaiʻi Island with significant local wave generation (Stopa et al., 2011). Its wave power is augmented by year-round south swells and local storms to the west of the main Hawaiian Islands to exceed the monthly mean of 14 kW/m in the summer and up to 25 kW/m in the winter. Figures A3 to A6 in Appendix A show the daily mean significant wave height and power for Kilauea, Pauwela, Upolu, and South Point. Figures 113 to 116 show the distributions of the energy period at the four sites. The dominating north swell dramatically increases the mean energy period from 6.6 to 11.8 s at Kilauea and 6.4 to 11.3 s at Pauwela in wintertime. Dominated by the year-around trade wind waves with intermittent north swells in winter, Upolu has 6.4 s mean wave energy period in June with only a slight increase to 8.8 s in January. With a mix of south swells and trade wind waves, South Point has a small range of the averaged wave energy period of 8.3-9.1 s throughout the year. The locally generated seas together with the persistent south swells also contribute to a largest spectral width among the four sites as illustrated in Figures 117 to 120. The wave direction and its spreading also play a role in the efficiency of some wave energy converters. Figures 121 to 124 show the direction of the maximum directionally resolved wave power at the four sites. At Kilauea, Pauwela, and Upolu, the direction typically follows the dominant wave component that transitions from northeast to north from the summer to the winter. The direction at South Point changes from south during the summer to southwest in the winter due to mixing of the south swells with waves generated by local storms from the west and northwest swells that wrap around the Kauai and Oahu. Figures 125 to 128 plot the directionality coefficient at the four sites, among which, Kilauea gives the largest value in the winter due to its open location to the energetic northwest swells. The year-round south swells and wind waves at South Point result in the lowest directionality coefficient. Figures 129 to 136 show discernible increase of the wave length and decrease of the wave steepness at Kilauea, Pauwela, and Upolu site from the summer to winter, while almost the same wave length and wave steepness throughout the year at South Point. Tables B3 and B6 in Appendix B list the monthly mean wave energy parameters estimated for Kilauea, Pauwela, Upolu and South Point. Tables 8-10 shows the occurrence, the wave energy flux (kWh/m), and the average wave power flux (kW/m) by binned significant wave heights and energy periods for Kilauea. Waves with significant wave height in 1.0-1.25 m and wave energy period in 6.25-6.50s have the highest occurrence, but contribute disproportionately less to the total wave energy flux because of the low level of average wave power. Tables 11-13, 14-16, and 17-19 show the same set of information and similar patterns for Pauwela, Upolu, and South Point respectively. Figure 137 shows the cumulative distributions of the significant wave height and the associated wave energy in terms of the percentage total at each site. Events with significant wave height above 2 m occur 31%, 45%, 17% and 37% of the time, but account for 81%, 88%, 57%, and 76% of the total energy at Kilauea, Pauwela, Upolu and South Point, respectively. Figure 138 shows the results in terms of the energy period. Waves with energy period longer than 8 s have 58%, 51%, 28% and 69% occurrence and contribute disproportionately to 89%, 80%, 46% and 79% of the energy at Kilauea, Pauwela, Upolu and South Point, respectively. Figure 139 shows the cumulative distribution of the wave power flux and the corresponding contribution to the total wave energy. The events with wave power over 15 kW/m occurs 42%, 50%, 20%, and 54% of the time at Kilauea, Pauwela, Upolu and South Point, but produce 83%, 84%, 48%, and 76% 56
of the total wave energy respectively. Upolu at the northern tip of Hawaiʻi Island has the lowest values among the four sites despite its direct exposure to the year-round trade wind waves. Similar to WETS and Kaneohe II, the occasional large waves contribute to the majority of the total energy at the potential sites.
Figure 86– Monthly statistics of significant wave height at WETS.
Figure 87– Monthly statistics of wave power at WETS.
57
Figure 88– Monthly statistics of energy period at WETS.
Figure 89– Monthly statistics of spectral width at WETS.
Figure 90– Monthly statistics of direction of maximum directionally resolved wave power at WETS.
58
Figure 91– Monthly statistics of directionality coefficient at WETS.
Figure 92– Monthly statistics of significant wave height at site Kaneohe II.
Figure 93– Monthly statistics of wave power at site Kaneohe II.
59
Figure 94– Monthly statistics of energy period at site Kaneohe II.
Figure 95– Monthly statistics of spectral width at site Kaneohe II.
Figure 96– Monthly statistics of direction of maximum directionally resolved wave power at site Kaneohe II.
60
Figure 97– Monthly statistics of directionality coefficient at site Kaneohe II.
Figure 98– Monthly statistics of wavelength at WETS.
Figure 99– Monthly statistics of wave steepness at WETS. 61
Figure 100– Monthly statistics of wavelength at site Kaneohe II.
Figure 101– Monthly statistics of wave steepness at site Kaneohe II.
62
Figure 102– Cumulative distributions of significant wave height (upper) and the associated wave energy (lower) in terms of the percentage total at WETS and site Kaneohe II.
Figure 103– Cumulative distributions of wave energy period (upper) and the associated wave energy (lower) in terms of the percentage total at WETS and site Kaneohe II. 63
Figure 104 – Cumulative distributions of wave power (upper) and the associated wave energy (lower) in terms of the percentage total at WETS and site Kaneohe II.
Figure 105– Monthly statistics of significant wave height at site Kilauea.
64
Figure 106– Monthly statistics of significant wave height at the site Pauwela.
Figure 107– Monthly statistics of significant wave height at site Upolu.
Figure 108– Monthly statistics of significant wave height at site South Point. 65
Figure 109– Monthly statistics of wave power at site Kilauea.
Figure 110– Monthly statistics of wave power at site Pauwela.
Figure 111– Monthly statistics of wave power at site Upolu.
66
Figure 112– Monthly statistics of wave power at site South Point.
Figure 113– Monthly statistics of energy period at site Kilauea.
Figure 114– Monthly statistics of energy period at site Pauwela. 67
Figure 115– Monthly statistics of energy period at site Upolu.
Figure 116– Monthly statistics of energy period at site South Point.
Figure 117– Monthly statistics of spectral width at site Kilauea.
68
Figure 118– Monthly statistics of spectral width at site Pauwela.
Figure 119– Monthly statistics of spectral width at site Upolu.
Figure 120– Monthly statistics of spectral width at site South Point. 69
Figure 121– Monthly statistics of direction of maximum directionally resolved wave power at site Kilauea.
Figure 122– Monthly statistics of direction of maximum directionally resolved wave power at site Pauwela.
Figure 123– Monthly statistics of direction of maximum directionally resolved wave power at site Upolu.
70
Figure 124– Monthly statistics of direction of maximum directionally resolved wave power at site South Point.
Figure 125– Monthly statistics of directionality coefficient at site Kilauea.
Figure 126– Monthly statistics of directionality coefficient at site Pauwela. 71
Figure 127– Monthly statistics of directionality coefficient at site Upolu.
Figure 128– Monthly statistics of directionality coefficient at site South Point.
Figure 129– Monthly statistics of wavelength at site Kilauea. 72
Figure 130– Monthly statistics of wavelength at site Pauwela.
Figure 131– Monthly statistics of wavelength at site Upolu.
Figure 132– Monthly statistics of wavelength at site South Point. 73
Figure 133– Monthly statistics of wave steepness at site Kilauea.
Figure 134– Monthly statistics of wave steepness at site Pauwela.
Figure 135– Monthly statistics of wave steepness at site Upolu. 74
Figure 136– Monthly statistics of wave steepness at site South Point.
Figure 137– Cumulative distributions of significant wave height (upper) and the associated wave energy (lower) in terms of the percentage total at site Kilauea, Pauwela, Upolu, and South Point.
75
Figure 138– Cumulative distributions of wave energy period (upper) and the associated wave energy (lower) in terms of the percentage total at site Kilauea, Pauwela, Upolu, and South Point.
Figure 139– Cumulative distributions of wave power (upper) and the associated wave energy (lower) in terms of the percentage total at site Kilauea, Pauwela, Upolu, and South Point. 76
Table 2 Occurrence (hours) of Hindcast Te Versus Hs at WETS during 1979-2013 Te (s) 4.755.00 0.25-0.50 0.50-0.75 0.75-1.00 2 1.00-1.25 5 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75
5.005.25
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
6.506.75
6.757.00
7.007.25
7.257.50
7.507.75
7.758.00
61 123 22
16 254 656 323 14
33 357 1298 1448 266 5
45 566 1954 3749 1771 169 4
80 552 2668 5748 4608 1181 65 6
82 724 2768 6117 6672 3742 836 50 1
71 834 2673 5554 6889 4923 2030 444 23
61 1042 2743 4671 5616 4771 3248 1244 189 15
136 849 2392 3979 4365 4247 3327 2116 698 149 7
134 843 2306 3125 3425 3774 2974 2079 1302 642 105 5
107 869 1946 2813 2981 3046 2260 1589 1182 929 387 59 6
103 827 1955 2741 2837 2186 1743 1405 1274 1042 576 191 59 13
8.008.25 1 76 816 1969 2556 2304 1873 1589 1004 856 801 578 380 152 46 4
8.258.50 2 84 792 1773 2260 2396 1875 1321 809 807 568 494 357 212 85 60 6
8.508.75 4 53 676 1518 1996 2061 1684 1069 709 770 456 390 274 216 120 82 25 4
8.759.00
9.009.25
9.259.50
9.509.75
9.75100
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
22 540 1500 1780 1912 1644 981 595 464 345 222 149 170 93 111 63 29 3
27 480 1320 1709 1825 1489 910 598 370 294 177 116 132 126 65 33 19 23 4
18 334 1206 1696 1572 1162 859 490 397 170 97 94 70 62 49 33 30 23 1
11 269 1053 1490 1287 1046 722 493 350 262 132 71 60 25 15 16 6 17 17
6 261 954 1266 1216 871 593 469 334 242 163 85 49 48 14 10 11 4
2 216 882 968 1141 902 656 424 306 235 130 61 34 20 18 18 12 3 3 9 1
9 178 764 1076 1079 771 605 383 272 186 111 72 18 8 11 7 8 1 3 1
10 168 533 959 959 683 503 334 261 138 103 79 13 10 14 11 3 3
9 154 491 822 1002 584 409 321 270 154 86 55 32 16 6 11 1
5 125 409 726 870 668 394 278 189 141 74 26 38 19 15 5 2
15.5015.75
15.7516.00
16.5016.75
16.7517.00
>17.00
6 8
Te (s) 0.25-0.50 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75
11.2511.50
11.5011.75
11.7512.00
12.0012.25
1 102 322 547 633 563 382 234 181 167 79 53 22 23 11 7
2 78 207 428 556 450 360 221 170 127 84 46 22 20 4 1 2
2 28 138 287 415 398 275 228 190 129 75 26 19 18 10 2 9
2 50 105 248 248 338 280 201 138 125 73 27 25 23 22 10 5
12.2512.50 22 87 239 227 256 220 185 122 133 90 40 10 10 8 8 6
12.5012.75 8 73 174 217 218 173 141 92 95 69 20 15 8 6 11 8
12.7513.00 7 78 137 156 174 166 116 73 52 42 20 10 5 7 6 8 3
13.0013.25 4 46 118 77 125 118 98 66 42 22 25 22 7 4 15 3 2
13.2513.50
13.5013.75
6 45 72 82 129 103 74 86 32 11 17 8 12 4 9
5 32 54 65 67 74 51 76 23 13 28 4 5 3
4 1
1 3
13.7514.00 3 25 38 63 61 65 52 57 24 14 15 8 5 7
14.0014.25
10 30 47 59 62 43 55 36 19 6 7 10 15
77
14.2514.50 1 15 31 35 32 46 41 31 35 22 2 5 12 9
14.5014.75
4 10 28 32 44 39 15 14 18 4 3 4 17
14.7515.00
2 10 23 32 31 36 6 12 12 3 8 6
15.0015.25
3 15 42 20 18 14 11 11 4 1 3 9
15.2515.50
2 5 13 15 11 7 10 12 2 1
1 4 8 10 9 12 1 5 4 1
9 8 13 3 7 1 4 3 1 1 3
16.0016.25
2 9 4 8 5 3 1 1
16.2516.50
1 3 5 2 2
1 2 3 1 1
1 2 1 2
2 2
7 1207 13103 39048 62023 61974 46305 29571 17655 11725 7845 4512 2420 1446 866 611 307 163 83 35 20 9 300935
Table 3 Occurrence (hours) of Hindcast Te Versus Hs at the Kaneohe II site during 1979-2013 Te (s) 4.755.00 0.25-0.50 0.50-0.75 0.75-1.00 15 1.00-1.25 4 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 (m) 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25
5.005.25
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
16 128 151 17
31 475 841 323
66 597 2060 1437 153
101 824 3247 4324 1350 56 3
162 1106 4160 7069 3682 682 38 1
118 1224 4112 7468 6296 2490 318 9 1
6.506.75 6 169 1268 3801 6600 6285 3705 1372 119 9
6.757.00 5 253 1398 3500 5319 5278 3847 2075 587 69 3
7.007.25 221 1211 3069 4410 4273 3819 2602 1141 478 54 2
7.257.50 8 209 1236 2806 3570 3599 3246 2218 1458 941 295 29 1
7.507.75 234 1199 2299 3223 3147 2481 1743 1332 1036 509 101 9
7.758.00 1 196 1084 2317 3103 2449 1970 1521 1217 941 681 251 113 26 2
8.008.25 1 120 1179 2412 2549 2125 1780 1196 886 800 541 349 163 65 22
8.258.50 1 155 1123 2002 2440 2321 1569 926 725 678 497 392 207 113 31 6 1
8.508.75 9 119 1004 1722 2241 1905 1428 827 656 675 398 287 156 115 97 23 5
8.759.00 1 98 872 1757 2014 1851 1404 750 563 367 257 137 168 81 79 24 25
9.009.25
9.259.50
9.509.75
9.75100
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
79 738 1607 1947 1697 1266 617 524 313 196 128 155 113 64 36 27 8
58 544 1550 1732 1483 1119 714 445 290 130 112 82 50 28 21 21 18
28 414 1271 1552 1235 1018 670 482 285 200 87 60 43 14 15 12 11 3
21 425 1285 1324 1165 867 540 407 346 211 102 63 42 12 8 6 2 4 11
23 364 964 1205 1109 813 553 362 300 154 109 47 39 26 21 12 5 10
10 267 925 1100 1041 691 530 307 242 196 110 36 9 7 11 5 1 2
23 266 749 1107 955 657 421 362 221 116 105 26 12 13 7 4 2 2
15 206 633 1000 999 542 364 280 194 119 76 44 25 8 10 2
15 195 547 837 776 602 368 256 181 98 65 42 33 5 9 2
15.5015.75
15.7516.00
16.5016.75
16.7517.00
>17.00
Te (s) 0.25-0.50 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50
11.2511.50
11.5011.75
11.7512.00
12.0012.25
12.2512.50
8 136 439 641 720 553 344 180 180 153 57 36 27 17 21
7 128 265 530 571 435 362 201 161 127 57 34 18 11 3 2
3 63 199 335 543 373 267 201 150 114 45 23 21 13 4 2
4 51 146 267 330 324 284 144 168 99 43 10 29 10 9 7
7 45 130 246 260 264 239 155 113 111 77 26 12 12 17 13 8
12.5012.75 23 103 200 229 187 164 127 93 97 60 32 16 4 9 12 1
12.7513.00 19 99 178 173 194 153 104 71 35 33 24 10 0 11 8 8
13.0013.25 11 65 130 105 116 125 94 72 35 22 23 14 1 11 10 1 3
13.2513.50 14 61 74 111 126 98 99 71 28 14 15 12 7 4 8 3 2
13.5013.75 10 38 71 79 99 80 46 55 24 11 15 6 6
13.7514.00 7 29 56 66 64 75 52 44 23 18 17 6 7 2
14.0014.25 6 25 28 53 70 63 38 58 26 18 5 8 7 13
6 2
78
14.2514.50 3 18 44 30 51 53 33 40 27 16 3 7 9 6
14.5014.75
11 19 40 36 24 27 15 20 16 4 3 9 12
14.7515.00
4 10 26 38 45 30 9 10 15 1 4 3 11
15.0015.25
11 14 31 29 34 8 12 10 1 2 6 5 2
15.2515.50
1 20 26 18 11 5 12 12 1 3 2
2 6 11 17 10 9
2 7 11 11 3 8
6 2
5 2
2
1
16.0016.25
1 7 7 5 6 4 3 1 1 2 2
16.2516.50
1 1 2 5 2
1 1 3 4 1
2
1
2 2 1
2 2 2 2 1 2
32 2569 19878 51423 70756 58560 39072 22833 13726 9708 5613 2983 1649 962 533 337 188 65 27 19 2 300935
Table 4 Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at WETS during 1979-2013 Te (s) 4.755.00 0.25-0.50 0.50-0.75 0.75-1.00 5 1.00-1.25 13 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75
5.005.25
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
6.506.75
6.757.00
7.007.25
7.257.50
7.507.75
7.758.00
121 394 99
19 578 2210 1563 86
40 834 4696 7477 1814 46
62 1371 7568 20641 13134 1601 51
114 1394 10687 33089 36014 12054 853 98
120 1942 11512 36949 54983 40309 11472 836 21
104 2299 11585 35014 59416 55663 29388 7862 502
100 2862 12225 30527 50341 56628 49215 23210 4287 406
207 2430 11077 26804 40775 52595 52528 41918 16670 4185 236
222 2490 11019 21987 33179 48682 48850 42771 32724 19075 3644 206
196 2638 9528 20516 30054 40770 38638 33894 30831 28871 14017 2487 285
206 2629 9978 20718 29370 30195 30966 31214 34324 33702 21812 8381 3017 742
8.008.25 1 152 2709 10337 19851 24758 26877 29231 22943 24179 26781 22871 17395 7975 2759 271
8.258.50 2 167 2751 9585 18108 26836 27630 24962 19246 23547 19807 20341 16958 11620 5284 4241 470
8.508.75 4 109 2412 8513 16561 23734 25952 20974 17434 23316 16340 16535 13544 12056 7807 5983 2006 359
8.759.00
9.009.25
9.259.50
9.509.75
9.7510.0
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
49 2029 8678 15288 22642 26041 19828 15202 14392 12748 9728 7567 9996 6243 8491 5294 2758 306
63 1823 7938 15023 22364 24380 19037 15632 11805 11221 7994 6155 8001 8747 5131 2899 1881 2460 476
43 1316 7531 15291 19887 19719 18580 13299 13142 6778 4559 5136 4420 4438 3991 2981 3063 2569 121
28 1113 6758 14017 16823 18168 16086 13677 11963 10624 6348 3937 3865 1877 1264 1477 631 1990 2136
16 1116 6299 12316 16348 15545 13682 13600 11774 10096 8113 5000 3295 3723 1217 964 1222 471
5 958 5956 9660 15957 16674 15492 12517 11222 10130 6664 3618 2381 1560 1575 1841 1339 373 427 1344 165
26 821 5384 11032 15453 14682 14719 11693 10175 8302 5895 4415 1288 632 1003 732 887 124 412 148
29 790 3816 10136 14165 13362 12566 10529 9997 6304 5615 4975 934 840 1312 1195 355 392
26 738 3682 9035 15132 11704 10565 10290 10612 7272 4843 3556 2378 1351 588 1216 123
14 626 3153 8192 13509 13639 10475 9169 7678 6805 4287 1713 2926 1689 1542 565 243
896 1280
Te (s) 0.25-0.50 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75
11.2511.50
11.5011.75
11.7512.00
12.0012.25
12.2512.50
12.5012.75
12.7513.00
13.0013.25
13.2513.50
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
3 524 2578 6379 10211 11884 10365 7925 7579 8373 4676 3657 1747 2066 1167 789
6 392 1729 5148 9208 9763 9969 7643 7300 6465 5059 3275 1769 1872 418 115 261
7 152 1163 3535 7154 8897 7912 8179 8387 6808 4656 1876 1598 1738 1072 252 1246
7 258 907 3103 4325 7716 8318 7384 6281 6757 4662 2001 2198 2221 2480 1243 701
129 769 3054 4067 6082 6691 6898 5652 7368 5879 3082 871 983 918 1023 857
47 650 2269 4019 5312 5414 5377 4372 5430 4618 1557 1326 811 718 1448 1176
47 732 1877 2893 4379 5300 4569 3531 3002 2897 1596 916 511 855 791 1210 494
28 430 1635 1489 3186 3852 3986 3259 2481 1541 2075 2073 739 508 2093
40 433 1027 1621 3314 3441 3092 4344 1943 785 1441 778 1317 495 1296
34 294 813 1316 1815 2578 2156 3905 1440 952 2439 395 578 375
20 240 571 1294 1711 2286 2267 3028 1542 1026 1329 806 573 915
109 453 1001 1709 2238 1934 3016 2332 1455 534 744 1191 2050
8 175 477 769 931 1725 1837 1742 2293 1734 194 529 1484 1249
45 161 629 976 1639 1830 875 931 1453 382 334 526 2374
20 158 525 986 1219 1779 365 848 995
783 206
205 628
528 373
79
338 1009 882
15.0015.25
15.2515.50
15.5015.75
52 360 1278 770 894 786 791 950 377 115 383 1328
38 120 411 603 537 421 750 1034 191
20 99 254 420 445 742 68 453 411
152
157
15.7516.00
212 281 531 155 448 72 372 314 126 140 479
16.0016.25
71 389 237 516 407 289 110 151
16.2516.50
29 134 272 127 220
16.5016.75
16.7517.00
35 97 174 62
40
108
114 70 202
>17.00
97 171
Table 5 Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the Kaneohe II site during 1979-2013 Te (s) 4.755.00 0.25-0.50 0.50-0.75 0.75-1.00 30 1.00-1.25 12 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 (m) 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25
5.005.25
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
21 264 468 74
35 1055 2825 1522
84 1386 7471 7295 1054
139 1992 12539 23678 9834 531 38
233 2836 16854 40822 28731 6963 502 17
164 3261 17332 45321 52430 27038 4346 151 20
6.506.75 5 267 3487 16599 42063 54933 42673 20012 2151 201
6.757.00 4 435 3974 15849 35420 48462 46543 32039 11182 1581 80
7.007.25 350 3607 14609 30596 41161 48567 42300 22974 11624 1582 68
7.257.50 7 352 3737 13762 25678 36229 42857 37572 30809 24057 8957 1051 41
7.507.75 429 3814 11626 24065 32927 34043 30726 29359 27828 16249 3821 390
7.758.00 1 385 3573 12251 24116 26348 28300 28104 27952 26301 22831 9813 5202 1338 119
8.008.25 1 244 4076 13126 20553 23871 26686 22813 21270 23391 18876 14272 7748 3639 1355
8.258.50 1 322 4006 11304 20480 26974 24156 18316 18040 20380 18046 16759 10299 6414 2047 436 80
8.508.75 9 259 3705 10139 19433 22910 22815 16940 16862 20583 14973 12802 8036 6884 6606 1746 426
8.759.00 1 223 3434 10509 18170 23138 23173 15947 14903 11905 9960 6283 9065 5015 5609 1911 2226
9.009.25
9.259.50
9.509.75
9.7510.0
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
192 3003 10124 17979 21875 21528 13512 14378 10601 7785 6138 8634 7209 4649 3003 2482 816
145 2286 10150 16408 19781 19689 16134 12646 10103 5385 5478 4682 3274 2134 1793 2030 1940
72 1792 8524 15347 16914 18520 15779 14100 10249 8609 4443 3577 2921 1115 1312 1232 1183 370
57 1900 8897 13407 16416 16297 13062 12325 12835 9296 5284 3831 2925 972 723 625 222 533 1549
62 1681 6840 12740 16226 15746 13782 11236 11342 7009 5870 2980 2827 2134 2024 1266 579 1335
30 1277 6736 11904 15637 13756 13560 9851 9476 9195 6131 2283 661 605 1075 536 121 267
67 1327 5643 12293 14767 13505 11091 11912 8880 5580 6030 1696 910 1154 715 444 249 268
45 1017 4915 11526 15809 11452 9840 9483 7971 5852 4411 3011 2005 720 1034 231
47 1006 4373 9917 12676 12874 10168 8967 7738 4946 3878 3005 2646 470 958 231
Te (s) 0.25-0.50 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50
11.2511.50
11.5011.75
11.7512.00
12.0012.25
12.2512.50
12.5012.75
12.7513.00
13.0013.25
13.2513.50
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
24 702 3627 7764 12070 12276 9843 6499 7854 8002 3551 2557 2259 158 2228
24 681 2205 6519 9731 9947 10572 7337 7209 6776 3534 2477 1542 1053 337 237
10 329 1690 4239 9496 8642 7947 7529 6863 6294 2842 1739 1853 1312 451 249
14 281 1297 3424 5963 7687 8768 5451 7890 5546 2807 775 2629 1022 1030 923
26 259 1206 3178 4786 6370 7573 6004 5517 6358 5126 2038 1104 1244 2006 1726 1128
139 982 2664 4305 4684 5293 5011 4493 5683 4124 2564 1470 437 1094 1670 149
121 945 2446 3323 4982 5002 4263 3585 2084 2279 1943 971
75 634 1803 2066 2981 4140 3889 3647 2105 1576 1956 1367 106 1429 1382 164 512
94 599 1050 2264 3274 3302 4263 3669 1736 1054 1304 1201 785 527 1163
70 367 1047 1631 2695 2788 2027 2838 1515 850 1318 608 683
49 299 849 1337 1783 2626 2314 2344 1484 1393 1492 608 824 255
45 242 412 1120 1981 2332 1699 3172 1672 1384 454 850 837 1808
23 204 655 641 1480 1965 1474 2250 1807 1220 287 762 1087 836
121 307 866 1071 904 1228 880 1361 1279 380 330 1141 1705
50 166 580 1159 1706 1420 537 692 1212 102 457 368 1596
1346 1087 1223
548 386
1239 430
80
15.0015.25
15.2515.50
15.5015.75
15.7516.00
176 319 946 1110 1684 477 845 834 95 226 765 747 313
15 485 770 715 526 298 880 1012
36 140 338 687 500 537
39 158 358 444 154 489
523 196
451 197
292
151
139 460 314
16.0016.25
16.2516.50
16.5016.75
21 239 284 280 374 309 258 101 117 272 299
23 33 82 272 122
27 38 133 215 59
206
102
16.7517.00
89 107 100
>17.00
70 90 106 139 83 187
Table 6 Average Hindcast Wave Power (kW /m) by Te and Hs at WETS during 1979-2013 Te (s) 4.755.00 0.25-0.50 0.50-0.75 0.75-1.00 2.3 1.00-1.25 2.6 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75
5.005.25
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
6.506.75
6.757.00
7.007.25
7.257.50
7.507.75
7.758.00
2.0 3.2 4.5
1.2 2.3 3.4 4.8 6.2
1.2 2.3 3.6 5.2 6.8 9.3
1.4 2.4 3.9 5.5 7.4 9.5 12.8
1.4 2.5 4.0 5.8 7.8 10.2 13.1 16.4
1.5 2.7 4.2 6.0 8.2 10.8 13.7 16.7 20.6
1.5 2.8 4.3 6.3 8.6 11.3 14.5 17.7 21.8
1.6 2.7 4.5 6.5 9.0 11.9 15.2 18.7 22.7 27.1
1.5 2.9 4.6 6.7 9.3 12.4 15.8 19.8 23.9 28.1 33.8
1.7 3.0 4.8 7.0 9.7 12.9 16.4 20.6 25.1 29.7 34.7 41.2
1.8 3.0 4.9 7.3 10.1 13.4 17.1 21.3 26.1 31.1 36.2 42.1 47.6
2.0 3.2 5.1 7.6 10.4 13.8 17.8 22.2 26.9 32.3 37.9 43.9 51.1 57.1
8.008.25 1.0 2.0 3.3 5.2 7.8 10.7 14.3 18.4 22.9 28.2 33.4 39.6 45.8 52.5 60.0 67.8
8.258.50 1.0 2.0 3.5 5.4 8.0 11.2 14.7 18.9 23.8 29.2 34.9 41.2 47.5 54.8 62.2 70.7 78.4
8.508.75 1.0 2.1 3.6 5.6 8.3 11.5 15.4 19.6 24.6 30.3 35.8 42.4 49.4 55.8 65.1 73.0 80.3 89.8
8.759.00
9.009.25
9.259.50
9.509.75
9.7510.0
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
2.2 3.8 5.8 8.6 11.8 15.8 20.2 25.5 31.0 37.0 43.8 50.8 58.8 67.1 76.5 84.0 95.1 102.0
2.3 3.8 6.0 8.8 12.3 16.4 20.9 26.1 31.9 38.2 45.2 53.1 60.6 69.4 78.9 87.8 99.0 107.0 119.0
2.4 3.9 6.2 9.0 12.7 17.0 21.6 27.1 33.1 39.9 47.0 54.6 63.1 71.6 81.4 90.3 102.1 111.7 121.3
2.5 4.1 6.4 9.4 13.1 17.4 22.3 27.7 34.2 40.5 48.1 55.5 64.4 75.1 84.3 92.3 105.2 117.1 125.7
2.7 4.3 6.6 9.7 13.4 17.8 23.1 29.0 35.3 41.7 49.8 58.8 67.2 77.6 86.9 96.4 111.1 117.7
2.4 4.4 6.8 10.0 14.0 18.5 23.6 29.5 36.7 43.1 51.3 59.3 70.0 78.0 87.5 102.3 111.6 124.2 142.3 149.3 165.0
2.9 4.6 7.0 10.3 14.3 19.0 24.3 30.5 37.4 44.6 53.1 61.3 71.5 79.0 91.2 104.5 110.9 123.6 137.4 148.5
2.9 4.7 7.2 10.6 14.8 19.6 25.0 31.5 38.3 45.7 54.5 63.0 71.8 84.0 93.7 108.6 118.4 130.8
2.9 4.8 7.5 11.0 15.1 20.0 25.8 32.1 39.3 47.2 56.3 64.7 74.3 84.4 98.1 110.5 122.8
2.8 5.0 7.7 11.3 15.5 20.4 26.6 33.0 40.6 48.3 57.9 65.9 77.0 88.9 102.8 113.0 121.3
149.3 160.0
Te (s) 0.25-0.50 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75
11.2511.50
11.5011.75
11.7512.00
12.0012.25
12.2512.50
12.5012.75
12.7513.00
13.0013.25
13.2513.50
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
2.7 5.1 8.0 11.7 16.1 21.1 27.1 33.9 41.9 50.1 59.2 69.0 79.4 89.8 106.1 112.8
3.0 5.0 8.4 12.0 16.6 21.7 27.7 34.6 42.9 50.9 60.2 71.2 80.4 93.6 104.4 115.4 130.6
3.4 5.4 8.4 12.3 17.2 22.4 28.8 35.9 44.1 52.8 62.1 72.1 84.1 96.5 107.2 126.0 138.5
3.6 5.2 8.6 12.5 17.4 22.8 29.7 36.7 45.5 54.1 63.9 74.1 87.9 96.6 112.7 124.3 140.3
5.9 8.8 12.8 17.9 23.8 30.4 37.3 46.3 55.4 65.3 77.1 87.1 98.3 114.8 127.8 142.9
5.9 8.9 13.0 18.5 24.4 31.3 38.1 47.5 57.2 66.9 77.9 88.4 101.4 119.7 131.7 147.0
6.7 9.4 13.7 18.5 25.2 31.9 39.4 48.4 57.7 69.0 79.8 91.6 102.1 122.1 131.8 151.3 164.8
6.9 9.3 13.9 19.3 25.5 32.6 40.7 49.4 59.1 70.0 83.0 94.2 105.5 126.9 139.5
6.7 9.6 14.3 19.8 25.7 33.4 41.8 50.5 60.7 71.3 84.8 97.2 109.8 123.9 144.0
6.8 9.2 15.1 20.3 27.1 34.8 42.3 51.4 62.6 73.2 87.1 98.8 115.7 125.1
6.8 9.6 15.0 20.5 28.0 35.2 43.6 53.1 64.3 73.3 88.6 100.7 114.7 130.7
10.9 15.1 21.3 29.0 36.1 45.0 54.8 64.8 76.6 89.1 106.3 119.1 136.7
7.6 11.7 15.4 22.0 29.1 37.5 44.8 56.2 65.5 78.8 97.1 105.7 123.6 138.8
11.3 16.1 22.5 30.5 37.2 46.9 58.4 66.5 80.7 95.5 111.2 131.5 139.6
9.9 15.8 22.8 30.8 39.3 49.4 60.8 70.7 83.0
195.6 206.1
204.5 209.4
175.9 186.6
81
112.5 126.1 147.1
15.0015.25
15.2515.50
15.5015.75
17.3 24.0 30.4 38.5 49.6 56.2 71.9 86.3 94.3 114.8 127.7 147.6
19.1 24.0 31.6 40.2 48.8 60.1 75.0 86.2 95.3
20.0 24.7 31.8 42.0 49.4 61.8 68.4 90.6 102.7
152.3
157.2
15.7516.00
23.6 35.2 40.9 51.5 64.0 72.0 92.9 104.7 125.7 140.5 159.8
16.0016.25
35.4 43.2 59.2 64.4 81.4 96.4 109.7 151.5
16.2516.50
29.3 44.7 54.4 63.7 110.2
16.5016.75
16.7517.00
34.8 48.4 58.1 62.2
40.4
108.0
57.0 69.9 101.1
>17.00
48.4 85.5
Table 7 Average Hindcast Wave Power (kW /m) by Te and Hs at the Kaneohe II site during 1979-2013 Te (s) 4.755.00 0.25-0.50 0.50-0.75 0.75-1.00 2.0 1.00-1.25 3.0 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50
5.005.25
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
1.3 2.1 3.1 4.3
1.1 2.2 3.4 4.7
1.3 2.3 3.6 5.1 6.9
1.4 2.4 3.9 5.5 7.3 9.5 12.8
1.4 2.6 4.1 5.8 7.8 10.2 13.2 17.4
1.4 2.7 4.2 6.1 8.3 10.9 13.7 16.7 19.9
6.506.75 0.8 1.6 2.8 4.4 6.4 8.7 11.5 14.6 18.1 22.3
6.757.00 0.8 1.7 2.8 4.5 6.7 9.2 12.1 15.4 19.0 22.9 26.5
7.007.25 1.6 3.0 4.8 6.9 9.6 12.7 16.3 20.1 24.3 29.3 34.0
7.257.50 0.9 1.7 3.0 4.9 7.2 10.1 13.2 16.9 21.1 25.6 30.4 36.2 40.6
7.507.75 1.8 3.2 5.1 7.5 10.5 13.7 17.6 22.0 26.9 31.9 37.8 43.4
7.758.00 0.9 2.0 3.3 5.3 7.8 10.8 14.4 18.5 23.0 28.0 33.5 39.1 46.0 51.5 59.5
8.008.25 0.9 2.0 3.5 5.4 8.1 11.2 15.0 19.1 24.0 29.2 34.9 40.9 47.5 56.0 61.6
8.258.50 0.9 2.1 3.6 5.6 8.4 11.6 15.4 19.8 24.9 30.1 36.3 42.8 49.8 56.8 66.0 72.6 79.7
8.508.75 1.0 2.2 3.7 5.9 8.7 12.0 16.0 20.5 25.7 30.5 37.6 44.6 51.5 59.9 68.1 75.9 85.1
8.759.00 1.1 2.3 3.9 6.0 9.0 12.5 16.5 21.3 26.5 32.4 38.8 45.9 54.0 61.9 71.0 79.6 89.0
9.009.25
9.259.50
9.509.75
9.7510.0
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
2.4 4.1 6.3 9.2 12.9 17.0 21.9 27.4 33.9 39.7 48.0 55.7 63.8 72.6 83.4 91.9 102.0
2.5 4.2 6.5 9.5 13.3 17.6 22.6 28.4 34.8 41.4 48.9 57.1 65.5 76.2 85.4 96.7 107.8
2.6 4.3 6.7 9.9 13.7 18.2 23.6 29.3 36.0 43.0 51.1 59.6 67.9 79.6 87.5 102.7 107.5 123.2
2.7 4.5 6.9 10.1 14.1 18.8 24.2 30.3 37.1 44.1 51.8 60.8 69.6 81.0 90.4 104.1 111.0 133.3 140.8
2.7 4.6 7.1 10.6 14.6 19.4 24.9 31.0 37.8 45.5 53.9 63.4 72.5 82.1 96.4 105.5 115.8 133.5
3.0 4.8 7.3 10.8 15.0 19.9 25.6 32.1 39.2 46.9 55.7 63.4 73.4 86.4 97.7 107.2 121.0 133.3
2.9 5.0 7.5 11.1 15.5 20.6 26.3 32.9 40.2 48.1 57.4 65.2 75.8 88.8 102.2 110.9 124.3 133.8
3.0 4.9 7.8 11.5 15.8 21.1 27.0 33.9 41.1 49.2 58.0 68.4 80.2 89.9 103.4 115.5
3.1 5.2 8.0 11.8 16.3 21.4 27.6 35.0 42.8 50.5 59.7 71.5 80.2 94.1 106.5 115.7
Te (s) 0.25-0.50 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50
11.2511.50
11.5011.75
11.7512.00
12.0012.25
12.2512.50
12.5012.75
12.7513.00
13.0013.25
13.2513.50
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
3.1 5.2 8.3 12.1 16.8 22.2 28.6 36.1 43.6 52.3 62.3 71.0 83.7 93.1 106.1
3.4 5.3 8.3 12.3 17.0 22.9 29.2 36.5 44.8 53.4 62.0 72.8 85.7 95.8 112.4 118.6
3.2 5.2 8.5 12.7 17.5 23.2 29.8 37.5 45.8 55.2 63.2 75.6 88.3 101.0 112.8 124.3
3.5 5.5 8.9 12.8 18.1 23.7 30.9 37.9 47.0 56.0 65.3 77.5 90.7 102.2 114.4 131.8
3.7 5.7 9.3 12.9 18.4 24.1 31.7 38.7 48.8 57.3 66.6 78.4 92.0 103.7 118.0 132.8 141.1
6.0 9.5 13.3 18.8 25.0 32.3 39.5 48.3 58.6 68.7 80.1 91.9 109.2 121.6 139.2 148.9
6.4 9.5 13.7 19.2 25.7 32.7 41.0 50.5 59.6 69.0 80.9 97.1
6.8 9.8 13.9 19.7 25.7 33.1 41.4 50.7 60.1 71.6 85.0 97.6 106.2 129.9 138.2 163.6 170.6
6.7 9.8 14.2 20.4 26.0 33.7 43.1 51.7 62.0 75.3 87.0 100.1 112.2 131.7 145.4
7.0 9.7 14.8 20.6 27.2 34.9 44.1 51.6 63.1 77.3 87.9 101.4 113.9
7.0 10.3 15.2 20.3 27.9 35.0 44.5 53.3 64.5 77.4 87.8 101.3 117.7 127.7
7.5 9.7 14.7 21.1 28.3 37.0 44.7 54.7 64.3 76.9 90.8 106.2 119.5 139.1
7.6 11.3 14.9 21.4 29.0 37.1 44.7 56.2 66.9 76.2 95.8 108.8 120.8 139.3
11.0 16.2 21.7 29.7 37.7 45.5 58.6 68.0 79.9 95.1 109.9 126.7 142.1
12.6 16.6 22.3 30.5 37.9 47.3 59.7 69.2 80.8 102.1 114.2 122.7 145.1
122.4 135.9 152.8
182.7 193.2
206.5 214.8
82
15.0015.25
15.2515.50
15.5015.75
15.7516.00
16.0 22.8 30.5 38.3 49.5 59.7 70.4 83.4 95.0 112.8 127.5 149.5 156.6
14.9 24.2 29.6 39.7 47.8 59.6 73.3 84.4
17.9 23.3 30.7 40.4 50.0 59.7
19.5 22.6 32.5 40.3 51.3 61.2
87.2 97.9
90.2 98.3
146.2
151.0
138.8 153.2 157.1
16.0016.25
16.2516.50
16.5016.75
21.0 34.2 40.5 55.9 62.3 77.1 86.0 101.3 116.8 136.1 149.6
22.8 32.6 41.1 54.3 60.8
27.2 37.6 44.3 53.8 59.1
102.8
102.4
16.7517.00
44.7 53.5 100.3
>17.00
35.1 45.2 53.1 69.7 83.4 93.6
Table 8 Occurrence (hours) of Hindcast Te Versus Hs at the Kilauea site during 1979-2013 Te (s) 4.504.75 0.50-0.75 1 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 HS 3.00-3.25 3.25-3.50 (m) 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75 5.75-6.00 6.00-6.25
4.755.00 26 45 8
5.005.25 29 402 105 5
5.255.50 34 728 1113 73
5.505.75 61 1098 2691 761 26
5.756.00 90 1467 5323 2434 198 6
6.006.25 128 1546 5932 5237 1072 33 4
6.256.50 234 1530 5310 6366 2528 227 3
6.506.75 190 1408 4467 6189 3268 647 68 5 1
6.757.00 190 1298 3437 4865 3089 952 190 30 5
7.007.25 193 1139 3265 4151 2855 1301 373 95 29 3
7.257.50 121 1158 2770 3438 2523 1443 568 192 88 19
1
7.507.75 80 930 2448 3150 2473 1590 805 429 156 41 11 2 1 1
7.758.00 72 782 2204 2677 2093 1548 926 448 239 93 35 10 2 2
8.008.25 19 608 2061 2353 1990 1577 900 544 364 176 82 21 2
8.258.50 12 442 1774 2472 1858 1527 922 737 329 225 109 37 11 4 1
8.508.75 13 361 1561 2261 1673 1543 1020 796 420 204 139 53 22 5 1 1
8.759.00 8 292 1240 2201 1611 1411 1073 943 470 303 200 108 83 23 4 2
9.009.25
9.259.50
9.509.75
9.75100
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
156 1033 2028 1792 1438 1171 739 575 363 171 121 63 20 2 2
146 860 1845 1820 1478 1134 849 535 303 186 122 48 31 14 7 2
110 721 1642 1776 1527 908 760 490 290 196 161 65 22 18 12 4
52 452 1443 1627 1534 931 730 585 297 195 128 86 32 19 17 3 3
30 360 1198 1602 1587 1006 651 522 369 177 123 58 36 14 18 10 2 1
14 216 1072 1538 1496 1082 688 572 438 206 146 55 41 22 12 4 3
8 177 740 1458 1463 1147 700 577 340 245 197 74 43 20 26 17 9
7 121 608 1361 1469 1112 801 668 324 229 147 85 29 33 8 7 2
3 68 470 1151 1446 1139 722 636 350 200 160 98 36 26 19 2 4
1
1
2 1
Te (s) 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 HS 3.75-4.00 4.00-4.25 (m) 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75 5.75-6.00 6.00-6.25 6.25-6.50 6.50-6.75 6.75-7.00 7.00-7.25 7.25-7.50 7.50-7.75
11.2511.50
11.5011.75
2 67 384 870 1377 1196 717 611 401 217 147 118 79 38 11 5 5
2 40 277 751 1140 1130 758 594 416 279 181 109 82 73 23 9 5
1
1
11.7512.00
12.0012.25
12.2512.50
12.5012.75
12.7513.00
13.0013.25
13.2513.50
13.5013.75
13.7514.00
30 173 716 1035 894 892 652 387 252 190 127 85 57 42 5 7 1
24 139 428 930 952 813 623 423 251 177 127 80 66 42 21 7 2
16 108 337 620 912 719 622 424 283 168 118 92 79 30 11 15 7
8 65 247 521 857 725 525 388 339 219 148 124 60 41 20 11 7 4
5 49 134 419 657 706 563 372 320 262 137 136 80 54 30 8 11 6
6 27 123 345 624 657 482 377 286 199 155 108 95 48 31 15 20 10 2
2 32 137 211 470 524 432 386 253 179 153 148 89 58 19 21 13 7 5
1 20 70 183 382 478 444 381 234 163 121 117 88 41 34 30 14 6
1 10 37 108 268 368 398 360 226 137 122 85 90 59 41 44 9 10 3 1 1
2
14.0014.25
4 28 97 195 291 364 334 240 160 134 101 62 69 44 32 29 16 12 1 1 2
83
14.2514.50
1 27 86 145 185 299 269 228 175 107 85 51 51 44 45 21 7 13 6 1 1 1
14.5014.75
2 8 61 100 171 257 208 221 173 83 67 47 58 36 15 14 12 5 7 3 3
14.7515.00
0 7 35 79 138 205 168 212 119 107 59 50 47 37 17 7 11 5 5 2
15.0015.25
1 7 20 59 90 144 136 162 123 104 50 58 50 37 26 6 8 5 5 4 2
15.2515.50
1 6 20 46 91 106 154 138 133 96 64 37 43 31 21 11 6 5 5 3 3 2
15.5015.75
1 11 35 80 121 91 106 115 103 54 55 33 22 20 18 6 5 3 2 3 3 2
15.7516.00
3 6 34 40 82 56 91 100 112 59 60 41 13 14 11 20 8 2 5 1 3 4 1
16.0016.25
2 4 20 59 83 57 97 75 62 74 38 56 39 16 13 25 9 3 4 1 1 2 3
16.2516.50
1 0 5 20 43 57 65 96 83 57 55 26 30 31 19 14 6 16 4 3
1 1
16.5016.75
0 6 16 30 39 56 55 52 36 46 20 22 30 24 14 3 8 4 3 1 1 1
16.7517.00
2 1 9 20 23 49 37 38 31 28 16 26 24 10 9 9 8 1 6 2 1
1
>17.00
1 6 26 39 87 124 129 124 147 108 92 56 33 27 29 29 18 11 7 10 9 5 6 1 3
1501 15764 49917 60973 45324 34490 25608 19493 15073 10221 7133 5029 3366 2311 1602 1153 698 477 281 203 129 62 46 26 23 13 12 3 4 300935
Table 9 Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the Kilauea site during 1979-2013 Te (s) 4.504.75 0.50-0.75 1 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 HS 3.00-3.25 3.25-3.50 (m) 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75 5.75-6.00 6.00-6.25
4.755.00 29 83 20
5.005.25 34 811 312 21
5.255.50 43 1586 3645 334
5.505.75 84 2611 9574 3764 176
5.756.00 135 3567 20226 12834 1432 61
6.006.25 187 3992 23783 29329 8219 327 50
6.256.50 363 4062 22407 38087 20415 2442 40
6.506.75 290 3892 19722 39112 27974 7295 996 90 27
6.757.00 304 3713 15745 32210 27727 11386 2924 566 114
7.007.25 298 3409 15597 28593 27194 16343 5997 1896 691 90
7.257.50 199 3621 13705 24771 25102 18910 9521 4045 2271 585
39
7.507.75 137 3012 12612 23548 25751 21876 14097 9358 4152 1299 411 89 58 65
7.758.00 145 2647 11960 20904 22724 22313 17025 10295 6625 3101 1384 459 109 121
8.008.25 41 2165 11422 18984 22453 23460 17247 12947 10492 6161 3377 986 112
8.258.50 25 1627 10339 20878 21828 23748 18342 18234 9961 8126 4615 1833 611 268 71
8.508.75 29 1395 9427 19652 20506 24820 21162 20406 13171 7685 6200 2702 1303 330 75 87
8.759.00 18 1191 7694 19899 20354 23398 22914 25065 15255 11813 9293 5823 5081 1600 307 195
9.009.25
9.259.50
9.509.75
9.75100
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
674 6749 18947 23154 24883 25943 20380 19342 14603 8124 6671 4034 1429 161 181
636 5716 17873 24361 26035 25956 24105 18564 12648 9150 6909 3149 2327 1180 685 215
507 5037 16434 24623 27895 21429 22348 17534 12435 9941 9405 4410 1752 1581 1195 443
253 3270 14965 23377 28998 22575 22033 21650 13105 10214 7797 6025 2578 1723 1720 349 374
148 2703 12845 23747 31059 24896 20333 20039 16701 9528 7695 4181 2958 1347 1910 1185 258 145
74 1702 11860 23400 30157 27706 22109 22428 20433 11376 9409 4127 3512 2135 1315 502 394
42 1394 8490 22687 30033 30438 22981 23072 16474 13830 13087 5602 3784 2002 2920 2139 1214
38 987 7270 21983 31268 30328 27058 27648 16029 13441 10044 6703 2607 3319 924 897 288
17 566 5637 19319 31395 31867 25122 27024 17707 12061 11153 7994 3347 2700 2253 261 590
204
397 210
227
Te (s) 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 HS 3.75-4.00 4.00-4.25 (m) 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75 5.75-6.00 6.00-6.25 6.25-6.50 6.50-6.75 6.75-7.00 7.00-7.25 7.25-7.50 7.50-7.75
11.2511.50
11.5011.75
12 583 4759 14984 30801 34221 25551 26698 20889 13372 10665 9789 7444 4072 1341 677 754
12 349 3608 13239 26241 33347 27600 26698 22291 17717 13415 9304 8050 8022 2823 1255 769
186
179
11.7512.00
12.0012.25
12.2512.50
12.5012.75
12.7513.00
13.0013.25
13.2513.50
13.5013.75
13.7514.00
277 2327 12869 24354 26996 33370 29919 21294 16440 14326 11129 8536 6404 5299 712 1125 178
221 1827 7827 22629 29337 31351 29076 23703 16675 13744 11335 8203 7496 5454 3044 1142 353
154 1476 6299 15352 28715 28182 29973 24376 19173 13214 10731 9617 9332 4006 1648 2492 1274
79 899 4752 13130 27815 29208 25811 22913 23680 17708 13748 13185 7278 5571 2984 1900 1294 809
48 703 2637 10809 21847 28896 28132 22335 22841 21524 13109 14864 9889 7470 4602 1399 2086 1244
60 389 2433 9173 20860 27353 24584 23017 20784 16797 15027 12033 11980 6721 4913 2628 3874 2155 464
22 489 2771 5693 16098 22480 22454 24144 18654 15366 15095 16680 11368 8374 3089 3780 2541 1543 1186
12 308 1447 5018 13462 20826 23436 24354 17484 14268 12251 13475 11438 6067 5600 5521 2793 1340
10 157 766 3021 9599 16272 21418 23260 17166 12175 12519 10013 12025 8727 6911 8230 1874 2267 729 267 285
527
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
15.2515.50
60 603 2755 7081 13192 20108 21995 18648 14485 14146 12063 8419 10590 7463 6040 6013 3688 2947 280 306 642
15 591 2470 5292 8445 16724 18112 18027 16024 11437 10333 7035 7923 7559 8560 4401 1633 3335 1612 290 337 349
33 178 1752 3681 7936 14675 14207 17850 16304 8925 8330 6591 9123 6295 2937 3069 2830 1307 1976 891
155 1036 2970 6560 11845 11418 17301 11354 11768 7447 7098 7558 6582 3352 1552 2607 1305 1430 628
15 161 584 2315 4328 8513 9596 13502 11854 11758 6388 8398 8140 6732 5249 1320 1950 1365 1478 1249 671
13 133 617 1787 4351 6298 11092 11667 13032 11115 8226 5450 7079 5652 4280 2473 1497 1345 1487 977 1051 752
84
1074
15.5015.75
15.7516.00
16.0016.25
22 346 1359 3871 7285 6573 9017 11523 11861 7116 8191 5532 4114 4197 4136 1502 1362 916 637 1079 1126 815
74 187 1353 1961 5009 4041 7855 10142 13229 7809 9048 7008 2458 2933 2580 5042 2224 601 1676 368 1169 1709 437
44 122 824 2967 5055 4195 8517 7719 7348 10019 5814 9688 7452 3390 3063 6506 2540 928 1349 365 400 848 1342
16.2516.50
16.5016.75
16.7517.00
143 826 2228 3538 4841 8579 8639 6900 7424 4045 5280 6069 4056 3311 1594 4593 1230 1043
198 650 1555 2496 4327 4957 5438 4382 6362 3197 3883 5920 5258 3364 810 2343 1266 1031 372
48 34 359 1041 1485 3755 3387 4046 3808 3982 2556 4658 4751 2213 2224 2427 2327 316 2105 752 396
445 481
450 510
18
536
>17.00
27 201 1124 2092 5772 9863 12125 13702 18932 15732 15184 10368 6807 6187 7399 8095 5449 3766 2551 3841 3744 2319 2979 514 1666
Table 10 Average Hindcast Wave Power (kW/m) by Te and Hs at the Kilauea site during 1979-2013 Te (s) 4.504.75 0.50-0.75 0.9 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 HS 3.00-3.25 3.25-3.50 (m) 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75 5.75-6.00 6.00-6.25
4.755.00 1.1 1.9 2.5
5.005.25 1.2 2.0 3.0 4.2
5.255.50 1.3 2.2 3.3 4.6
5.505.75 1.4 2.4 3.6 4.9 6.8
5.756.00 1.5 2.4 3.8 5.3 7.2 10.2
6.006.25 1.5 2.6 4.0 5.6 7.7 9.9 12.4
6.256.50 1.6 2.7 4.2 6.0 8.1 10.8 13.4
6.506.75 1.5 2.8 4.4 6.3 8.6 11.3 14.6 17.9 27.2
6.757.00 1.6 2.9 4.6 6.6 9.0 12.0 15.4 18.9 22.8
7.007.25 1.5 3.0 4.8 6.9 9.5 12.6 16.1 20.0 23.8 29.9
7.257.50 1.6 3.1 4.9 7.2 9.9 13.1 16.8 21.1 25.8 30.8
39.4
7.507.75 1.7 3.2 5.2 7.5 10.4 13.8 17.5 21.8 26.6 31.7 37.4 44.7 58.4 64.6
7.758.00 2.0 3.4 5.4 7.8 10.9 14.4 18.4 23.0 27.7 33.3 39.5 45.9 54.3 60.7
8.008.25 2.1 3.6 5.5 8.1 11.3 14.9 19.2 23.8 28.8 35.0 41.2 46.9 56.0
8.258.50 2.1 3.7 5.8 8.4 11.7 15.6 19.9 24.7 30.3 36.1 42.3 49.5 55.5 66.9 70.8
8.508.75 2.2 3.9 6.0 8.7 12.3 16.1 20.7 25.6 31.4 37.7 44.6 51.0 59.2 66.0 75.5 86.5
8.759.00 2.2 4.1 6.2 9.0 12.6 16.6 21.4 26.6 32.5 39.0 46.5 53.9 61.2 69.6 76.6 97.4
9.009.25
9.259.50
9.509.75
9.75100
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
4.3 6.5 9.3 12.9 17.3 22.2 27.6 33.6 40.2 47.5 55.1 64.0 71.5 80.3 90.4
4.4 6.6 9.7 13.4 17.6 22.9 28.4 34.7 41.7 49.2 56.6 65.6 75.0 84.3 97.8 107.5
4.6 7.0 10.0 13.9 18.3 23.6 29.4 35.8 42.9 50.7 58.4 67.8 79.6 87.9 99.6 110.7
4.9 7.2 10.4 14.4 18.9 24.2 30.2 37.0 44.1 52.4 60.9 70.1 80.5 90.7 101.2 116.5 124.6
4.9 7.5 10.7 14.8 19.6 24.7 31.2 38.4 45.3 53.8 62.6 72.1 82.2 96.2 106.1 118.5 128.9 145.4
5.3 7.9 11.1 15.2 20.2 25.6 32.1 39.2 46.6 55.2 64.4 75.0 85.7 97.0 109.6 125.4 131.4
5.3 7.9 11.5 15.6 20.5 26.5 32.8 40.0 48.5 56.5 66.4 75.7 88.0 100.1 112.3 125.8 134.9
5.4 8.2 12.0 16.2 21.3 27.3 33.8 41.4 49.5 58.7 68.3 78.9 89.9 100.6 115.5 128.2 143.8
5.6 8.3 12.0 16.8 21.7 28.0 34.8 42.5 50.6 60.3 69.7 81.6 93.0 103.8 118.6 130.3 147.6
204.2
227.4
198.4 210.5
Te (s) 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 HS 3.75-4.00 4.00-4.25 (m) 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75 5.75-6.00 6.00-6.25 6.25-6.50 6.50-6.75 6.75-7.00 7.00-7.25 7.25-7.50 7.50-7.75
11.2511.50
11.5011.75
6.0 8.7 12.4 17.2 22.4 28.6 35.6 43.7 52.1 61.6 72.5 83.0 94.2 107.2 121.9 135.3 150.9
5.8 8.7 13.0 17.6 23.0 29.5 36.4 44.9 53.6 63.5 74.1 85.4 98.2 109.9 122.7 139.4 153.8
185.9
178.5
11.7512.00
12.0012.25
12.2512.50
12.5012.75
12.7513.00
13.0013.25
13.2513.50
13.5013.75
13.7514.00
9.2 13.4 18.0 23.5 30.2 37.4 45.9 55.0 65.2 75.4 87.6 100.4 112.3 126.2 142.4 160.7 177.6
9.2 13.1 18.3 24.3 30.8 38.6 46.7 56.0 66.4 77.7 89.3 102.5 113.6 129.8 144.9 163.1 176.7
9.6 13.7 18.7 24.8 31.5 39.2 48.2 57.5 67.8 78.7 90.9 104.5 118.1 133.5 149.8 166.1 182.0
9.9 13.8 19.2 25.2 32.5 40.3 49.2 59.1 69.9 80.9 92.9 106.3 121.3 135.9 149.2 172.7 184.9 202.3
9.5 14.3 19.7 25.8 33.3 40.9 50.0 60.0 71.4 82.2 95.7 109.3 123.6 138.3 153.4 174.8 189.6 207.4
10.0 14.4 19.8 26.6 33.4 41.6 51.0 61.1 72.7 84.4 96.9 111.4 126.1 140.0 158.5 175.2 193.7 215.5 232.2
11.0 15.3 20.2 27.0 34.3 42.9 52.0 62.5 73.7 85.8 98.7 112.7 127.7 144.4 162.6 180.0 195.5 220.4 237.2
11.7 15.4 20.7 27.4 35.2 43.6 52.8 63.9 74.7 87.5 101.2 115.2 130.0 148.0 164.7 184.0 199.5 223.4
10.0 15.7 20.7 28.0 35.8 44.2 53.8 64.6 76.0 88.9 102.6 117.8 133.6 147.9 168.6 187.0 208.2 226.7 243.0 267.0 285.4
263.4
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
15.2515.50
14.9 21.6 28.4 36.3 45.3 55.2 65.9 77.7 90.5 105.6 119.4 135.8 153.5 169.6 188.7 207.3 230.5 245.6 280.4 305.6 321.1
15.2 21.9 28.7 36.5 45.6 55.9 67.3 79.1 91.6 106.9 121.6 137.9 155.4 171.8 190.2 209.6 233.3 256.6 268.7 290.0 337.0 348.8
16.3 22.2 28.7 36.8 46.4 57.1 68.3 80.8 94.2 107.5 124.3 140.2 157.3 174.9 195.8 219.2 235.9 261.5 282.3 297.1
22.2 29.6 37.6 47.5 57.8 68.0 81.6 95.4 110.0 126.2 142.0 160.8 177.9 197.2 221.7 237.0 261.1 286.0 314.1
15.4 22.9 29.2 39.2 48.1 59.1 70.6 83.3 96.4 113.1 127.8 144.8 162.8 181.9 201.9 220.0 243.7 273.0 295.6 312.1 335.4
13.5 22.1 30.8 38.8 47.8 59.4 72.0 84.5 98.0 115.8 128.5 147.3 164.6 182.3 203.8 224.8 249.6 269.0 297.5 325.8 350.2 375.9
85
358.0
15.5015.75
15.7516.00
16.0016.25
22.2 31.5 38.8 48.4 60.2 72.2 85.1 100.2 115.2 131.8 148.9 167.6 187.0 209.9 229.8 250.4 272.5 305.3 318.5 359.6 375.2 407.4
24.8 31.1 39.8 49.0 61.1 72.2 86.3 101.4 118.1 132.4 150.8 170.9 189.1 209.5 234.6 252.1 278.0 300.7 335.1 368.4 389.6 427.3 436.7
22.2 30.5 41.2 50.3 60.9 73.6 87.8 102.9 118.5 135.4 153.0 173.0 191.1 211.9 235.6 260.2 282.2 309.2 337.2 364.5 400.3 423.9 447.3
16.2516.50
16.5016.75
16.7517.00
28.6 41.3 51.8 62.1 74.5 89.4 104.1 121.1 135.0 155.6 176.0 195.8 213.5 236.5 265.6 287.0 307.4 347.7
33.0 40.6 51.8 64.0 77.3 90.1 104.6 121.7 138.3 159.8 176.5 197.3 219.1 240.3 269.9 292.9 316.5 343.6 372.3
23.9 33.9 39.9 52.0 64.6 76.6 91.5 106.5 122.8 142.2 159.8 179.1 198.0 221.3 247.1 269.7 290.9 316.1 350.9 376.0 395.9
444.9 480.5
450.0 510.0
17.7
535.7
>17.00
27.1 33.4 43.2 53.6 66.3 79.5 94.0 110.5 128.8 145.7 165.0 185.1 206.3 229.1 255.1 279.1 302.7 342.4 364.4 384.1 416.0 463.8 496.4 514.0 555.5
Table 11 Occurrence (hours) of Hindcast Te Versus Hs at the Pauwela site during 1979-2013 Te (s) 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 HS 3.00-3.25 (m) 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75 5.75-6.00
4.254.50
4.504.75
4.755.00
5.005.25
5 45 47 8
5 127 202 76 8
47 329 650 296 36 2
82 521 1262 1021 308 32 1 1
5.255.50 1 124 872 2260 2305 908 172 16 4
5.505.75 4 169 1089 2931 3475 1984 507 83 4
5.756.00 1 211 1297 3533 4327 2646 1008 203 45 6
6.006.25 9 143 1132 3489 4404 3388 1446 565 118 29 7 1
6.256.50 9 251 1295 3210 4407 3281 1863 873 325 68 16 5
6.506.75 4 208 1224 2821 3671 3271 2060 1086 395 185 83 27 2
6.757.00 25 330 1222 2361 3225 3006 2027 1165 570 346 166 84 21 12
7.007.25 29 271 1100 2249 3094 2497 1946 1240 704 520 343 125 36 4 1
7.257.50 21 207 1031 2148 2638 2166 1761 1286 817 580 256 157 93 25 9 2
7.507.75 2 250 1047 1858 2288 2085 1893 1362 885 600 420 193 127 70 31 11 5 4
7.758.00
8.008.25
8.258.50
8.508.75
8.759.00
9.009.25
9.259.50
9.509.75
9.75100
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
135 950 1763 2026 1878 1671 1235 767 559 362 220 124 95 42 25 23
113 945 1764 1827 1781 1415 1193 839 502 397 280 214 140 58 48 20 16 4
78 757 1481 1739 1512 1360 1068 741 523 364 318 211 104 68 50 26 25 4 4 2
86 640 1312 1558 1457 1293 1006 692 469 297 228 140 94 88 61 19 19 8 7 3 1
26 428 1041 1538 1340 1289 1096 649 531 289 181 109 107 51 47 31 28 10 11 3
18 380 1050 1296 1393 1265 1177 729 560 255 226 103 78 74 19 12 4 0 12 2
21 244 916 1364 1421 1332 1035 687 502 314 172 95 70 42 15 6 6 2 4 11 3
4 208 659 1268 1397 1375 1016 705 426 327 174 75 69 33 20 0 5 2 2
1 108 490 1091 1437 1337 993 762 470 274 139 84 35 14 27 3 2 2 2
69 487 1003 1282 1273 972 738 446 278 134 67 45 23 14 12 6 2 5
45 457 826 1231 1202 925 746 503 304 155 72 50 36 19 8 1
20 359 727 1169 1213 972 748 525 340 172 127 50 45 14 6 2 2
12 196 735 976 1249 896 729 511 367 165 99 56 26 5 2 3 3
6 139 504 961 1213 965 701 543 344 165 111 44 34 11 13 2 2
16.0016.25
16.2516.50
16.5016.75
16.7517.00
>17.00
Te (s) 11.2511.50 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 HS 3.75-4.00 (m) 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75 5.75-6.00 6.00-6.25 6.25-6.50 6.50-6.75 6.75-7.00 7.00-7.25 7.25-7.50
4 89 426 783 1042 959 770 498 379 209 103 59 32 10 5 5
11.5011.75 4 73 336 640 880 823 779 490 393 261 121 70 40 13 7 5 5
11.7512.00 1 42 294 530 811 945 769 575 328 230 157 94 39 25 7 4 5
12.0012.25 3 23 160 427 679 803 736 561 373 200 159 87 64 25 9 9 2 2
12.2512.50
11 114 305 571 733 674 511 398 225 113 93 93 42 14 13 9 4 1
12.5012.75
4 56 259 396 610 696 551 345 282 147 96 68 46 16 5 1
12.7513.00
6 51 205 356 410 556 543 405 259 122 105 80 50 18 14 2 3
13.0013.25 2 0 28 139 311 335 498 502 378 259 155 92 71 67 16 18 10 2 1
13.2513.50
3 21 104 206 281 404 389 365 249 189 77 73 47 45 35 12 1
13.5013.75
3 13 77 174 201 312 285 341 227 167 82 82 54 29 29 15 6 1
13.7514.00
2 5 48 146 193 260 291 254 208 180 106 60 24 37 28 15 5 5
14.0014.25
7 24 87 148 207 248 194 197 158 110 66 39 21 41 19 4 6
86
14.2514.50
2 3 11 62 84 210 239 176 205 127 102 84 60 28 36 22 5 6 1
14.5014.75
1 11 37 78 135 178 168 160 140 85 94 71 18 19 15 7 9 2
14.7515.00
1 13 34 64 88 142 154 148 105 77 50 49 26 12 21 15 8 4
15.0015.25
1 11 23 57 84 110 116 119 103 87 60 40 34 18 8 1 3 4 3
15.2515.50
1 9 22 54 59 69 106 120 81 72 51 48 21 24 6 4 2 2 4 1
15.5015.75
1 3 9 17 40 57 94 96 73 68 69 33 28 18 16 3 2 2 3 3
15.7516.00
4 10 26 27 62 50 50 56 66 57 36 31 14 21 7 4 3 1 4 2
1 2 10 13 23 36 59 57 41 64 48 39 24 10 15 16 2 1 2 1 4
3 14 9 18 39 29 34 23 45 34 26 18 19 11 12 3 2 4 4 3
9 7 8 29 29 29 25 26 29 25 11 29 8 8 8 4 4
4 2 6 10 20 26 20 14 16 19 17 10 10 9 10 4 3 1 1
7 16 37 56 52 36 58 44 40 18 16 23 25 20 12 7 4 4 8 4 1
105 2785 17157 41394 54256 48427 39097 29288 21476 15856 11013 7223 4511 2983 2079 1316 684 554 311 186 113 45 23 22 14 12 4 1 300935
Table 12 Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the Pauwela site during 1979-2013 Te (s) 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 HS 3.00-3.25 (m) 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75 5.75-6.00
4.254.50
4.504.75
4.755.00
5.005.25
11 129 194 41
10 386 863 452 59
97 1047 2967 1832 297 21
179 1735 6113 6687 2647 343 13 17
5.255.50 1 288 3105 11621 16002 8267 1985 229 71
5.505.75 6 404 4080 15755 25427 18951 6183 1256 76
5.756.00 1 504 5126 19771 33284 26626 12876 3280 868 145
6.006.25 14 359 4681 20454 35285 35727 19502 9487 2415 723 206 33
6.256.50 15 652 5513 19815 37049 36087 26301 15425 6954 1776 489 177
6.506.75 7 583 5432 18090 32168 37719 30392 20067 8851 5056 2653 1011 87
6.757.00 45 950 5486 15599 29547 36303 31310 22523 13469 9861 5480 3273 942 602
7.007.25 52 785 5202 15637 29440 31331 31196 24897 17304 15323 11863 5045 1665 214 57
7.257.50 41 636 5042 15259 26029 28364 29619 26883 20958 17862 9162 6604 4484 1370 554 140
7.507.75 4 797 5326 13781 23403 28397 33283 29786 23569 19175 15808 8460 6385 4008 2012 825 396 356
7.758.00
8.008.25
8.258.50
8.508.75
8.759.00
9.009.25
9.259.50
9.509.75
9.75100
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
465 5029 13517 21429 26632 30291 27998 21278 18526 14126 10115 6450 5682 2841 1907 1949
406 5153 13896 20057 26105 26749 28163 24077 17293 16141 13268 11637 8717 4097 3797 1727 1561 442
286 4271 12149 19736 22966 26538 26081 21971 18683 15339 15693 11854 6703 4953 4050 2408 2534 455 489 273
338 3751 11008 18348 22805 26109 25512 21259 17353 12971 11559 8181 6333 6623 5166 1784 1980 933 879 422 144
110 2610 9060 18720 21678 26944 28843 20686 20351 13001 9505 6591 7368 3989 4130 3039 3045 1220 1452 426
78 2451 9481 16419 23439 27219 31814 23929 22157 11871 12259 6359 5584 6007 1696 1239 441
95 1612 8683 17725 24569 29621 28695 23392 20626 15050 9648 6138 5190 3522 1398 625 694 256 570 1707 487
19 1382 6495 16964 25000 31407 29102 24613 17966 16200 10095 5015 5301 2832 1936 614 256 298
5 768 4962 15259 26532 31630 29311 27479 20361 14023 8288 5809 2775 1244 2733 333 259 268 312
518 5102 14489 24328 30904 29520 27501 19957 14572 8278 4745 3631 2122 1433 1379 773 282 789
352 4955 12142 24123 29949 28899 28432 23087 16469 9741 5224 4140 3395 1962 935 137
161 4032 11016 23586 31158 31251 29460 24753 18885 11097 9478 4250 4413 1522 733 272 292
101 2242 11513 20171 32933 29710 29600 24877 21051 10885 7617 4901 2611 560 256 414 452
48 1658 8159 20566 32960 32809 29080 27090 20252 11289 8780 3971 3509 1278 1700 284 305
15.5015.75
15.7516.00
16.0016.25
126 430 1326 1635 4680 4394 5162 6619 8925 8793 6224 5952 3014 4989 1814 1151 946 346 1460 778
26 68 425 675 1476 2767 5291 5886 4949 8779 7570 6856 4725 2178 3631 4204 588 326 693 359 1613
1648 285
Te (s) 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 HS 3.75-4.00 (m) 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75 5.75-6.00 6.00-6.25 6.25-6.50 6.50-6.75 6.75-7.00 7.00-7.25 7.25-7.50
11.2511.50
11.5011.75
11.7512.00
12.0012.25
36 1092 7093 17172 29162 33455 32748 25683 22892 14599 8359 5450 3385 1182 669 738
37 928 5769 14428 25275 29465 34127 25597 24375 18804 10182 6587 4368 1561 935 757 820
9 559 5192 12226 24015 34972 34341 30782 20912 17026 13349 9193 4257 3076 953 605 864
27 321 2899 10186 20515 30491 33743 30905 24255 15231 13988 8681 7251 3189 1295 1418 348 378
12.2512.50
12.5012.75
12.7513.00
155 2148 7416 17746 28272 31683 28765 26532 17479 10162 9508 10857 5506 2059 2105 1637 769 213
55 1078 6448 12630 24192 33607 31731 23584 22504 13417 10137 8117 6090 2366 823
85 1002 5308 11486 16802 27647 32022 28356 21095 11418 11282 9749 6821 2751 2417 366 635
223
13.0013.25 21 565 3641 10362 14020 25225 30392 26896 21483 14819 10074 8790 9409 2485 3096 1880 410 232
13.2513.50
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
46 447 2842 7060 11965 20797 24241 26618 21123 18617 8637 9401 6693 7229 6193 2324 206
44 278 2102 5998 8716 16487 18203 25231 19833 16772 9362 10616 7880 4772 5223 2974 1335 240
32 106 1332 5213 8538 14089 18847 19266 18503 18407 12451 7945 3565 6122 5161 3035 1141 1211
149 694 3176 6677 11387 16356 15126 17889 16481 13040 8913 5987 3579 7676 3928 903 1485
32 68 308 2314 3794 11830 16093 13982 19025 13469 12486 11664 9322 4869 6953 4659 1184 1557 268
24 323 1415 3641 7764 12185 13551 15116 15171 10540 13091 11207 3177 3785 3246 1673 2370 554
24 380 1344 3033 5077 9896 12717 14178 11636 9705 7203 7988 4647 2373 4652 3654 2112 1156
22 325 904 2768 4992 7887 9771 11631 11612 11184 8788 6609 6222 3607 1786 247 802 1163 940
87
15.2515.50
19 272 859 2651 3551 4984 9085 11898 9269 9494 7571 8020 3903 5027 1354 1019 547 595 1334 353
27 91 346 842 2465 4192 8158 9795 8658 9143 10347 5539 5311 3799 3651 775 570 606 986 1095
16.2516.50
16.5016.75
16.7517.00
106 588 466 1153 2956 2678 3531 2887 6248 5439 4649 3596 4201 2744 3189 875 640
379 383 514 2230 2718 3097 3110 3662 4685 4471 2221 6485 2006 2164 2337 1299
168 108 393 769 1846 2819 2515 1982 2614 3482 3531 2253 2535 2465 3010 1328 1086 385
1514 1648 1293
1567
448
>17.00
385 1101 3027 5526 5871 4694 8741 7426 7614 3838 3877 5987 7239 6304 4069 2631 1598 1789 3907 1988 518
Table 13 Average Hindcast Wave Power (kW/m) by Te and Hs at the Kilauea site during 1979-2013 Te (s) 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 HS 3.00-3.25 (m) 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50 5.50-5.75 5.75-6.00
4.254.50
4.504.75
4.755.00
5.005.25
2.1 2.9 4.1 5.1
2.0 3.0 4.3 6.0 7.4
2.1 3.2 4.6 6.2 8.3 10.4
2.2 3.3 4.8 6.5 8.6 10.7 13.4 16.9
5.255.50 1.5 2.3 3.6 5.1 6.9 9.1 11.5 14.3 17.7
5.505.75 1.5 2.4 3.7 5.4 7.3 9.6 12.2 15.1 19.0
5.756.00 1.4 2.4 4.0 5.6 7.7 10.1 12.8 16.2 19.3 24.1
6.006.25 1.5 2.5 4.1 5.9 8.0 10.5 13.5 16.8 20.5 24.9 29.4 33.0
6.256.50 1.7 2.6 4.3 6.2 8.4 11.0 14.1 17.7 21.4 26.1 30.6 35.4
6.506.75 1.8 2.8 4.4 6.4 8.8 11.5 14.8 18.5 22.4 27.3 32.0 37.4 43.7
6.757.00 1.8 2.9 4.5 6.6 9.2 12.1 15.4 19.3 23.6 28.5 33.0 39.0 44.9 50.2
7.007.25 1.8 2.9 4.7 7.0 9.5 12.5 16.0 20.1 24.6 29.5 34.6 40.4 46.3 53.5 57.0
7.257.50 2.0 3.1 4.9 7.1 9.9 13.1 16.8 20.9 25.7 30.8 35.8 42.1 48.2 54.8 61.6 69.8
7.507.75 2.1 3.2 5.1 7.4 10.2 13.6 17.6 21.9 26.6 32.0 37.6 43.8 50.3 57.3 64.9 75.0 79.3 89.1
7.758.00
8.008.25
8.258.50
8.508.75
8.759.00
9.009.25
9.259.50
9.509.75
9.75100
10.010.25
10.2510.50
10.5010.75
10.7511.00
11.0011.25
3.4 5.3 7.7 10.6 14.2 18.1 22.7 27.7 33.1 39.0 46.0 52.0 59.8 67.6 76.3 84.7
3.6 5.5 7.9 11.0 14.7 18.9 23.6 28.7 34.4 40.7 47.4 54.4 62.3 70.6 79.1 86.4 97.5 110.5
3.7 5.6 8.2 11.3 15.2 19.5 24.4 29.7 35.7 42.1 49.4 56.2 64.4 72.8 81.0 92.6 101.3 113.8 122.2 136.6
3.9 5.9 8.4 11.8 15.7 20.2 25.4 30.7 37.0 43.7 50.7 58.4 67.4 75.3 84.7 93.9 104.2 116.6 125.6 140.6 144.3
4.2 6.1 8.7 12.2 16.2 20.9 26.3 31.9 38.3 45.0 52.5 60.5 68.9 78.2 87.9 98.0 108.8 122.0 132.0 142.0
4.3 6.5 9.0 12.7 16.8 21.5 27.0 32.8 39.6 46.6 54.2 61.7 71.6 81.2 89.3 103.2 110.3
4.5 6.6 9.5 13.0 17.3 22.2 27.7 34.0 41.1 47.9 56.1 64.6 74.1 83.8 93.2 104.2 115.6 127.9 142.6 155.1 162.3
4.9 6.6 9.9 13.4 17.9 22.8 28.6 34.9 42.2 49.5 58.0 66.9 76.8 85.8 96.8
5.2 7.1 10.1 14.0 18.5 23.7 29.5 36.1 43.3 51.2 59.6 69.1 79.3 88.9 101.2 111.1 129.6 134.0 156.0
7.5 10.5 14.4 19.0 24.3 30.4 37.3 44.7 52.4 61.8 70.8 80.7 92.3 102.4 115.0 128.8 141.0 157.9
7.8 10.8 14.7 19.6 24.9 31.2 38.1 45.9 54.2 62.8 72.5 82.8 94.3 103.3 116.9 136.6
8.0 11.2 15.2 20.2 25.7 32.2 39.4 47.1 55.5 64.5 74.6 85.0 98.1 108.7 122.1 136.0 145.9
8.4 11.4 15.7 20.7 26.4 33.2 40.6 48.7 57.4 66.0 76.9 87.5 100.4 111.9 128.2 137.8 150.8
8.0 11.9 16.2 21.4 27.2 34.0 41.5 49.9 58.9 68.4 79.1 90.3 103.2 116.2 130.7 141.8 152.5
137.3 142.6
122.7 127.8 148.8
Te (s) 0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 HS 3.75-4.00 (m) 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25 5.25-5.50 5.50-5.75 5.75-6.00 6.00-6.25 6.25-6.50 6.50-6.75 6.75-7.00 7.00-7.25 7.25-7.50
11.2511.50
11.5011.75
11.7512.00
12.0012.25
8.9 12.3 16.6 21.9 28.0 34.9 42.5 51.6 60.4 69.9 81.2 92.4 105.8 118.2 133.8 147.7
9.3 12.7 17.2 22.5 28.7 35.8 43.8 52.2 62.0 72.0 84.1 94.1 109.2 120.1 133.6 151.4 164.1
9.3 13.3 17.7 23.1 29.6 37.0 44.7 53.5 63.8 74.0 85.0 97.8 109.2 123.0 136.2 151.3 172.9
9.0 13.9 18.1 23.9 30.2 38.0 45.8 55.1 65.0 76.2 88.0 99.8 113.3 127.6 143.8 157.6 174.2 188.8
12.2512.50
12.5012.75
12.7513.00
14.1 18.8 24.3 31.1 38.6 47.0 56.3 66.7 77.7 89.9 102.2 116.7 131.1 147.1 161.9 181.9 192.1 213.4
13.8 19.2 24.9 31.9 39.7 48.3 57.6 68.4 79.8 91.3 105.6 119.4 132.4 147.9 164.7
14.2 19.6 25.9 32.3 41.0 49.7 59.0 70.0 81.4 93.6 107.4 121.9 136.4 152.9 172.6 183.0 211.5
223.0
13.0013.25 10.6 20.2 26.2 33.3 41.9 50.7 60.5 71.2 82.9 95.6 109.5 123.8 140.4 155.3 172.0 188.0 204.9 231.8
13.2513.50
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
15.2 21.3 27.3 34.3 42.6 51.5 62.3 72.9 84.8 98.5 112.2 128.8 142.4 160.6 176.9 193.6 206.1
14.6 21.4 27.3 34.5 43.4 52.8 63.9 74.0 87.4 100.4 114.2 129.5 145.9 164.5 180.1 198.3 222.5 239.8
15.9 21.2 27.8 35.7 44.2 54.2 64.8 75.9 89.0 102.3 117.5 132.4 148.5 165.4 184.3 202.3 228.2 242.3
21.2 28.9 36.5 45.1 55.0 66.0 78.0 90.8 104.3 118.5 135.0 153.5 170.4 187.2 206.7 225.8 247.5
16.0 22.7 28.0 37.3 45.2 56.3 67.3 79.4 92.8 106.1 122.4 138.9 155.4 173.9 193.1 211.8 236.9 259.5 267.8
24.3 29.4 38.3 46.7 57.5 68.5 80.7 94.5 108.4 124.0 139.3 157.8 176.5 199.2 216.4 238.9 263.4 277.1
24.1 29.2 39.5 47.4 57.7 69.7 82.6 95.8 110.8 126.0 144.1 163.0 178.7 197.8 221.5 243.6 264.0 289.0
21.8 29.5 39.3 48.6 59.4 71.7 84.2 97.7 112.7 128.6 146.5 165.2 183.0 200.4 223.3 246.7 267.2 290.8 313.5
88
15.2515.50
19.3 30.2 39.0 49.1 60.2 72.2 85.7 99.2 114.4 131.9 148.5 167.1 185.8 209.5 225.6 254.7 273.6 297.3 333.5 352.5
15.5015.75
26.6 30.3 38.5 49.5 61.6 73.5 86.8 102.0 118.6 134.5 150.0 167.9 189.7 211.1 228.2 258.4 285.2 303.2 328.8 364.9
15.7516.00
16.0016.25
31.5 43.0 51.0 60.5 75.5 87.9 103.2 118.2 135.2 154.3 172.9 192.0 215.3 237.6 259.1 287.8 315.3 346.1 364.9 389.1
26.0 33.9 42.5 51.9 64.2 76.9 89.7 103.3 120.7 137.2 157.7 175.8 196.9 217.8 242.1 262.7 293.8 326.3 346.6 359.4 403.2
16.2516.50
16.5016.75
16.7517.00
35.3 42.0 51.8 64.0 75.8 92.3 103.8 125.5 138.8 160.0 178.8 199.8 221.1 249.5 265.7 291.8 319.8
42.1 54.7 64.2 76.9 93.7 106.8 124.4 140.8 161.6 178.8 201.9 223.6 250.8 270.6 292.2 324.6
42.0 53.9 65.5 76.9 92.3 108.4 125.7 141.6 163.4 183.3 207.7 225.3 253.5 273.9 301.0 332.0 361.8 384.9
378.6 412.1 431.1
391.8
448.5
>17.00
55.1 68.8 81.8 98.7 112.9 130.4 150.7 168.8 190.4 213.2 242.3 260.3 289.6 315.2 339.1 375.8 399.4 447.2 488.3 497.1 517.8
Table 14 Occurrence (hours) of Hindcast Te Versus Hs at the Upolu site during 1979-2013 Te (s) 3.503.75 0.50-0.75 0.75-1.00 3 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25
3.754.00
4.004.25
4.254.50
4.504.75
7
2 1
1 2
12 20 2
4.755.00 1 66 151 20 1
5.005.25 16 122 503 457 47
5.255.50 22 314 1306 1830 433 62
5.505.75 19 446 2271 3417 1634 340 19
5.756.00 11 581 3287 5802 4203 1295 190 8
6.006.25 34 804 4108 7124 6569 3101 814 46
6.256.50 102 1038 3930 7625 8053 5023 1728 383 28
6.506.75 112 1145 3587 6814 8078 5818 2634 755 151 7 1
6.757.00 135 1298 3483 5653 6777 5356 3325 1338 445 83 2 1
7.007.25 152 1301 3303 4704 4873 4281 2808 1621 886 350 34
7.257.50 179 1407 3120 4037 4014 3193 2576 1590 1026 336 105 27 3
7.507.75 162 1410 2853 3576 3335 2471 1754 1228 828 482 251 69 22 1
7.758.00 207 1180 2608 3031 2746 1925 1215 985 706 491 309 153 57 9
8.008.25 173 1133 2163 2624 2044 1578 906 598 581 360 232 164 108 13 2
8.258.50 180 1135 2061 2405 1774 1371 794 546 453 301 232 160 87 62 25
8.508.75 97 1030 1849 1886 1533 1156 667 411 243 175 186 114 59 45 18 4
8.759.00 54 781 1510 1662 1195 1011 548 300 165 136 73 69 82 42 25 14 1
9.009.25 35 609 1339 1398 1010 855 459 356 175 83 68 66 78 47 33 23 6 1 1
9.259.50 53 520 1173 1130 918 635 394 239 163 100 64 40 52 20 30 15 5
9.509.75 28 448 1121 974 730 566 367 220 135 84 49 47 39 7 5
9.7510.0 27 422 943 868 596 509 344 222 161 68 70 36 21 7
10.010.25 30 295 710 754 527 446 332 241 140 57 52 21 18 2 9
5 7 2
13 18 12
10.2510.50 23 292 519 611 471 464 251 206 125 48 46 18 14 5 6 1 1
5 2
10.5010.75 8 212 396 600 376 291 276 173 110 50 33 27 7 6 4 2 4
Te (s) 10.7511.00 3 171 349 414 380 282 265 155 64 51 24 17 12 12
0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 1 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50
11.0011.25 3 128 269 351 339 239 205 146 73 62 10 10 18 6 1
11.2511.50 5 77 235 308 280 210 137 117 63 43 15 7 8 8
11.5011.75 46 187 187 252 189 123 96 62 42 20 7 5 8 2 1
11.7512.00 1 53 182 144 198 117 83 70 63 41 17 4 4 6 4 1
12.0012.25
12.2512.50
49 129 106 122 118 77 61 33 19 14 8 3 2 5 1 1
26 82 95 127 82 73 58 24 16 19 8 5 0 3 0 6
12.5012.75 1 34 90 92 82 57 53 54 19 28 15 13 14 2 1 2 4
12.7513.00
13.0013.25
18 85 84 67 48 44 48 38 22 16 13 5 4 4 4 1
12 54 91 60 59 40 38 19 13 11 26 10 6 3 7
13.2513.50 1 12 61 49 43 39 17 61 11 20 11 23 2 5
13.5013.75
3 3
1 1 3
8 30 53 53 26 15 28 17 11 5 13 6
13.7514.00 1 3 28 57 37 37 13 14 16 14 5 6 6 11 1 1 2
89
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
15.2515.50
15 48 37 36 23 10 18 15 3 3 5 2
13 30 30 38 7 7 18 7 6 2 5
2 7 20 18 21 8 5 9 14 6 6 3 2
2 7 13 7 28 8 5 1 9 3 5 2 13 4
4 4 10 10 14 4 4 6 7
2
1 1 2
1 2
3
2
11 7 13 8 7 3 5 3 2
5 3
3 19
15.5015.75
15.7516.00
6 1 10 8 3 1 7
4 2 3 1 3
8
5 4
1
16.0016.25
2 1 1 1
16.2516.50
16.5016.75
16.7517.00
1
1 2
3
2
4
1
1
1
2 1
>17.00
1 1 1 6
1875 18661 50144 71179 64091 43418 23614 12457 7090 3660 2019 1187 754 367 218 90 58 30 19 4 300935
Table 15 Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the Upolu site during 1979-2013 Te (s) 3.503.75 0.50-0.75 0.75-1.00 3 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25
3.754.00
4.004.25
4.254.50
4.504.75
9
3 2
2 5
22 61 8
4.755.00 1 131 461 87 6
5.005.25 22 261 1680 2142 303
5.255.50 28 736 4652 9130 2949 546
5.505.75 28 1097 8478 18272 11780 3202 229
5.756.00 17 1486 12951 32635 32433 12972 2405 124
6.006.25 53 2144 16965 42306 53230 32884 10925 774
6.256.50 168 2835 16885 47333 68334 56164 24584 6740 590
6.506.75 188 3245 16036 44233 72176 68258 39463 14029 3401 195 31
6.757.00 221 3835 16027 38069 63176 65974 52398 26143 10586 2327 64 39
7.007.25 265 3964 15792 33022 47392 54803 46307 33241 22235 10521 1184
7.257.50 322 4442 15390 29486 40506 42712 44487 34115 26694 10477 3867 1173 142
7.507.75 300 4563 14609 27308 35066 34447 31187 27444 22669 15632 9652 3060 1100 59
7.758.00 398 3971 13821 23917 29931 27751 22633 22940 20153 16677 12410 7063 3091 553
8.008.25 335 4003 11925 21397 22972 23675 17483 14320 17279 12674 9674 7992 6001 827 144
8.258.50 370 4182 11756 20202 20704 21489 15858 13682 13690 11057 10118 8051 5075 4158 1866
8.508.75 206 3885 10980 16351 18627 18661 13760 10760 7679 6701 8319 5963 3572 3106 1420 346
8.759.00 124 3053 9214 14944 14901 17020 11655 8059 5406 5351 3401 3734 5146 2973 2039 1291 119
9.009.25 81 2482 8394 13070 12900 14811 10192 9730 5888 3358 3277 3758 5156 3485 2756 2190 638 113 126
9.259.50 121 2160 7464 10792 12210 11391 8956 6840 5696 4177 3190 2333 3480 1513 2631 1445 534
9.509.75 65 1916 7517 9624 9989 10482 8570 6500 4805 3618 2505 2813 2727 573 428
15.5015.75
15.7516.00
16.0016.25
101 22 282 307 140 61 463
75 46 89 33 154
38
1197
784 638
1475 2253 1642
9.7510.0 68 1884 6478 8800 8474 9693 8365 6749 5941 3021 3744 2224 1486 567 520 827 254
10.010.25 83 1350 5056 7968 7643 8802 8323 7589 5326 2635 2829 1326 1325 176 877 611 252
10.2510.50 65 1381 3747 6574 6964 9439 6494 6709 4880 2239 2574 1187 1063 432 574 108 122
10.5010.75 23 1025 2962 6709 5741 6022 7312 5679 4407 2407 1865 1802 559 547 396 221 492
Te (s) 10.7511.00 9 861 2661 4749 6051 5913 7183 5216 2654 2553 1405 1170 958 1085
0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 108 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50
11.0011.25 9 645 2120 4082 5520 5105 5810 5079 3114 3139 585 713 1457 546 112
11.2511.50 16 400 1883 3686 4711 4596 3923 4211 2765 2270 895 493 660 750
11.5011.75 255 1556 2298 4332 4263 3612 3557 2736 2271 1237 522 422 778 215 117
11.7512.00 3 300 1523 1808 3408 2685 2482 2619 2863 2245 1098 295 341 607 438 122
12.0012.25
12.2512.50
274 1096 1340 2147 2842 2356 2300 1554 1083 918 633 268 218 559 129 135
157 712 1206 2260 2000 2258 2249 1150 902 1315 622 446 356 868
12.5012.75 3 209 780 1183 1496 1400 1710 2170 919 1661 1022 1025 1293 206 119 254 581
12.7513.00
13.0013.25
114 758 1104 1256 1212 1457 1952 1897 1338 1134 1050 462 441 493 545 143
77 508 1222 1180 1561 1313 1548 955 772 800 2161 982 638 396 960
13.2513.50 3 79 578 670 855 1038 557 2560 589 1239 818 1945 193 553
13.5013.75
438 478
151 170 544
52 308 766 1046 698 511 1226 860 670 375 1129 698
13.7514.00 4 21 279 793 742 978 448 630 842 897 375 555 588 1316 166 194 407
90
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
15.2515.50
147 681 772 941 787 451 982 1011 222 268 527 220
134 450 648 993 256 309 1014 449 475 189 533
10 70 293 378 588 298 223 537 896 478 559 330 239
11 78 203 140 813 300 242 58 588 259 462 226 1668 540
23 46 151 211 398 145 186 354 453
11
181 213 444
196 454
650
181
182 161 372 296 323 176 329 247 181
653 412
401 2739
73
32 57 77
16.2516.50
16.5016.75
16.7517.00
22
25 63
176
130
255
81
85
90
57 43
>17.00
55 67 78 570
Table 16 Average Hindcast Wave Power (kW/m) by Te and Hs at the Upolu site during 1979-2013 Te (s) 3.503.75 0.50-0.75 0.75-1.00 1.2 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 HS 2.50-2.75 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 4.50-4.75 4.75-5.00 5.00-5.25
3.754.00
4.004.25
4.254.50
4.504.75
1.3
1.7 2.3
1.6 2.7
1.8 3.1 3.8
4.755.00 1.4 2.0 3.1 4.3 5.6
5.005.25 1.4 2.1 3.3 4.7 6.5
5.255.50 1.3 2.3 3.6 5.0 6.8 8.8
5.505.75 1.5 2.5 3.7 5.3 7.2 9.4 12.0
5.756.00 1.5 2.6 3.9 5.6 7.7 10.0 12.7 15.5
6.006.25 1.6 2.7 4.1 5.9 8.1 10.6 13.4 16.8
6.256.50 1.6 2.7 4.3 6.2 8.5 11.2 14.2 17.6 21.1
6.506.75 1.7 2.8 4.5 6.5 8.9 11.7 15.0 18.6 22.5 27.9 31.0
6.757.00 1.6 3.0 4.6 6.7 9.3 12.3 15.8 19.5 23.8 28.0 31.9 39.4
7.007.25 1.7 3.0 4.8 7.0 9.7 12.8 16.5 20.5 25.1 30.1 34.8
7.257.50 1.8 3.2 4.9 7.3 10.1 13.4 17.3 21.5 26.0 31.2 36.8 43.4 47.3
7.507.75 1.9 3.2 5.1 7.6 10.5 13.9 17.8 22.3 27.4 32.4 38.5 44.4 50.0 58.9
7.758.00 1.9 3.4 5.3 7.9 10.9 14.4 18.6 23.3 28.5 34.0 40.2 46.2 54.2 61.4
8.008.25 1.9 3.5 5.5 8.2 11.2 15.0 19.3 23.9 29.7 35.2 41.7 48.7 55.6 63.6 72.1
8.258.50 2.1 3.7 5.7 8.4 11.7 15.7 20.0 25.1 30.2 36.7 43.6 50.3 58.3 67.1 74.6
8.508.75 2.1 3.8 5.9 8.7 12.2 16.1 20.6 26.2 31.6 38.3 44.7 52.3 60.5 69.0 78.9 86.4
8.759.00 2.3 3.9 6.1 9.0 12.5 16.8 21.3 26.9 32.8 39.3 46.6 54.1 62.8 70.8 81.6 92.2 118.9
9.009.25 2.3 4.1 6.3 9.3 12.8 17.3 22.2 27.3 33.6 40.5 48.2 56.9 66.1 74.2 83.5 95.2 106.4 113.2 125.5
9.259.50 2.3 4.2 6.4 9.6 13.3 17.9 22.7 28.6 34.9 41.8 49.8 58.3 66.9 75.6 87.7 96.3 106.9
9.509.75 2.3 4.3 6.7 9.9 13.7 18.5 23.4 29.5 35.6 43.1 51.1 59.9 69.9 81.8 85.6
15.5015.75
15.7516.00
16.0016.25
16.8 22.3 28.2 38.4 46.6 60.7 66.2
18.7 22.8 29.7 33.2 51.2
19.1
149.7
156.9 159.5
113.5 125.2 136.8
9.7510.0 2.5 4.5 6.9 10.1 14.2 19.0 24.3 30.4 36.9 44.4 53.5 61.8 70.8 81.0 104.1 118.2 126.9
10.010.25 2.8 4.6 7.1 10.6 14.5 19.7 25.1 31.5 38.0 46.2 54.4 63.2 73.6 87.9 97.5 122.1 126.0
10.2510.50 2.8 4.7 7.2 10.8 14.8 20.3 25.9 32.6 39.0 46.6 56.0 66.0 75.9 86.4 95.6 108.4 121.6
10.5010.75 2.9 4.8 7.5 11.2 15.3 20.7 26.5 32.8 40.1 48.1 56.5 66.7 79.9 91.1 99.1 110.3 123.1
Te (s) 10.7511.00 3.0 5.0 7.6 11.5 15.9 21.0 27.1 33.7 41.5 50.1 58.6 68.8 79.8 90.4
0.50-0.75 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 2.00-2.25 2.25-2.50 2.50-2.75 HS 2.75-3.00 (m) 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00 4.00-4.25 4.25-4.50 108.3 4.50-4.75 4.75-5.00 5.00-5.25 5.25-2.50
11.0011.25 2.8 5.0 7.9 11.6 16.3 21.4 28.3 34.8 42.7 50.6 58.5 71.3 81.0 90.9 112.2
11.2511.50 3.3 5.2 8.0 12.0 16.8 21.9 28.6 36.0 43.9 52.8 59.7 70.5 82.5 93.7
11.5011.75 5.5 8.3 12.3 17.2 22.6 29.4 37.0 44.1 54.1 61.8 74.5 84.4 97.3 107.7 116.6
11.7512.00 2.7 5.7 8.4 12.6 17.2 23.0 29.9 37.4 45.4 54.8 64.6 73.8 85.2 101.1 109.6 122.4
12.0012.25
12.2512.50
5.6 8.5 12.6 17.6 24.1 30.6 37.7 47.1 57.0 65.5 79.2 89.5 108.9 111.8 128.7 134.6
6.0 8.7 12.7 17.8 24.4 30.9 38.8 47.9 56.4 69.2 77.8 89.2 118.6 144.7
12.5012.75 3.0 6.2 8.7 12.9 18.2 24.6 32.3 40.2 48.4 59.3 68.1 78.9 92.4 102.8 119.2 127.0 145.3
12.7513.00
13.0013.25
6.3 8.9 13.1 18.7 25.3 33.1 40.7 49.9 60.8 70.9 80.8 92.4 110.3 123.3 136.3 142.9
6.4 9.4 13.4 19.7 26.5 32.8 40.7 50.3 59.4 72.7 83.1 98.2 106.4 132.1 137.2
13.2513.50 3.5 6.6 9.5 13.7 19.9 26.6 32.8 42.0 53.5 62.0 74.4 84.6 96.5 110.6
13.5013.75
146.0 159.3
151.1 169.6 181.4
6.5 10.3 14.5 19.7 26.9 34.1 43.8 50.6 60.9 75.1 86.8 116.3
13.7514.00 3.9 6.9 10.0 13.9 20.1 26.4 34.5 45.0 52.6 64.1 75.0 92.5 98.0 119.7 166.1 193.7 203.5
91
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
15.2515.50
9.8 14.2 20.9 26.1 34.2 45.1 54.6 67.4 74.1 89.5 105.3 110.1
10.3 15.0 21.6 26.1 36.5 44.1 56.3 64.1 79.2 94.7 106.5
5.2 10.1 14.6 21.0 28.0 37.2 44.5 59.7 64.0 79.6 93.1 110.2 119.3
5.4 11.1 15.6 20.0 29.0 37.5 48.3 58.1 65.3 86.4 92.4 113.1 128.3 134.9
5.8 11.5 15.1 21.1 28.5 36.3 46.5 59.0 64.7
5.7
181.4 213.4 221.8
196.0 226.8
216.6
90.3
16.6 23.1 28.6 37.0 46.2 58.5 65.8 82.3 90.7
130.7 137.4
133.7 144.2
73.2
32.2 56.7 76.5
16.2516.50
16.5016.75
16.7517.00
22.3
25.0 31.3
58.8
64.8
63.6
80.7
85.1
89.8
28.3 43.4
>17.00
54.8 67.0 78.2 95.0
Table 17 Occurrence (hours) of Hindcast Te Versus Hs at the South Point site during 1979-2013 Te (s) 4.004.25 0.75-1.00 2 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 HS 2.00-2.25 2.25-2.50 (m) 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00
4.254.50 6
4.504.75 3
4.755.00 1 2 3
5.005.25 1 3 2
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
6.506.75
6.757.00
7.007.25
7.257.50
11 14 3
7 9 3
1 1 10 16 2
1 21 129 207 216 63 16
1 102 394 742 647 506 159 1
7 243 942 1488 1313 1141 344 33
24 449 1691 2615 2623 1688 684 109 7
121 830 2628 3884 3143 1925 983 279 5
191 1345 3437 4572 3800 2427 1101 431 46
7.507.75 19 347 2113 4599 5403 4534 2588 1407 542 37
7.758.00 12 490 2959 5455 5782 4167 2490 1559 508 45
8.008.25 12 886 3553 6288 6006 3956 2410 1297 500 118
8.258.50 10 899 3932 6267 5541 3859 2432 1290 379 119 3
8.508.75 12 929 3899 5663 5302 3740 2247 1323 381 89 17
8.759.00 36 880 3759 5110 4698 3286 2174 1297 404 68 24
9.009.25 103 972 3366 4574 3979 2925 1948 1131 457 91 22
9.259.50 126 973 2952 3902 3215 2467 1705 1107 461 93 29 4
9.509.75 89 856 2336 3171 2686 2085 1388 945 463 92 15 17
9.7510.0 69 788 2093 2732 2411 1682 1175 768 492 115 15 6
10.010.25 105 652 1837 2201 2079 1323 994 596 405 125 21 9 2
10.2510.50 78 555 1515 1655 1716 1130 833 445 319 113 31 5 2
10.5010.75 84 358 1008 1351 1299 934 675 356 285 104 42 6 1
Te (s) 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 HS 2.00-2.25 2.25-2.50 (m) 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00
10.7511.00 71 281 783 1075 1054 718 493 292 250 101 46 1
11.0011.25 39 202 583 874 848 561 390 229 191 100 35 2
11.2511.50 20 116 396 648 684 473 301 205 137 90 33 6
11.5011.75 9 82 262 505 465 389 287 150 115 86 27 3 2
11.7512.00 10 41 213 409 405 393 208 115 91 55 29 6 2
12.0012.25 7 31 167 323 323 284 149 104 67 36 21 8 4
12.2512.50 1 29 147 206 239 204 137 124 52 33 7 9 7
12.5012.75 1 32 73 142 219 159 97 95 42 17 7 4 2
12.7513.00 20 46 109 133 108 91 57 24 12 6 8 2
13.0013.25 2 17 30 73 123 95 59 31 12 10 5 6 1
13.2513.50 7 8 30 56 72 92 25 18 5 4
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
4 41 54 58 56 21 14 4 3
3 32 38 49 39 16 5 2 2
1 9 14 45 22 15 10 1 3
1 8 21 25 10 4 4 2
1 5 15 8 6
1 1
1 2
2 2
2 2
1 17 21 20 8 4 1 1 3 1
92
3
3 3
15.0015.25
15.2515.50
15.5015.75
15.7516.00
9 13 13 6
1 4 5 7 3
1 4 8 5 3
1 6 5 7 2
2
2
1
2 3
16.0016.25
2 6 3
16.2516.50
2 1
932 10821 41160 66790 68452 51514 33136 18265 7457 1825 441 110 32 300935
Table 18 Total Hindcast Wave Energy Flux (kWh/m) by Te and Hs at the South Point site during 1979-2013 Te (s) 4.004.25 0.75-1.00 3 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 HS 2.00-2.25 2.25-2.50 (m) 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00
4.254.50 9
4.504.75 8
4.755.00 1 7 13
5.005.25 2 15 12
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
6.506.75
6.757.00
7.007.25
7.257.50
39 66 19
23 50 21
4 6 85 173 27
4 135 1103 2293 3044 1103 338
5 679 3539 8651 9562 9324 3563 26
37 1683 8833 18111 20397 22040 7979 902
126 3202 16405 33313 42331 33885 16697 3158 228
647 6153 26531 51433 52682 40478 24952 8503 179
1017 10312 36026 62909 66516 53001 29335 13680 1708
7.507.75 74 1939 16853 49884 76933 82611 58677 39122 17955 1404
7.758.00 48 2884 24283 61043 84944 78378 58732 44935 17506 1756
8.008.25 51 5290 30071 72774 91256 76657 58878 38615 17774 4946
8.258.50 42 5555 34249 74712 87563 77785 61046 39605 13933 5221 149
8.508.75 52 5791 35189 69592 86347 77580 58268 41826 14339 4018 881
8.759.00 162 5655 34904 64677 78779 70385 57975 42384 15738 3062 1291
9.009.25 460 6588 32275 59182 68363 64341 53390 37966 18215 4233 1260
9.259.50 563 6754 29074 52281 56880 55936 47840 38275 18949 4517 1760 258
9.509.75 375 6068 23403 43550 48678 48542 40084 33633 19596 4590 946 1132
9.7510.0 313 5756 21405 38421 44804 40003 34669 28054 21281 5843 906 437
10.010.25 462 4933 19368 31534 39386 32144 30060 22082 17961 6551 1304 694 158
10.2510.50 341 4338 16343 24238 33497 28198 25805 16745 14551 6064 1987 364 161
10.5010.75 411 2783 11261 20285 25838 23907 21163 13743 13393 5672 2724 440 82
Te (s) 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 HS 2.00-2.25 2.25-2.50 (m) 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00
10.7511.00 347 2222 8939 16575 21328 18628 15890 11598 11998 5692 3053 72
11.0011.25 188 1622 6691 13784 17496 14819 12818 9318 9452 5693 2368 152
11.2511.50 102 973 4683 10416 14520 12845 10137 8425 6893 5194 2241 483
11.5011.75 49 701 3186 8275 10095 10745 9847 6240 5895 4999 1892 241 176
11.7512.00 60 360 2629 6908 9084 10955 7296 4916 4668 3304 2072 468 185
12.0012.25 42 281 2091 5551 7370 8102 5333 4588 3513 2207 1502 661 384
12.2512.50 6 260 1837 3616 5412 5904 4920 5451 2752 2063 496 762 698
12.5012.75 5 293 940 2511 5065 4763 3511 4219 2250 1100 510 347 190
12.7513.00 178 612 1994 3140 3254 3385 2563 1314 792 454 702 198
13.0013.25 12 140 393 1333 2999 2972 2225 1425 685 654 371 539 103
13.2513.50 42 78 416 1045 1771 2846 966 853 279 273
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
15.2515.50
15.5015.75
15.7516.00
16.0016.25
16.2516.50
41 591 1001 1486 1739 834 668 226 203
32 474 726 1254 1253 653 254 119 129
11 132 272 1191 701 628 492 54 200
16 160 553 822 418 203 235 129
13 104 376 285 247
192 353 467 242
14 89 133 244 122
16 88 217 182 123
17 120 144 271 83
46 175 108
46
131
132
68
94 103
93 211
188 212
186 209
16 350 541 671 342 212 62 76 257 97
93
294
181 256
125 221
35
Table 19 Average Hindcast Wave Power (kW/m) by Te and Hs at the South Point site during 1979-2013 Te (s) 4.004.25 0.75-1.00 1.5 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 HS 2.00-2.25 2.25-2.50 (m) 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00
4.254.50 1.5
4.504.75 2.7
4.755.00 1.5 3.5 4.2
5.005.25 2.5 4.8 6.0
5.255.50
5.505.75
5.756.00
6.006.25
6.256.50
6.506.75
6.757.00
7.007.25
7.257.50
3.6 4.7 6.5
3.2 5.6 7.1
3.8 5.6 8.5 10.8 13.7
4.3 6.4 8.5 11.1 14.1 17.5 21.1
5.0 6.7 9.0 11.7 14.8 18.4 22.4 25.6
5.3 6.9 9.4 12.2 15.5 19.3 23.2 27.3
5.2 7.1 9.7 12.7 16.1 20.1 24.4 29.0 32.6
5.4 7.4 10.1 13.2 16.8 21.0 25.4 30.5 35.9
5.3 7.7 10.5 13.8 17.5 21.8 26.6 31.7 37.1
7.507.75 3.9 5.6 8.0 10.8 14.2 18.2 22.7 27.8 33.1 37.9
7.758.00 4.0 5.9 8.2 11.2 14.7 18.8 23.6 28.8 34.5 39.0
8.008.25 4.2 6.0 8.5 11.6 15.2 19.4 24.4 29.8 35.5 41.9
8.258.50 4.2 6.2 8.7 11.9 15.8 20.2 25.1 30.7 36.8 43.9 49.5
8.508.75 4.3 6.2 9.0 12.3 16.3 20.7 25.9 31.6 37.6 45.2 51.8
8.759.00 4.5 6.4 9.3 12.7 16.8 21.4 26.7 32.7 39.0 45.0 53.8
9.009.25 4.5 6.8 9.6 12.9 17.2 22.0 27.4 33.6 39.9 46.5 57.3
9.259.50 4.5 6.9 9.8 13.4 17.7 22.7 28.1 34.6 41.1 48.6 60.7 64.5
9.509.75 4.2 7.1 10.0 13.7 18.1 23.3 28.9 35.6 42.3 49.9 63.1 66.6
9.7510.0 4.5 7.3 10.2 14.1 18.6 23.8 29.5 36.5 43.3 50.8 60.4 72.9
10.010.25 4.4 7.6 10.5 14.3 18.9 24.3 30.2 37.0 44.3 52.4 62.1 77.1 79.1
10.2510.50 4.4 7.8 10.8 14.6 19.5 25.0 31.0 37.6 45.6 53.7 64.1 72.8 80.5
10.5010.75 4.9 7.8 11.2 15.0 19.9 25.6 31.4 38.6 47.0 54.5 64.9 73.3 82.3
Te (s) 0.75-1.00 1.00-1.25 1.25-1.50 1.50-1.75 1.75-2.00 HS 2.00-2.25 2.25-2.50 (m) 2.50-2.75 2.75-3.00 3.00-3.25 3.25-3.50 3.50-3.75 3.75-4.00
10.7511.00 4.9 7.9 11.4 15.4 20.2 25.9 32.2 39.7 48.0 56.4 66.4 72.4
11.0011.25 4.8 8.0 11.5 15.8 20.6 26.4 32.9 40.7 49.5 56.9 67.7 76.2
11.2511.50 5.1 8.4 11.8 16.1 21.2 27.2 33.7 41.1 50.3 57.7 67.9 80.5
11.5011.75 5.4 8.5 12.2 16.4 21.7 27.6 34.3 41.6 51.3 58.1 70.1 80.2 88.2
11.7512.00 6.0 8.8 12.3 16.9 22.4 27.9 35.1 42.7 51.3 60.1 71.4 78.1 92.6
12.0012.25 6.1 9.1 12.5 17.2 22.8 28.5 35.8 44.1 52.4 61.3 71.5 82.6 96.1
12.2512.50 6.4 9.0 12.5 17.6 22.6 28.9 35.9 44.0 52.9 62.5 70.8 84.7 99.7
12.5012.75 5.3 9.2 12.9 17.7 23.1 30.0 36.2 44.4 53.6 64.7 72.9 86.8 94.9
12.7513.00 8.9 13.3 18.3 23.6 30.1 37.2 45.0 54.7 66.0 75.7 87.7 99.2
13.0013.25 6.0 8.3 13.1 18.3 24.4 31.3 37.7 46.0 57.0 65.4 74.2 89.9 103.1
13.2513.50 6.0 9.8 13.9 18.7 24.6 30.9 38.6 47.4 55.9 68.3
13.5013.75
13.7514.00
14.0014.25
14.2514.50
14.5014.75
14.7515.00
15.0015.25
15.2515.50
15.5015.75
15.7516.00
16.0016.25
16.2516.50
10.4 14.4 18.5 25.6 31.1 39.7 47.7 56.5 67.8
10.7 14.8 19.1 25.6 32.1 40.8 50.8 59.7 64.5
10.8 14.7 19.5 26.5 31.8 41.9 49.2 54.5 66.7
16.5 20.0 26.3 32.9 41.8 50.7 58.7 64.3
12.5 20.8 25.1 35.6 41.1
21.4 27.2 35.9 40.3
14.3 22.2 26.6 34.9 40.5
16.0 22.0 27.1 36.5 41.1
17.2 19.9 28.7 38.8 41.3
23.1 29.2 36.0
23.1
65.7
65.9
68.1
94.0 103.3
92.8 105.7
94.0 106.0
93.2 104.5
15.8 20.6 25.8 33.5 42.8 53.1 62.0 75.8 85.7 96.5
94
97.8
60.4 85.3
62.6 73.7
35.2
5. Conclusions A system of third-generation spectral wave models has produced 34 years of global and Hawaiʻi wave hindcast through a hierarchy of nested computational grids. The high-resolution data around the Hawaiian Islands facilitates computation of wave energy parameters at the US Navy Wave Energy Test Site (WETS) in Kaneohe, Oahu. Two sites within WETS are documented in this report. One at 81 m depth corresponds to the location of a Waverider buoy and is referred to as WETS, the other at 58 m depth is referred to as Kaneohe II. Four other potential sites along the Hawaiian Island chain were selected to illustrate varied conditions. Hindcast estimates show agreement with the data recorded by 6 offshore and 8 nearshore buoys along the island chain. The hindcast system reproduces the wave climate, dominant wave components, long-term statistical distributions, and individual swell and wind wave events in the recorded data. Discrepancies primarily occur on the southwest shores of Oahu and Lanai in the shadows of the north swells and east wind waves due to the lack of diffraction in the spectral wave models. This model limitation also has some influences on the northwest swells arriving at WETS, but the hindcast estimates are valid under the north swell and prevailing wind wave conditions. The wave climate comprises year-round trade wind waves from the northeast to east and swells from the south that are augmented by energetic winter swells from the northwest to north as well occasional local storm waves. At WETS, wind waves with significant wave height less than 2 m account for 75% of the time and contribute to less than 40% of the total energy. Due to the winter swells, the mean wave power increases from 7.7 kW/m in August to 21.7 kW/m in December. Wave power flux over 15 kW/m occurs less than 30% of time, but accounts for more than 60% of total energy. The other potential sites show a similar pattern in that a small percentage of the larger events contribute to a major proportion of the total wave energy. The diverse and moderate wave conditions at WETS indicate it as suitable place for testing and development of wave energy convertors. The other potential sites complement WETS by providing the full range of wave components commonly observed in the Hawaiian Islands.
95
References Arinaga, R.A. and Cheung, K.F. (2012). Atlas of global wave energy from 10 years of reanalysis and hindcast data. Renewable Energy 39, 49-64. Booij, N., Ris, R.C., and Holthuijsen, L.H. (1999). A third generation wave model for coastal regions. Part I. Model description and validation. J. Geophys. Res. 104 (C4), 7649–7666. Caruso, S. and Businger, S. (2006). Subtropical Cyclogenesis over the Central North Pacific. Weather and Forecasting 21(2), 193-205. Cheung, K.F., Bai, Y., and Yamazaki, Y. (2013). Surges around the Hawaiian Islands from the 2011 Tohoku tsunami. Journal of Geophysical Research: Oceans 118(10), 5703-5719. Filipot, J.-F. and Cheung, K.F. (2012). Spectral wave modeling for fringing reef environment. Coastal Eng. 67, 67–79. Foster, J., Li, N., and Cheung, K.F. (2014). Sea state determination from ship-based geodetic GPS. J. Atmos. Oceanic Technol. http://dx.doi.org/10.1175/JTECH-D-13-00211.1. Lenee-Bluhm, P., Paasch, R., and Özkan-Haller, T.H. (2011). Characterizing the wave energy resource of the US Pacific Northwest. Renewable Energy 36, 2106-2119. Li, N. and Cheung, K.F. (2014). Wave Energy Test Site (WETS) Progress Report: Comparison of Wave Hindcast Model Results with Waverider Measurements: November 2012 – October 2013 (http://hinmrec.hnei.hawaii.edu/) Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R.,Woolen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J.,Hou, Y.T., Chuang, H., Juang, H.M.J., Sela, J., Irdell, M., Treadon, R., Klesits, D.,Felst, P.V., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., vanden Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B.,Schemm, J., Ebisuzaki, W., Lin, R., Xie, P.P., Chen, M., Zhou, S., Higgins, W., Zou,C.Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., and Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91 (7), 1015–1057. Skamarock, W. C., and Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for weather and forecasting applications. J. Comp. Phys. 227, 3465-3485. Stopa, J.E., Cheung, K.F., and Chen, Y.-L. (2011). Assessment of wave energy resources in Hawaii. Renewable Energy 36 (2), 554–567. Stopa, J.E. and Cheung, K.F. (2014). Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Modell. 75, 65– 83. Stopa, J.E., Cheung, K.F., Tolman, H.L., and Chawla, A. (2013a). Patterns and cycles in the climate forecast system reanalysis wind and wave data. Ocean Modell. 70, 207–220. Stopa, J.E., Filipot, J.-F., Li, N., Cheung, K.F., Chen, Y.-L., and Vega, L. (2013b). Wave energy resources along the Hawaiian Islands chain. Renewable Energy 55, 305-321. SWAN Team (2011). SWAN User Manual: SWAN Cycle III version 40.85, Delft University of Technology, 121 pgs. Tolman, H.L. (2008). A mosaic approach to wind wave modeling. Ocean Modell. 25(1–2), 35– 47. Tolman, H. L., and Chalikov, D. (1996). Source terms in a third-generation wind-wave model. J. Phys. Oceanog. 26, 2497-2518. Wessel, P., and Smith, W. H. F. (1991). Free software helps map and display data. Eos Trans. AGU 72(41), 445–446. 96
Appendix A
Figure A1– Average daily significant wave height and wave power at WETS.
Figure A2– Average daily significant wave height and wave power at the Kaneohe II site. 97
Figure A3– Average daily significant wave height and wave power at the Kilauea site.
Figure A4– Average daily significant wave height and wave power at the Pauwela site.
98
Figure A5– Average daily significant wave height and wave power at the Upolu site.
Figure A6– Average daily significant wave height and wave power at the South Point site.
99
Appendix B Table B1 Monthly Average Wave Energy Parameters at WETS
Jan Significant wave height (m) Wave power (kW/m) Energy period (s) Spectral width Max directionally resolved wave power (degree) Directionality coefficient
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
1.86 1.91 1.98 1.89 1.57 1.52 1.57 1.47 1.43 1.65 2.00 2.00 19.7 19.8 20.1 15.9
9.8
8.1
8.6
7.7
8.2
12.4 20.8 21.7
9.7 9.3 8.7 7.9 7.3 6.7 6.6 6.7 7.4 8.2 8.9 9.4 0.37 0.37 0.38 0.36 0.36 0.36 0.35 0.35 0.37 0.37 0.37 0.37 14.5 19.2 28.4 39.8 45.5 55.9 58.2 59.9 41.5 29.6 27.5 21.6 0.83 0.82 0.81 0.80 0.81 0.84 0.87 0.86 0.82 0.80 0.81 0.81
Table B2 Monthly Average Wave Energy Parameters at the Kaneohe II site
Jan Significant wave height (m) Wave power (kW/m) Energy period (s) Spectral width Max directionally resolved wave power (degree) Directionality coefficient
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
1.76 1.80 1.85 1.76 1.45 1.41 1.46 1.36 1.33 1.55 1.87 1.87 18.1 18.2 18.1 14.1
8.6
6.9
7.4
6.6
7.3
11.3 19.0 19.7
9.7 9.3 8.7 7.9 7.3 6.6 6.6 6.6 7.4 8.2 8.9 9.5 0.38 0.38 0.38 0.37 0.37 0.37 0.35 0.36 0.38 0.38 0.38 0.38 10.4 15.0 23.4 34.4 40.2 50.9 53.3 54.3 36.7 25.2 22.6 16.6 0.84 0.83 0.82 0.81 0.82 0.84 0.87 0.86 0.82 0.81 0.82 0.82 Table B3 Monthly Average Wave Energy Parameters at the Kilauea site
Jan Significant wave height (m) Wave power (kW/m) Energy period (s) Spectral width Max directionally resolved wave power (degree) Directionality coefficient
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2.56 2.45 2.21 1.82 1.44 1.29 1.30 1.20 1.32 1.66 2.10 2.38 51.4 44.5 32.5 18.2
9.6
6.3
5.9
5.1
8.6
16.0 29.5 41.9
11.8 11.4 10.5 9.0 7.8 6.9 6.6 6.6 8.0 9.2 10.2 11.2 0.32 0.34 0.36 0.38 0.38 0.38 0.37 0.38 0.38 0.37 0.36 0.34 -16.3 -13.2 -7.1
4.6
12.1 27.2 37.8 36.4 14.6
1.9
-3.1 -10.7
0.90 0.88 0.86 0.82 0.80 0.79 0.82 0.81 0.82 0.85 0.86 0.88
100
Table B4 Monthly Average Wave Energy Parameters at the Pauwela site
Jan Significant wave height (m) Wave power (kW/m) Energy period (s) Spectral width Max directionally resolved wave power (degree) Directionality coefficient
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2.67 2.61 2.46 2.14 1.73 1.62 1.62 1.55 1.58 1.89 2.36 2.63 50.8 45.4 35.5 22.0 12.2
9.0
8.7
8.1
10.9 18.2 32.5 44.8
11.3 10.9 9.8 8.4 7.4 6.5 6.4 6.4 7.6 8.7 9.6 10.7 0.34 0.36 0.39 0.41 0.41 0.42 0.41 0.42 0.41 0.41 0.39 0.37 -14.2 -9.5
1.4
21.5 34.9 53.6 60.3 62.0 33.1 13.0
7.1
-4.5
0.83 0.81 0.78 0.74 0.75 0.78 0.84 0.83 0.77 0.76 0.77 0.80 Table B5 Monthly Average Wave Energy Parameters at the Upolu site
Jan Significant wave height (m) Wave power (kW/m) Energy period (s) Spectral width Max directionally resolved wave power (degree) Directionality coefficient
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
1.65 1.70 1.79 1.73 1.48 1.48 1.53 1.48 1.37 1.50 1.77 1.77 14.2 14.6 15.3 12.6
8.4
7.6
8.2
7.9
7.3
9.7
15.3 15.6
8.8 8.4 8.0 7.4 6.9 6.4 6.5 6.6 7.0 7.6 8.1 8.4 0.41 0.42 0.41 0.39 0.41 0.41 0.40 0.41 0.43 0.43 0.40 0.41 23.2 28.4 39.1 49.6 53.4 59.0 57.4 58.4 49.9 42.3 40.7 36.0 0.77 0.78 0.80 0.82 0.82 0.84 0.85 0.82 0.79 0.79 0.81 0.79
Table B6 Monthly Average Wave Energy Parameters at the South Point site
Jan Significant wave height (m) Wave power (kW/m) Energy period (s) Spectral width Max directionally resolved wave power (degree) Directionality coefficient
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2.20 2.16 2.07 1.90 1.75 1.80 1.82 1.83 1.69 1.71 1.82 2.05 24.8 23.6 20.5 16.7 15.0 15.6 15.7 16.0 14.5 14.1 15.2 20.2 9.0 8.9 8.6 8.6 9.0 8.8 8.6 8.7 9.1 8.8 8.3 8.5 0.49 0.50 0.50 0.52 0.52 0.53 0.53 0.52 0.51 0.51 0.49 0.49 220.6 217.0 191.3 164.4 167.3 163.9 160.4 164.3 177.4 176.4 167.1 189.1 0.70 0.68 0.66 0.64 0.65 0.64 0.66 0.66 0.64 0.64 0.65 0.67
101