The Nakamura Reaction
October 30, 2017 | Author: Anonymous | Category: N/A
Short Description
ENOLATE ADDITIONS. TO ALKYNES: THE. NAKAMURA REACTION. BRAD GILBERT. DENMARK GROUP MEETING. APRIL ......
Description
ENOLATE ADDITIONS TO ALKYNES: THE NAKAMURA REACTION O
O
O
R1
Cat. In +3 R3
R2
R4
R5
O
R3 R2 H
R1 R4
R5
BRAD GILBERT DENMARK GROUP MEETING
1
APRIL 29, 2014
EIICHI NAKAMURA University of Tokyo: Chairman, Dept. of Chemistry Born 1951 in Tokyo B.S. (T. Mukaiyama), Ph.D. (I. Kuwajima) at Tokyo Inst. of Tech. Post Doc. at Columbia (G. Stork) JACS associate editor
http://www.chem.s.u-tokyo.ac.jp/users/common/NakamuraLabE.html
2
>400 publications
OUTLINE •
Introduction:
•
• Vinylation of active methylenes • The Conia-Ene reaction • Zinc enolate additions to alkynes The Nakamura Reaction:
•
• Representative example • Mechanism and transition state model • Scope of the intermolecular reaction • Limitations of the methodology Applications of the Nakamura reaction: Group Problem—enantioselective applications Enantioselective applications Cycloisomerization—Indium catalyzed Conia-ene reaction Use of metals other than In(III) Modular synthesis Total synthesis
3
• • • • • •
INTRODUCTION: VINYLATION OF ACTIVE METHYLENES O
O
O
R1
R3
+
R2
R5
M cat.
O
R4
R3
1
R1 R 2 R4
R5 O
O
O
R1
R3
+
Br
Ar
CuI/L-Proline
R1
O R3
2
Ar O R
O Y
Lewis acid cat. / ∆
OO R
Y
3
1: (Indium) Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264. (Rhenium) Kuninobu, Y.; Kawata, A.; Takai, K. Org. Lett., 2005, 7, 4823.; (Iridium) Onodera, G.; Kato, M.; Kawano, R.; Kometani, Y.; Takeuchi, R. Org. Lett., 2009, 11, 5038. 2: Qian, W.; Pei, L. Synlett, 2006, 11, 1719. 3: (Rhenium) Kuninobu, Y.; Kawata, A.; Takai, K.; Org. Lett., 2005, 7, 4823. (Nickel/Ytterbium) Gao, Q.; Zheng, B.-F.; Li, J.-H.; Yang, D. Org. Lett., 2005, 7, 2185. (Palladium/Ytterbium)[enantioselective] Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc., 2005, 127, 17168.
4
"Conia-ene reaction"
INTRODUCTION: THE CONIA-ENE REACTION CH3 Ph
∆ / Lewis Acid
CH3 Ph
O
O CH3 Ph O H
• Pericyclic [1,5] • Thermal reaction infrequently utilized • Some enantioselective applications (Toste) Ar
O (R/OR)
(DTBM-SEGPHOS)Pd(OTf) 2 10 mol% Yb(OTf)3 20 mol% AcOH, 10 eq. Et 2O, r.t., 3 - 36 hr.
Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc., 2005, 127, 17168-17169.
OO Ar
(R/OR)
70 - 85% yield 74 - 93% ee
5
O
ZINC ENOLATE ADDITIONS TO ALKYNES: DISCOVERY OF THE NAKAMURA REACTION Ar
O
Ar-NH2
R1
Ar
H 3O+
R1
E
N
R1 R2
E+
O
H 3C
CH3
O
OEt
Inspired by previous discovery of zinc enamide additions to unactivated alkenes
Ar
ZnBu
N
R1 R2 OH
Zn(acac)2 30 mol%
+
Zn(OTf)2 20 mol% Et 3N 20 mol%
+
CH3
72%
Ph O H 3C
100 ºC, 40 hr.
CH3
O
H 3C
120 ºC, 36 hr.
O
H 3C
ZnBu
R2
R2 O
N
R1
2) ZnCl2 3) BuLi
R2
E
Ar
1) LDA
R1
R2
O
N
1.2 equiv.
O OEt
H 3C Ph
51%
Nakamura, M.; Hatakeyama, T.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 11820. Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264.
6
“We felt it necessary to find metal countercations more powerful than zinc…”
CATALYST SCREENING O
H 3C
OEt
M(OTf)n 5 mol%
+
O H 3C
100 ºC, 3 hr.
CH3
O OEt
H 3C Ph
1.2 equiv.
Metal triflate 5 mol%
Yield (3 hrs.)
Catalyst 5 mol%
Additive 15 mol%
Yield (12 hrs.)
Hg(OTf)2
3%
InCl3
--
0%
Al(OTf)3
0%
InCl3
AgOTf
80%
Ga(OTf)3
14%
--
AgOTf
6%
In(OTf)3
100%
In(OTf)3
--
100%
In[N(Tf)2]3 *6 hrs.
--
100%*
Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264.
7
O
OUTLINE •
Introduction:
•
• Vinylation of active methylenes • The Conia-Ene reaction • Zinc enolate additions to alkynes The Nakamura Reaction:
•
• Representative example • Mechanism and transition state model • Scope of the intermolecular reaction • Limitations of the methodology Applications of the Nakamura reaction Group Problem—enantioselective applications Enantioselective applications Cycloisomerization—Indium catalyzed Conia-ene reaction Use of metals other than In(III) Modular synthesis Total synthesis
8
• • • • • •
THE NAKAMURA REACTION: A REPRESENTATIVE EXAMPLE O O
H 3C
OEt CH3
In(OTf) 3 0.05 mol%
+
neat, 140 ºC, 3 hr.
H 3C
OEt H 3C
90%
1.2 equiv.
•
90-93% yield
•
Forms a large variety of quaternary centers in excellent yield
•
“Perfect” selectivity for the 1,1-disubstituted alkene
•
The alkyne serves a purpose in trapping triflic acid released during catalyst activation, necessitating a slight excess
Fujimoto, T.; Endo, K.; Nakamura, M.; Nakamura, E. Org. Synth. 2009, 86, 325.
9
O
O
THE NAKAMURA REACTION: MECHANISM H TfO In TfO O
Ph O
OEt CH3
1.2 equiv. OTf OTf In O O
TfO OTf In O O
TfO
H 3C
CH3
OEt
H 3C
O H 3C H 3C
OEt
H 3C H
Ph
CH3
TfO
CO 2Et In(OTf) 2 H
H
H 3O+
O H 3C
O CH3
O
O OEt
H 3C Ph
proto-demetalation
O
H 3C
OEt H 3C H
98%
17%
Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264.
10
20 mol% In(OTf)3, ambient temperature, 16 hours.
MECHANISM: COMPUTATIONAL STUDIES OF THE T.S. Noteworthy features: • Advanced formation of the CIn bond over the C-C bond • Plane of symmetry containing the indium, methylene and alkyne.
Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264.
11
Basis sets: B3LYP/6-31G* and LANL2DZ for In
MECHANISM: DEUTERIUM LABELING STUDIES D
O OEt
+
In(OTf) 3 20 mol% C6D 6 0.2 M 50 ºC, 40 hr. 36% conv.
H
O
10% D H 3C
O
O
+
OEt (H:D)
H 3C
O OEt (H:D) 20% D
Ph
43% D
(H:D)
50% D
O
H
D
O OEt
+
In(OTf) 3 1 eq. Et 3N 1.1 eq. benzene, 0.1 M reflux, 20 hr.
Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264.
O
CO 2Et
Ph
(H:D)
23% D
(H:D) 83% D
80% yield
12
O
THE NAKAMURA REACTION: ASSESSMENT OF SCOPE O
O
O
R1
R3 Y
R2
O
O
In(OTf) 3 0.05 - 20 mol% neat or toluene 60 - 140 ºC, 1 - 60 hrs. additives: nBuLi, Et 3N, DBU O
O
OEt R = n-hexyl 77% R
Ph
•
O
97% (cat. equiv. Et 3N and nBuLi)
Y R2 R3
O O
R = Ph 90% (with Et 3N)
R
O
O
X
OEt
R = n-hexyl 88% R = Ph 94%
R
O O O
93%
Ph
Ph
99% (cat. equiv. Et 3N and nBuLi)
Acid sensitive substrates saw improved yield with the addition of catalytic base
Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264.
13
O
R1
OEt R = n-hexyl 84%
R = Ph 93% (with Et 3N)
Cl
X
O
THE NAKAMURA REACTION: ASSESSMENT OF SCOPE O
O
O
O
OEt
O
OEt
Y = O 79% Y = S 99% (with DBU)
Y
O
Ph
I
OEt
92% (In(NTf 2) 3)
R
C8H17
O
O
O
O
OEt
O
98% 92% 96% 97% N.R.
O
OEt
94%
R = p-OMe p-CF 3 o-Br p-CO 2Me p-NMe 2
OEt
98% (In(NTf 2) 3)
90% PhtN
C6H13 O
O OEt 80%
(with Et 3N) OBn
O
O OEt
94% only E isomer
SiPhMe2
O OEt 1 atm acetylene
94% (with DBU)
•
Tolerates alkenes, benzyl and allyl ethers, phthalimides, esters, silanes, furans/thiophenes, and halides.
•
Acid sensitive substrates saw improved yield with the addition of catalytic base
•
Difficult substrates generally gave better yields with the triflimide (and at lower temperatures)
Endo, K.; Hatakeyama, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264.
14
O
LIMITATIONS OF THE METHODOLOGY • Indium triflate catalysis is applicable to a broad range of dicarbonyls and alkynes, however: • Conditions are highly variable (solvent, time, temperature, additives) • High temperatures are generally necessary • (Cheaper) indium salts other than the triflate and the triflimide are unreactive • Conversely: Catalyst loadings can be as low as 0.05 mol% Ligandless Perfect selectivity for terminal alkynes Highly general formation of 1,1-disubstituted alkenes
15
• • • •
OUTLINE •
Introduction:
•
• Vinylation of active methylenes • The Conia-Ene reaction • Zinc enolate additions to alkynes The Nakamura Reaction:
•
• Representative example • Mechanism and transition state model • Scope of the intermolecular reaction • Limitations of the methodology Applications of the Nakamura reaction: Group Problem—enantioselective applications Enantioselective applications Cycloisomerization—Indium catalyzed Conia-ene reaction Use of metals other than In(III) Modular synthesis Total synthesis
16
• • • • • •
GROUP PROBLEM: ENANTIOSELECTIVE REACTION
CO 2Et OH
s-Bu
OMe
In(OTf) 3 10 mol% nBuLi 10 mol% 120 ºC, 4 hr. MeO
AcOH/H2O THF
17
NH 2
ENANTIOSELECTIVE ADDITIONS: FORMING A CHIRAL QUATERNARY CENTER R 4
R 3O OMe O R1
OMe
H
O
s-Bu
NH 2
OR3 R2
O
R2
N
R1
H s-Bu
In
O Me
s-Bu
NH
O
R1
OR3 R2
In(OTf) 3 10 mol% BuLi 10 mol% 120 ºC, 8 - 24 hr. R4
OMe H s-Bu
N R1
O
H 2O/AcOH
O OR3
THF
R2 R4
O
R1
OR3 R2 R4
Fujimoto, T.; Endo, K.; Tsuji, H.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 4492.
18
• nBuLi was an additive for all enantioselective reactions
STEREOSELECTIVE AT HIGH TEMPERATURES
Fujimoto, T.; Endo, K.; Tsuji, H.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 4492.
B
“Such a temperature effect suggests that the selectivity is controlled by an entropy factor.”
ENANTIOSELECTIVE SCOPE Conditions:
O
O
H 3C Bn Ph O
18 hr OEt 85% 98:2 e.r.
1) In(OTf)3 10 mol%, BuLi 10 mol%, 120 ºC, 8 – 24 hr. 2) H2O/HOAc, THF O
O O
O
8 hr 84% 96:4 e.r.
CO 2Et
33 hr 84% 93:7 e.r.
CO 2Bn
34 hr 79% 82:18 e.r.
Ph O
H 3C
18 hr OEt 82% 97:3 e.r.
O
CO 2Et
12 hr 88% 94:6 e.r.
CO 2Et
12 hr 78% 97:3 e.r.
O
Ph
CO 2Et Ph
8 hr 92% 99:1 e.r.
O
O H 3C
O OEt
Bn
48 hr 72% 64:36 e.r.
C6H13
Fujimoto, T.; Endo, K.; Tsuji, H.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 4492.
19
O
THE CONIA-ENE REACTION
∆ / Lewis Acid
O
CH3 Ph O
CH3 Ph O H
20
CH3 Ph
THE CONIA-ENE REACTION Nakamura proposes metal-dependent modes of Conia-ene substrate activation. In his model, only Indium activates both the alkyne and the enolate. H O
O
O
“Enol” activation M = Sn, Ti O
H
O
M
Alkyne activation M = Pd, Au O
M M
Ene-yne activation M = Ni, Co, Re O
M
O
O
Two metals M, M’ = (Ag, Cu); (K, Cu); (Pd, Yb)*
M'
Double Activation by one metal M = In
*Toste – Pd(SEGPHOS)
Itoh, Y.; Tsuji, H.; Yamagata, K.-i.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 17161.
21
O
M
FORMATION OF MEDIUM-SIZED RINGS R1 OC
Conditions A: In(OTf) 3 0.01 mol% neat, 60 ºC
CO 2R 2
n
MeOC CO 2Et
X
Conditions B: In(NTf 2) 3 1 mol% toluene, 40 - 150 ºC
R1 OC CO 2R 2 X
n
MeOC CO 2Me
PhOC CO 2Et I
MeOC CO 2Me Ph
B 91% MeOC CO 2Me
B 98% O
E
H
B 93% 96:4 d.r.
B 91%
E = CO 2Me
B 84%
Consistent with the syn-carbometalation and internal selectivity of the intermolecular variant. Larger rings undergo double bond isomerization. Itoh, Y.; Tsuji, H.; Yamagata, K.-i.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 17161.
22
A 99%
FORMATION OF MEDIUM-SIZED RINGS O
O CO 2Me
HO
CO 2Me
Conditions B
CO 2Et
O
O
+
CO 2Me
OH CO 2Me
CO 2Me
+
OH
CO 2Me
N Ts
75% 23:77 exo:endo
61% 85:15 exo:endo
Consistent with the syn-carbometalation and internal selectivity of the intermolecular variant. Larger rings undergo double bond isomerization. Itoh, Y.; Tsuji, H.; Yamagata, K.-i.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 17161.
23
74%
SHORTENING THE TETHER O R1
R2
CO 2Et
In(OTf) 3 1 mol% r.t., 4 hr. or In(NTf 2) 3 5 mol% 60 ºC, 24 hr.
+ R 3-NH2
R1 O
CO 2Et CO 2Et
H 3C
N
CH3
R2 R3
R1 N
H 3C CO 2Et
82% yield
N CH3
EtO 2C
R2
• Yields >80%, typically around 95%
Tsuji, H.; Yamagata, K. –I.; Ueda, Y.; Nakamura, E. Synlett. 2011, 7, 1015.
24
• Tolerates R1, R2 = aryl, aliphatic, silyl
USE OF CATIONS OTHER THAN In(III): Au-Ga “SYNERGISTIC CATALYSIS” • Reaction proceeds at room temperature • Similar catalyst loadings (0.01-3 mol% Au, 5-10 mol% Ga) • Requires both Au and Ga to proceed O
R1
R3 R2
+
O
time, temperature
Fc
R4
4.0 equiv.
OH
CO 2Et 5% Au; 15% Ga
O
H 3C
CH3
O
2.5% Au; 5% Ga 24 hr., r.t. 81%
H 3C
86% Ph
O
O O CH3
Cy
3.3% Au; 10% Ga
CO 2Et 18 hr, 45 ºC
CO 2Me OH
24 hr., r.t. 52%
2.5% Au; 5% Ga 24 hr., r.t. 40%
Wang, Y. X.; Ye, X.; Akhmedov, N. G.; Petersen, J. L.; Shi*, X. Org. Lett. 2014, 16, 306.
O
CH3 Ph
3.3% Au; 10% Ga 24 hr., r.t. 92%
25
O
XPhosAu(TA)OTf (X mol%) Ga(OTf)3 (Y mol%) DCM
WHY THE SWITCH TO AN INTERNAL ALKENE? O
O
H 3C
CH3
+
XPhosAu(TA)OTf (2.5 mol%) Ga(OTf)3 (5 mol%)
CO 2Me
OH H 3C
O CH3
DCM, 24 hr, r.t. CO 2Me
O H 3C
O CH3
+
CF3
OH
XPhosAu(TA)OTf (2.5 mol%) Ga(OTf)3 (5 mol%)
H 3C
O CH3
DCM, 24 hr, r.t. F 3C
• The article gives no mention of the unusual switch in selectivity • Possibly due to delocalization of the alkyne into the ester
26
• Could also be due to coordination by the ester to the Ga center
MODULAR SYNTHESIS: COUPLING TO IODIOALKENES O H 3C
O OEt
H 3C Ph
I
PdCl 2(PPh 3) 2 5 mol% CuI 5 mol% Et 3N 1.5 eq.
O
O
H 3C
THF, r.t., 4 hr. phenylacetylene, 1.2 eq.
OEt
99%
H 3C Ph Ph
O
In(NTf 2) 3 5 mol% toluene, 70 ºC, 4 hr.
O
H 3C
OEt CH3
Ph
I 1.5 eq.
Pd(PPh 3) 4 2 mol% K 3PO 4 3.0 eq. dioxane, 120 ºC, 36 hr.
O
O
H 3C
Phenylboronic acid 2.0 eq.
OEt H 3C Ph
91%
Ph
Tsuji, H.; Fujimoto, T.; Endo, K.; Nakamura, M.; Nakamura, E. Org. Lett., 2008, 10, 1219.
27
• E:Z selectivity 100:0 (Z isomer not detected) • In(NTf2)3 does not interfere with Suzuki coupling conditions— one pot reactions work well • Applies to the majority of dicarbonyl substrates previously mentioned, giving >80% yield in most cases
ADDITIONS TO ACETAMIDOMALONATE EtO 2C
+
NHAc
CO 2Et
In(OTf) 3 10 mol%
R
N-methylmorpholine 20 mol% 120 ºC, 16 hr. CO 2Et NHAc
EtO 2C
85%
NHAc
EtO 2C
NHAc
CO 2Et
R = p-Cl 59% p-MeO 67% 3,4-MeO 88%
NHAc
EtO 2C
CO 2Et NHAc
1) H 2, Pd/C 2) HCl, H 2O
Angell, P.; Blazecka, P.; Lovdahl, M.; Zhang, J. J. Org. Chem. 2007, 72, 6606.
73% E:Z 10:1
CO 2Et
R
R
57%
C 4H 9
CO 2Et
EtO 2C
R
CO 2Et
Ph
EtO 2C
NHAc
EtO 2C
NH 2.HCl HO 2C CH3 R
28
CO 2Et
NATURAL PRODUCT SYNTHESIS: THREE STEPS TO MUSCONE
O CO 2Me
O
In(NTf 2) 3 2 mol%
CO 2Me CH3
0.01 M in toluene 150 ºC, 18 hr.
27%
O
2) NaCl, DMF/H 2O, 150 ºC, 36 hr.
CH3
(±)-muscone 58%
Itoh, Y.; Tsuji, H.; Yamagata, K. –I.; Endo, K.; Tanaka, I.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 17161
29
1) H 2, Pd/C, EtOH, r.t., 3.5 hr
HETEROATOM-TETHERED MALONIC ESTERS X R
O H 3C n-Bu
CO 2Me CO 2Me
In(OTf) 3 5 - 15 mol% DBU 5 - 15 mol%
Y
Bn N
CO 2Me 83%
Bn N
CO 2Me CO 2Me
CO 2Me
R
CO 2Me
PMB
CO 2Me CO 2Me
toluene, reflux
PMB N CO 2Me
X
O
N
93%
41% H 3C CH 3
CO 2Me CO 2Me
71%
O
CO 2Me CO 2Me
74%
•
Expands the scope of the intramolecular reaction
•
Improves utility towards more complex natural product synthesis
(a) Takahashi, K.; Midori, M.; Kawano, K.; Ishihara, J.; Hatakeyama, S. Angew. Chem., Int. Ed. 2008, 47, 6244. (b) Hatakeyama, S. Pure Appl. Chem. 2009, 81, 217.
30
Y
NATURAL PRODUCT SYNTHESIS: EARLY-STAGE CYCLIZATION IN (–)-CINATRIN C1 MeO 2C OH
CO 2Me
CO 2Me
N2
BnO OBn
O
CH 2Cl 2 then 30% H 2O2 80%, d.r. 5:1
BnO
HO
toluene, reflux 96%
OBn
OBn O
CO 2Me
BnO
Rh 2(OAc) 4 0.5 mol% benzene, reflux 69%
OsO 4 10 mol% NMO, PhB(OH) 2
In(OTf) 3 5.5 mol% DBU 5.0 mol%
CO 2Me O O
O HO
O
CO 2H
HO CO 2H
OBn O BnO
CO 2Me CO 2Me
(−)-Cinatrin C1 24 steps 2% overall yield
Urabe, F.; Nagashima, S.; Takahashi, K.; Ishihara, J.; Hatakeyama, S. J. Org. Chem. 2013, 78, 3847.
31
• Chosen as a cyclization method to selectively form exo-methylidenes and avoid alkene rearrangement into conjugation.
NATURAL PRODUCT SYNTHESIS: (–)-SALINOSPORAMIDE A O
PMB AcO
N
2) toluene, 1 hr.
AcO
MeO 2C
93% ee
PMB PMB N CO 2Me
O
CO 2Me
O
H N
OAc
75% 72:28 isomeric mixture
NH
PhSeBr AgBF4
O
BnO
PMB N CO 2Me CO 2Me
BnOH
O
SePh
96%, 90% ee 1) AIBN, Bu 3SnH 2) NaBH 4
O
O
H N
3) DMP
O BnO H
CO 2Me
O
H
OH HO
OH
PMB N CO 2Me CHO
BnO
CO 2Me
PMB N CO 2Me CO 2Me
CO 2Me
H O
CO 2Me
O
CO 2Me
CHO
•
O
In(OTf) 3 5 mol% toluene, 110 ºC
Salinosporamide A OH 21 steps
H N
O
OH Cl
O
The cyclization precursor underwent a spontaneous thermal conia-ene reaction, resulting in epimerization. In(OTf)3 converted the rest of the material to the cyclized product with the expected retention of configuration.
Takahashi, K.; Midori, M,.; Kawano, K.; Ishihara, J.; Hatakeyama, S. Angew. Chem. Int. Ed. 2008, 47, 6244.
32
HO
1) (COCl) 2, DMF CH 2Cl 2, 0 ºC
FUTURE APPLICATIONS: LEWIS BASE CATALYSIS? OTf O TfO In O LB
CH3 CH3
OEt CH3 CH3
LB
O
R 3O
H TfO LB In O TfO O
CH3 OEt CH3
N
R1
Ph O
O
R2
In s-Bu
N
Y P R N N R
Ph CH3
O
OEt CH3
O
N R
In OTf TfO
•
At present the reaction requires high temperatures in order to proceed to completion and in good yield
•
Lewis base coordination could activate the indium enolate and increase reactivity
•
Highly organized transition state could allow for asymmetric induction with a chiral Lewis base •
O Me
Has already proven successful with a “tethered” lewis basic chiral auxiliary
33
LB
OTf O In O OTf
OEt
H TfO TfO In
R4
IMPORTANT RESOURCES Seminal papers: Nakamura, M.; Endo, K.; Nakamura, E. J. Am. Chem. Soc. 2003, 125, 13002. Endo, K.; Hatakayema, T.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 5264. OrgSyn: Fujimoto, T.; Endo, K.; Nakamura, M.; Nakamura, E. Org. Synth. 2009, 86, 325. Enantioselective: Fujimoto, T.; Endo, K.; Tsuji, H.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 4492. Reviews: Dénès, F.; Pérez-Luna, A.; Chemla, F. Addition of Metal Enolate Derivatives to Unactivated Carbon-Carbon Multiple Bonds. Chem. Rev. 2010, 110, 2366.
34
Dagorne, S.; Bellemin-Laponnaz, S. Group 13 Metal-Mediated Organic Reactions. The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities. 2011, 654.
View more...
Comments