The implicit QZ algorithm for the palindromic eigenvalue

October 30, 2017 | Author: Anonymous | Category: N/A
Share Embed


Short Description

The implicit QZ algorithm for the palindromic eigenvalue problem David S. Watkins watkins ......

Description

The implicit QZ algorithm for the palindromic eigenvalue problem David S. Watkins [email protected]

Department of Mathematics Washington State University

Luminy, October 2007 – p.

Context

Luminy, October 2007 – p.

Context LQG problem in discrete time (optimal control)

Luminy, October 2007 – p.

Context LQG problem in discrete time (optimal control) ⇒ symplectic eigenvalue problem

Luminy, October 2007 – p.

Context LQG problem in discrete time (optimal control) ⇒ symplectic eigenvalue problem eigenvalue symmetry: λ, λ−1

Luminy, October 2007 – p.

Context LQG problem in discrete time (optimal control) ⇒ symplectic eigenvalue problem eigenvalue symmetry: λ, λ−1 2

1.5

1

0.5

0

−0.5

−1

−1.5

−2 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Luminy, October 2007 – p.

Context LQG problem in discrete time (optimal control) ⇒ symplectic eigenvalue problem eigenvalue symmetry: λ, λ−1 2

1.5

1

0.5

0

−0.5

−1

−1.5

−2 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

want stable invariant subspace Luminy, October 2007 – p.

Palindromic Eigenvalue Problem

Luminy, October 2007 – p.

Palindromic Eigenvalue Problem Mackey / Mackey / Mehl / Mehrmann

Luminy, October 2007 – p.

Palindromic Eigenvalue Problem Mackey / Mackey / Mehl / Mehrmann (C − λC T )x = 0

Luminy, October 2007 – p.

Palindromic Eigenvalue Problem Mackey / Mackey / Mehl / Mehrmann (C − λC T )x = 0 generalized eigenvalue problem A − λB

Luminy, October 2007 – p.

Palindromic Eigenvalue Problem Mackey / Mackey / Mehl / Mehrmann (C − λC T )x = 0 generalized eigenvalue problem A − λB B = AT

Luminy, October 2007 – p.

Palindromic Eigenvalue Problem Mackey / Mackey / Mehl / Mehrmann (C − λC T )x = 0 generalized eigenvalue problem A − λB B = AT (C − λC T )x = 0



xT (C T − λC) = 0

Luminy, October 2007 – p.

Palindromic Eigenvalue Problem Mackey / Mackey / Mehl / Mehrmann (C − λC T )x = 0 generalized eigenvalue problem A − λB B = AT (C − λC T )x = 0



xT (C T − λC) = 0

eigenvalue symmetry: λ, λ−1

Luminy, October 2007 – p.

Palindromic Eigenvalue Problem Mackey / Mackey / Mehl / Mehrmann (C − λC T )x = 0 generalized eigenvalue problem A − λB B = AT (C − λC T )x = 0



xT (C T − λC) = 0

eigenvalue symmetry: λ, λ−1 Formulate control problems as palindromic eigenvalue problems.

Luminy, October 2007 – p.

QR-like algorithms

Luminy, October 2007 – p.

QR-like algorithms for palindromic problems

Luminy, October 2007 – p.

QR-like algorithms for palindromic problems C. Schröder (Berlin)

Luminy, October 2007 – p.

QR-like algorithms for palindromic problems C. Schröder (Berlin) explicit QR-like algorithm

Luminy, October 2007 – p.

QR-like algorithms for palindromic problems C. Schröder (Berlin) explicit QR-like algorithm (It works!)

Luminy, October 2007 – p.

QR-like algorithms for palindromic problems C. Schröder (Berlin) explicit QR-like algorithm (It works!) implicit QR-like algorithm (bulge chase)

Luminy, October 2007 – p.

QR-like algorithms for palindromic problems C. Schröder (Berlin) explicit QR-like algorithm (It works!) implicit QR-like algorithm (bulge chase) (It works!)

Luminy, October 2007 – p.

QR-like algorithms for palindromic problems C. Schröder (Berlin) explicit QR-like algorithm (It works!) implicit QR-like algorithm (bulge chase) (It works!) Are they equivalent?

Luminy, October 2007 – p.

The Bulge Chase

Luminy, October 2007 – p.

The Bulge Chase compact form needed

Luminy, October 2007 – p.

The Bulge Chase compact form needed 

     ∗  C=  ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

             Luminy, October 2007 – p.



     ∗  T C =  0 ∗   0 ∗ ∗  0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p.



     ∗  T C =  0 ∗   0 ∗ ∗  0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

not always attainable!

Luminy, October 2007 – p.

The Bulge Chase

Luminy, October 2007 – p.

The Bulge Chase single-shift case

Luminy, October 2007 – p.

The Bulge Chase single-shift case (for simplicity)

Luminy, October 2007 – p.

The Bulge Chase single-shift case (for simplicity) Pick a shift µ.

Luminy, October 2007 – p.

The Bulge Chase single-shift case (for simplicity) Pick a shift µ.   0  ..   .    T x = (C − µC )e1 =  0    α β

Luminy, October 2007 – p.

The Bulge Chase single-shift case (for simplicity) Pick a shift µ.   0  ..   .    T x = (C − µC )e1 =  0    α β

Build a Givens rotation (for example) that annihilates α. Luminy, October 2007 – p.

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

             Luminy, October 2007 – p.

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

             Luminy, October 2007 – p.

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

         ∗ ∗  ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

         ∗ ∗  ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

     ∗    ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

           ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 1

The Bulge Chase 

           ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

But what happens when we get to the middle?

Luminy, October 2007 – p. 2

Bulge Chase in the Pencil 

     ∗  T C − λC =   ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 2

Bulge Chase in the Pencil 

      T C − λC =    ∗ ∗  ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 2

Bulge Chase in the Pencil 

      T C − λC =      ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 2

Bulge pencils on a collision course!

Luminy, October 2007 – p. 2

Bulge Chase in the Pencil 

      T C − λC =      ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 2

Half a step further: 

     ∗  T C − λC =   ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 2

Swap the shifts 

     ∗  T C − λC =   ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 2

Swap the shifts 

     ∗  T C − λC =   ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 2

Reverse the process 

      T C − λC =      ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 2

Reverse the process 

      T C − λC =    ∗ ∗  ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 3

Reverse the process 

     ∗  T C − λC =   ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 3

Bulge Chase is complete 

     ∗  T C − λC =   ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 3

This works very well.

Luminy, October 2007 – p. 3

This works very well. Question:

Luminy, October 2007 – p. 3

This works very well. Question: How do we explain it?

Luminy, October 2007 – p. 3

This works very well. Question: How do we explain it? Answer:

Luminy, October 2007 – p. 3

This works very well. Question: How do we explain it? Answer: I don’t have time . . .

Luminy, October 2007 – p. 3

This works very well. Question: How do we explain it? Answer: I don’t have time . . . . . . but I’ll try.

Luminy, October 2007 – p. 3

This works very well. Question: How do we explain it? Answer: I don’t have time . . . . . . but I’ll try. Compare with standard QZ.

Luminy, October 2007 – p. 3

QZ algorithm,

Luminy, October 2007 – p. 3

QZ algorithm, implicit version

Luminy, October 2007 – p. 3

QZ algorithm, implicit version A − λB (Hessenberg, triangular)

Luminy, October 2007 – p. 3

QZ algorithm, implicit version A − λB (Hessenberg, triangular) pick shifts µ1 , . . . µm

Luminy, October 2007 – p. 3

QZ algorithm, implicit version A − λB (Hessenberg, triangular) pick shifts µ1 , . . . µm p(z) = (z − µ1 ) · · · (z − µm )

Luminy, October 2007 – p. 3

QZ algorithm, implicit version A − λB (Hessenberg, triangular) pick shifts µ1 , . . . µm p(z) = (z − µ1 ) · · · (z − µm ) x = p(AB −1 )e1

Luminy, October 2007 – p. 3

QZ algorithm, implicit version A − λB (Hessenberg, triangular) pick shifts µ1 , . . . µm p(z) = (z − µ1 ) · · · (z − µm ) x = p(AB −1 )e1 Make a bulge,

Luminy, October 2007 – p. 3

QZ algorithm, implicit version A − λB (Hessenberg, triangular) pick shifts µ1 , . . . µm p(z) = (z − µ1 ) · · · (z − µm ) x = p(AB −1 )e1 Make a bulge, then chase it.

Luminy, October 2007 – p. 3

QZ algorithm, implicit version A − λB (Hessenberg, triangular) pick shifts µ1 , . . . µm p(z) = (z − µ1 ) · · · (z − µm ) x = p(AB −1 )e1 Make a bulge, then chase it. ˆ Get Aˆ − λB

Luminy, October 2007 – p. 3

QZ algorithm,

Luminy, October 2007 – p. 3

QZ algorithm, explicit version

Luminy, October 2007 – p. 3

QZ algorithm, explicit version p(AB −1 ) = QR

Luminy, October 2007 – p. 3

QZ algorithm, explicit version p(AB −1 ) = QR

˜ p(B −1 A) = Z R

Luminy, October 2007 – p. 3

QZ algorithm, explicit version ˜ p(AB −1 ) = QR p(B −1 A) = Z R ˆ = Q∗ BZ Aˆ = Q∗ AZ, B

Luminy, October 2007 – p. 3

QZ algorithm, explicit version ˜ p(AB −1 ) = QR p(B −1 A) = Z R ˆ = Q∗ BZ Aˆ = Q∗ AZ, B Explicit QZ step is complete.

Luminy, October 2007 – p. 3

QZ algorithm, explicit version ˜ p(AB −1 ) = QR p(B −1 A) = Z R ˆ = Q∗ BZ Aˆ = Q∗ AZ, B Explicit QZ step is complete. ˆ −1 = Q∗ (AB −1 )Q AˆB

Luminy, October 2007 – p. 3

QZ algorithm, explicit version ˜ p(AB −1 ) = QR p(B −1 A) = Z R ˆ = Q∗ BZ Aˆ = Q∗ AZ, B Explicit QZ step is complete. ˆ −1 = Q∗ (AB −1 )Q (QR iteration on AB −1 ) AˆB

Luminy, October 2007 – p. 3

QZ algorithm, explicit version ˜ p(AB −1 ) = QR p(B −1 A) = Z R ˆ = Q∗ BZ Aˆ = Q∗ AZ, B Explicit QZ step is complete. ˆ −1 = Q∗ (AB −1 )Q (QR iteration on AB −1 ) AˆB ˆ −1 Aˆ = Z ∗ (B −1 A)Z B

Luminy, October 2007 – p. 3

QZ algorithm, explicit version ˜ p(AB −1 ) = QR p(B −1 A) = Z R ˆ = Q∗ BZ Aˆ = Q∗ AZ, B Explicit QZ step is complete. ˆ −1 = Q∗ (AB −1 )Q (QR iteration on AB −1 ) AˆB ˆ −1 Aˆ = Z ∗ (B −1 A)Z (QR iteration on B −1 A) B

Luminy, October 2007 – p. 3

Explicit = Implicit?

Luminy, October 2007 – p. 3

Explicit = Implicit? AB −1 and B −1 A are upper Hessenberg.

Luminy, October 2007 – p. 3

Explicit = Implicit? AB −1 and B −1 A are upper Hessenberg. Utilize the Hessenberg form.

Luminy, October 2007 – p. 3

Explicit = Implicit? AB −1 and B −1 A are upper Hessenberg. Utilize the Hessenberg form. implicit-Q theorem, or . . .

Luminy, October 2007 – p. 3

Explicit = Implicit? AB −1 and B −1 A are upper Hessenberg. Utilize the Hessenberg form. implicit-Q theorem, or . . . work directly with the Krylov subspaces.

Luminy, October 2007 – p. 3

Explicit = Implicit? AB −1 and B −1 A are upper Hessenberg. Utilize the Hessenberg form. implicit-Q theorem, or . . . work directly with the Krylov subspaces. time permitting . . .

Luminy, October 2007 – p. 3

Back to the palindromic case:

Luminy, October 2007 – p. 3

Back to the palindromic case: Bulge chase gives Cˆ = G−1 CG−T

Luminy, October 2007 – p. 3

Back to the palindromic case: Bulge chase gives Cˆ = G−1 CG−T Cˆ Cˆ −T = G−1 (CC −T )G

Luminy, October 2007 – p. 3

Back to the palindromic case: Bulge chase gives Cˆ = G−1 CG−T Cˆ Cˆ −T = G−1 (CC −T )G (similarity)

Luminy, October 2007 – p. 3

Back to the palindromic case: Bulge chase gives Cˆ = G−1 CG−T Cˆ Cˆ −T = G−1 (CC −T )G (similarity) Cˆ −T Cˆ = GT (C −T C)G−T

Luminy, October 2007 – p. 3

Back to the palindromic case: Bulge chase gives Cˆ = G−1 CG−T Cˆ Cˆ −T = G−1 (CC −T )G (similarity) Cˆ −T Cˆ = GT (C −T C)G−T

(similarity)

Luminy, October 2007 – p. 3

Back to the palindromic case: Bulge chase gives Cˆ = G−1 CG−T Cˆ Cˆ −T = G−1 (CC −T )G (similarity) Cˆ −T Cˆ = GT (C −T C)G−T ˜ Need p(CC −T ) = GR

(similarity)

Luminy, October 2007 – p. 3

Back to the palindromic case: Bulge chase gives Cˆ = G−1 CG−T Cˆ Cˆ −T = G−1 (CC −T )G (similarity) Cˆ −T Cˆ = GT (C −T C)G−T (similarity) ˜ and p(C −T C) = G−T R Need p(CC −T ) = GR

Luminy, October 2007 – p. 3

Back to the palindromic case: Bulge chase gives Cˆ = G−1 CG−T Cˆ Cˆ −T = G−1 (CC −T )G (similarity) Cˆ −T Cˆ = GT (C −T C)G−T (similarity) ˜ and p(C −T C) = G−T R Need p(CC −T ) = GR or something like that.

Luminy, October 2007 – p. 3

What we actually get:

Luminy, October 2007 – p. 3

What we actually get: r(CC −T ) = GL

Luminy, October 2007 – p. 3

What we actually get: r(CC −T ) = GL m Y z − µk where r(z) = µk z − 1 k=1

Luminy, October 2007 – p. 3

What we actually get: r(CC −T ) = GL m Y z − µk where r(z) = µk z − 1 k=1

L is lower triangular.

Luminy, October 2007 – p. 3

What we actually get: r(CC −T ) = GL m Y z − µk where r(z) = µk z − 1 k=1

L is lower triangular. r(C −T C) = G−T R

Luminy, October 2007 – p. 3

What we actually get: r(CC −T ) = GL m Y z − µk where r(z) = µk z − 1 k=1

L is lower triangular. r(C −T C) = G−T R r(CC −T )−T = r(C −T C),

R = L−T

Luminy, October 2007 – p. 3

Our Approach:

Luminy, October 2007 – p. 3

Our Approach: want r(CC −T ) = GL

Luminy, October 2007 – p. 3

Our Approach: want r(CC −T ) = GL Define L = G−1 r(CC −T )

Luminy, October 2007 – p. 3

Our Approach: want r(CC −T ) = GL Define L = G−1 r(CC −T ) Then show that L is lower triangular.

Luminy, October 2007 – p. 3

Our Approach: want r(CC −T ) = GL Define L = G−1 r(CC −T ) Then show that L is lower triangular. This is not entirely straightforward.

Luminy, October 2007 – p. 3

Our Approach: want r(CC −T ) = GL Define L = G−1 r(CC −T ) Then show that L is lower triangular. This is not entirely straightforward. Utilize the Hessenberg form.

Luminy, October 2007 – p. 3

Recall that 

     ∗  C=  ∗ ∗   ∗ ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 4

This implies

Luminy, October 2007 – p. 4

This implies 

CC −T

      =     

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



        ∗   ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗

Luminy, October 2007 – p. 4

This implies 

CC −T

      =     

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



        ∗   ∗ ∗  ∗ ∗ ∗ ∗ ∗ ∗

partly lower Hessenberg (n/2 − 1 columns)

Luminy, October 2007 – p. 4

and

Luminy, October 2007 – p. 4

and 

∗ ∗ ∗ ∗ ∗ ∗   ∗ ∗   ∗  −T C C=  ∗   ∗   ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

Luminy, October 2007 – p. 4

and 

∗ ∗ ∗ ∗ ∗ ∗   ∗ ∗   ∗  −T C C=  ∗   ∗   ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

            

partly upper Hessenberg (n/2 − 2 columns)

Luminy, October 2007 – p. 4

Use both.

Luminy, October 2007 – p. 4

Use both.   L11 L12 L= L21 L22

Luminy, October 2007 – p. 4

Use both.   L11 L12 L= L21 L22 Using CC −T ,

Luminy, October 2007 – p. 4

Use both.   L11 L12 L= L21 L22 Using CC −T , deduce L12 = 0 . . .

Luminy, October 2007 – p. 4

Use both.   L11 L12 L= L21 L22 Using CC −T , deduce L12 = 0 . . . and L22 is lower triangular.

Luminy, October 2007 – p. 4

L=



L11 L21 L22



Luminy, October 2007 – p. 4

L=



L11 L21 L22



just need L11 lower triangular

Luminy, October 2007 – p. 4

L=



L11 L21 L22



just need L11 lower triangular   R11 R12 −T R=L = R22

Luminy, October 2007 – p. 4

L=



L11 L21 L22



just need L11 lower triangular   R11 R12 −T R=L = R22 Using C −T C,

Luminy, October 2007 – p. 4

L=



L11 L21 L22



just need L11 lower triangular   R11 R12 −T R=L = R22 Using C −T C, deduce that R11 is upper triangular.

Luminy, October 2007 – p. 4

L=



L11 L21 L22



just need L11 lower triangular   R11 R12 −T R=L = R22 Using C −T C, deduce that R11 is upper triangular. Hence L11 is lower triangular.

Luminy, October 2007 – p. 4

L=



L11 L21 L22



just need L11 lower triangular   R11 R12 −T R=L = R22 Using C −T C, deduce that R11 is upper triangular. Hence L11 is lower triangular. done!

Luminy, October 2007 – p. 4

Conclusion:

Luminy, October 2007 – p. 4

Conclusion: Schröder’s palindromic bulge-chasing algorithm

Luminy, October 2007 – p. 4

Conclusion: Schröder’s palindromic bulge-chasing algorithm effects a combination QL and QR iteration

Luminy, October 2007 – p. 4

Conclusion: Schröder’s palindromic bulge-chasing algorithm effects a combination QL and QR iteration driven by a rational function m Y z − µk r(z) = µk z − 1 k=1

Luminy, October 2007 – p. 4

Conclusion: Schröder’s palindromic bulge-chasing algorithm effects a combination QL and QR iteration driven by a rational function m Y z − µk r(z) = µk z − 1 k=1

with shifts µ1 , . . . , µm in the numerator and shifts µ−1 1 , . . . , µ−1 m in the denominator.

Luminy, October 2007 – p. 4

Conclusion: Schröder’s palindromic bulge-chasing algorithm effects a combination QL and QR iteration driven by a rational function m Y z − µk r(z) = µk z − 1 k=1

with shifts µ1 , . . . , µm in the numerator and shifts µ−1 1 , . . . , µ−1 m in the denominator.

That’s all, folks!

Luminy, October 2007 – p. 4

View more...

Comments

Copyright © 2017 PDFSECRET Inc.