Wallis\' Formula and Other Infinite Products
October 30, 2017 | Author: Anonymous | Category: N/A
Short Description
Wallis' Formula and Other Infinite Products. Richard Belshoff. Missouri State University. MAA ......
Description
Wallis’ Formula and Other Infinite Products Richard Belshoff Missouri State University MAA Student Chapter Talk
January 29, 2009
Wallis’ formula
π 2 2 4 4 6 6 = · · · · · · ··· 2 1 3 3 5 5 7
Wallis’ formula
π 2 2 4 4 6 6 = · · · · · · ··· 2 1 3 3 5 5 7 2 2 4 4 6 6 π · · · ··· = . 1 3 3 5 5 7 2
Wallis’ formula
π 2 2 4 4 6 6 = · · · · · · ··· 2 1 3 3 5 5 7 2 2 4 4 6 6 π · · · ··· = . 1 3 3 5 5 7 2 Now pull out every other pair of terms.
Wallis’ formula
π 2 2 4 4 6 6 = · · · · · · ··· 2 1 3 3 5 5 7 2 2 4 4 6 6 π · · · ··· = . 1 3 3 5 5 7 2 Now pull out every other pair of terms. 2 2 6 6 10 10 · · · ··· = 1 3 5 7 9 11
Wallis’ formula
π 2 2 4 4 6 6 = · · · · · · ··· 2 1 3 3 5 5 7 2 2 4 4 6 6 π · · · ··· = . 1 3 3 5 5 7 2 Now pull out every other pair of terms. √ 2 2 6 6 10 10 · · · ··· = 2 1 3 5 7 9 11
Wallis’ formula
π 2 2 4 4 6 6 = · · · · · · ··· 2 1 3 3 5 5 7 2 2 4 4 6 6 π · · · ··· = . 1 3 3 5 5 7 2 Now pull out every other pair of terms. √ 2 2 6 6 10 10 · · · ··· = 2 1 3 5 7 9 11
AMAZING!
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products”
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 ,
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 ,
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 ,
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . ,
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . , pn = a1 · · · an ,
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . , pn = a1 · · · an , . . . . . . .
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . , pn = a1 · · · an , . . . . . . . If pn → M as n → ∞, i.e. if lim pn = M, n→∞
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . , pn = a1 · · · an , . . . . . . . If pn → M as n → ∞, i.e. if lim pn = M, then we say that n→∞
a1 a2 a3 · · · =M.
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . , pn = a1 · · · an , . . . . . . . If pn → M as n → ∞, i.e. if lim pn = M, then we say that n→∞
a1 a2 a3 · · · =M. Notation:
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . , pn = a1 · · · an , . . . . . . . If pn → M as n → ∞, i.e. if lim pn = M, then we say that n→∞
a1 a2 a3 · · · =M. Notation:
∞ Y i=1
ai = a1 a2 a3 · · ·
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . , pn = a1 · · · an , . . . . . . . If pn → M as n → ∞, i.e. if lim pn = M, then we say that n→∞
a1 a2 a3 · · · =M. Notation:
∞ Y
ai = a1 a2 a3 · · ·
i=1 n Y i=1
ai = a1 a2 · · · an
What do we mean by an infinite product? ?
a1 a2 a3 · · · = M Consider the sequence of “partial products” p1 = a1 , p2 = a1 a2 , p3 = a1 a2 a3 , . . . , pn = a1 · · · an , . . . . . . . If pn → M as n → ∞, i.e. if lim pn = M, then we say that n→∞
a1 a2 a3 · · · =M. Notation:
∞ Y
ai = a1 a2 a3 · · ·
i=1 n Y
ai = a1 a2 · · · an
i=1 ∞ Y i=1
ai = lim
n→∞
n Y i=1
ai
The Factor Theorem Theorem (Factor Theorem) A real number r is a root of a polynomial p(x) if and only if (x − r ) is a factor of p(x).
The Factor Theorem Theorem (Factor Theorem) A real number r is a root of a polynomial p(x) if and only if (x − r ) is a factor of p(x).
Example A polynomial with roots −2, −1, 0, 1, and 2 is
The Factor Theorem Theorem (Factor Theorem) A real number r is a root of a polynomial p(x) if and only if (x − r ) is a factor of p(x).
Example A polynomial with roots −2, −1, 0, 1, and 2 is p(x) = (x + 2)(x + 1)x(x − 1)(x − 2)
The Factor Theorem Theorem (Factor Theorem) A real number r is a root of a polynomial p(x) if and only if (x − r ) is a factor of p(x).
Example A polynomial with roots −2, −1, 0, 1, and 2 is p(x) = (x + 2)(x + 1)x(x − 1)(x − 2) = x(x 2 − 1)(x 2 − 4).
The Factor Theorem Theorem (Factor Theorem) A real number r is a root of a polynomial p(x) if and only if (x − r ) is a factor of p(x).
Example A polynomial with roots −2, −1, 0, 1, and 2 is p(x) = (x + 2)(x + 1)x(x − 1)(x − 2) = x(x 2 − 1)(x 2 − 4). But this is not unique
The Factor Theorem Theorem (Factor Theorem) A real number r is a root of a polynomial p(x) if and only if (x − r ) is a factor of p(x).
Example A polynomial with roots −2, −1, 0, 1, and 2 is p(x) = (x + 2)(x + 1)x(x − 1)(x − 2) = x(x 2 − 1)(x 2 − 4). But this is not unique p(x) = Cx(x 2 − 1)(x 2 − 4)
An infinite number of roots? What about an infinite number of roots?
An infinite number of roots? What about an infinite number of roots? Could we construct an “infinite polynomial” with roots 0, ±1, ±2, ±3, . . .?
An infinite number of roots? What about an infinite number of roots? Could we construct an “infinite polynomial” with roots 0, ±1, ±2, ±3, . . .? ? f (x) = Cx(x 2 − 1)(x 2 − 4)(x 2 − 9) · · ·
An infinite number of roots? What about an infinite number of roots? Could we construct an “infinite polynomial” with roots 0, ±1, ±2, ±3, . . .? ? f (x) = Cx(x 2 − 1)(x 2 − 4)(x 2 − 9) · · · Better:
An infinite number of roots? What about an infinite number of roots? Could we construct an “infinite polynomial” with roots 0, ±1, ±2, ±3, . . .? ? f (x) = Cx(x 2 − 1)(x 2 − 4)(x 2 − 9) · · · Better: f (x) = Cx(1 − x 2 )(1 −
x2 x2 )(1 − ) · · · 4 9
An infinite number of roots? What about an infinite number of roots? Could we construct an “infinite polynomial” with roots 0, ±1, ±2, ±3, . . .? ? f (x) = Cx(x 2 − 1)(x 2 − 4)(x 2 − 9) · · · Better:
x2 x2 )(1 − ) · · · 4 9 This infinite product converges for all values of x f (x) = Cx(1 − x 2 )(1 −
An infinite number of roots? What about an infinite number of roots? Could we construct an “infinite polynomial” with roots 0, ±1, ±2, ±3, . . .? ? f (x) = Cx(x 2 − 1)(x 2 − 4)(x 2 − 9) · · · Better:
x2 x2 )(1 − ) · · · 4 9 This infinite product converges for all values of x (Knopp, Theory of Functions, Part II, Dover, New York, 1947.) f (x) = Cx(1 − x 2 )(1 −
An infinite number of roots? What about an infinite number of roots? Could we construct an “infinite polynomial” with roots 0, ±1, ±2, ±3, . . .? ? f (x) = Cx(x 2 − 1)(x 2 − 4)(x 2 − 9) · · · Better:
x2 x2 )(1 − ) · · · 4 9 This infinite product converges for all values of x (Knopp, Theory of Functions, Part II, Dover, New York, 1947.) f (x) = Cx(1 − x 2 )(1 −
There is a well-known function that behaves similarly, that is zero at all the integers, namely, .....
An infinite number of roots? What about an infinite number of roots? Could we construct an “infinite polynomial” with roots 0, ±1, ±2, ±3, . . .? ? f (x) = Cx(x 2 − 1)(x 2 − 4)(x 2 − 9) · · · Better:
x2 x2 )(1 − ) · · · 4 9 This infinite product converges for all values of x (Knopp, Theory of Functions, Part II, Dover, New York, 1947.) f (x) = Cx(1 − x 2 )(1 −
There is a well-known function that behaves similarly, that is zero at all the integers, namely, ..... sin πx.
I
f (x) = Cx(1 − x 2 )(1 −
x2 4 )(1
−
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
x2 4 )(1
−
x2 9 )···
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
−
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
I
If Cx(1 − x 2 )(1 −
x2 4 )(1
−
−
x2 9 )···
= sin πx, then C = π.
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
I
If Cx(1 − x 2 )(1 −
x2 4 )(1
−
C (1 − x 2 )(1 −
−
x2 9 )···
= sin πx, then C = π.
x2 x2 )(1 − ) · · · = 4 9
sin πx x
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
I
If Cx(1 − x 2 )(1 −
x2 4 )(1
−
lim C (1 − x 2 )(1 −
x→0
−
x2 9 )···
= sin πx, then C = π.
x2 sin πx x2 )(1 − ) · · · = lim x→0 4 9 x
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
I
If Cx(1 − x 2 )(1 −
x2 4 )(1
−
lim C (1 − x 2 )(1 −
x→0
Therefore C = π.
−
x2 9 )···
= sin πx, then C = π.
x2 sin πx x2 )(1 − ) · · · = lim x→0 4 9 x
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
I
If Cx(1 − x 2 )(1 −
x2 4 )(1
−
lim C (1 − x 2 )(1 −
x→0
−
x2 9 )···
= sin πx, then C = π.
x2 sin πx x2 )(1 − ) · · · = lim x→0 4 9 x
Therefore C = π. I
When C = π, we have f (x) = sin πx for all values of x.
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
I
If Cx(1 − x 2 )(1 −
x2 4 )(1
−
lim C (1 − x 2 )(1 −
x→0
−
x2 9 )···
= sin πx, then C = π.
x2 sin πx x2 )(1 − ) · · · = lim x→0 4 9 x
Therefore C = π. I
When C = π, we have f (x) = sin πx for all values of x.
I
Euler’s infinite product for sine:
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
I
If Cx(1 − x 2 )(1 −
x2 4 )(1
−
lim C (1 − x 2 )(1 −
x→0
−
x2 9 )···
= sin πx, then C = π.
x2 sin πx x2 )(1 − ) · · · = lim x→0 4 9 x
Therefore C = π. I
When C = π, we have f (x) = sin πx for all values of x.
I
Euler’s infinite product for sine: sin πx = πx(1 − x 2 )(1 −
x2 x2 )(1 − ) · · · 4 9
x2 4 )(1
x2 9 )···
I
f (x) = Cx(1 − x 2 )(1 −
I
sin πx
I
Both are zero at all the integers.
I
If Cx(1 − x 2 )(1 −
x2 4 )(1
−
lim C (1 − x 2 )(1 −
x→0
−
x2 9 )···
= sin πx, then C = π.
x2 sin πx x2 )(1 − ) · · · = lim x→0 4 9 x
Therefore C = π. I
When C = π, we have f (x) = sin πx for all values of x.
I
Euler’s infinite product for sine: sin πx = πx(1 − x 2 )(1 −
AMAZING!
x2 x2 )(1 − ) · · · 4 9
Digression: The Basel Problem
Digression: The Basel Problem
Aside: Euler used this identity
Digression: The Basel Problem
Aside: Euler used this identity sin πx = πx(1 − x 2 )(1 −
x2 x2 )(1 − ) · · · 4 9
Digression: The Basel Problem
Aside: Euler used this identity sin πx = πx(1 − x 2 )(1 − to prove
x2 x2 )(1 − ) · · · 4 9
Digression: The Basel Problem
Aside: Euler used this identity sin πx = πx(1 − x 2 )(1 −
x2 x2 )(1 − ) · · · 4 9
to prove 1+
1 1 1 π2 . + 2 + 2 + ··· = 2 2 3 4 6
Digression: The Basel Problem
Aside: Euler used this identity sin πx = πx(1 − x 2 )(1 −
x2 x2 )(1 − ) · · · 4 9
to prove 1+
1 1 1 π2 . + 2 + 2 + ··· = 2 2 3 4 6
Our goal: prove Wallis’ formula.
Proof of Wallis’ Formula
Proof of Wallis’ Formula
sin πx
= πx(1 − x 2 )(1 −
x2 x2 )(1 − ) · · · 4 9
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 π 3 15 35 sin(π/2) = · ··· 2 4 16 36 sin πx
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 (2n − 1)(2n + 1) π 3 15 35 sin(π/2) = · ··· ··· 2 4 16 36 (2n)2 sin πx
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 (2n − 1)(2n + 1) π 3 15 35 sin(π/2) = · ··· ··· 2 4 16 36 (2n)2 π 1 = 2 sin πx
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 (2n − 1)(2n + 1) π 3 15 35 sin(π/2) = · ··· ··· 2 4 16 36 (2n)2 π 1·3 1 = · 2 2·2 sin πx
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 (2n − 1)(2n + 1) π 3 15 35 sin(π/2) = · ··· ··· 2 4 16 36 (2n)2 π 1·3 3·5 1 = · · 2 2·2 4·4 sin πx
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 (2n − 1)(2n + 1) π 3 15 35 sin(π/2) = · ··· ··· 2 4 16 36 (2n)2 π 1·3 3·5 5·7 1 = · · · 2 2·2 4·4 6·6 sin πx
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 (2n − 1)(2n + 1) π 3 15 35 sin(π/2) = · ··· ··· 2 4 16 36 (2n)2 π 1·3 3·5 5·7 1 = · · · ········· 2 2·2 4·4 6·6 sin πx
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 (2n − 1)(2n + 1) π 3 15 35 sin(π/2) = · ··· ··· 2 4 16 36 (2n)2 π 1·3 3·5 5·7 1 = · · · ········· 2 2·2 4·4 6·6 Therefore, sin πx
Proof of Wallis’ Formula
x2 x2 = πx(1 − x 2 )(1 − )(1 − ) · · · 4 9 (2n − 1)(2n + 1) π 3 15 35 sin(π/2) = · ··· ··· 2 4 16 36 (2n)2 π 1·3 3·5 5·7 1 = · · · ········· 2 2·2 4·4 6·6 Therefore, π 2 2 4 4 6 6 = · · · · · · ··· 2 1 3 3 5 5 7 sin πx
An infinite product for cosine
An infinite product for cosine sin(πx) = πx(1 − x 2 )(1 −
x2 x2 x2 x2 )(1 − )(1 − )(1 − ) · · · 4 9 16 25
An infinite product for cosine x2 x2 x2 x2 )(1 − )(1 − )(1 − ) · · · 4 9 16 25 2 2 2 4x 4x 4x 4x 2 sin(2πx) = 2πx(1 − 4x 2 )(1 − )(1 − )(1 − )(1 − )··· 4 9 16 25 sin(πx) = πx(1 − x 2 )(1 −
An infinite product for cosine x2 x2 x2 x2 )(1 − )(1 − )(1 − ) · · · 4 9 16 25 2 2 2 4x 4x 4x 4x 2 sin(2πx) = 2πx(1 − 4x 2 )(1 − )(1 − )(1 − )(1 − )··· 4 9 16 25 4x 2 x2 4x 2 sin(2πx) = 2πx(1 − 4x 2 )(1 − x 2 )(1 − )(1 − )(1 − )··· 9 4 25 sin(πx) = πx(1 − x 2 )(1 −
An infinite product for cosine
x2 x2 x2 x2 )(1 − )(1 − )(1 − ) · · · 4 9 16 25 2 2 2 4x 4x 4x 4x 2 sin(2πx) = 2πx(1 − 4x 2 )(1 − )(1 − )(1 − )(1 − )··· 4 9 16 25 4x 2 x2 4x 2 sin(2πx) = 2πx(1 − 4x 2 )(1 − x 2 )(1 − )(1 − )(1 − )··· 9 4 25 4x 2 4x 2 x2 )(1 − ) sin(2πx) = 2 πx(1 − x 2 )(1 − ) · · · (1 − 4x 2 )(1 − 4 9 25 sin(πx) = πx(1 − x 2 )(1 −
An infinite product for cosine
x2 x2 x2 x2 )(1 − )(1 − )(1 − ) · · · 4 9 16 25 2 2 2 4x 4x 4x 4x 2 2πx(1 − 4x 2 )(1 − )(1 − )(1 − )(1 − )··· 4 9 16 25 4x 2 x2 4x 2 2πx(1 − 4x 2 )(1 − x 2 )(1 − )(1 − )(1 − )··· 9 4 25 4x 2 4x 2 x2 )(1 − ) 2 πx(1 − x 2 )(1 − ) · · · (1 − 4x 2 )(1 − 4 9 25 2 sin(πx) cos(πx)
sin(πx) = πx(1 − x 2 )(1 − sin(2πx) = sin(2πx) = sin(2πx) = sin(2πx) =
An infinite product for cosine
x2 x2 x2 x2 )(1 − )(1 − )(1 − ) · · · 4 9 16 25 2 2 2 4x 4x 4x 4x 2 2πx(1 − 4x 2 )(1 − )(1 − )(1 − )(1 − )··· 4 9 16 25 4x 2 x2 4x 2 2πx(1 − 4x 2 )(1 − x 2 )(1 − )(1 − )(1 − )··· 9 4 25 4x 2 4x 2 x2 )(1 − ) 2 πx(1 − x 2 )(1 − ) · · · (1 − 4x 2 )(1 − 4 9 25 2 sin(πx) cos(πx)
sin(πx) = πx(1 − x 2 )(1 − sin(2πx) = sin(2πx) = sin(2πx) = sin(2πx) =
Therefore,
An infinite product for cosine
x2 x2 x2 x2 )(1 − )(1 − )(1 − ) · · · 4 9 16 25 2 2 2 4x 4x 4x 4x 2 2πx(1 − 4x 2 )(1 − )(1 − )(1 − )(1 − )··· 4 9 16 25 4x 2 x2 4x 2 2πx(1 − 4x 2 )(1 − x 2 )(1 − )(1 − )(1 − )··· 9 4 25 4x 2 4x 2 x2 )(1 − ) 2 πx(1 − x 2 )(1 − ) · · · (1 − 4x 2 )(1 − 4 9 25 2 sin(πx) cos(πx)
sin(πx) = πx(1 − x 2 )(1 − sin(2πx) = sin(2πx) = sin(2πx) = sin(2πx) =
Therefore, cos(πx) = (1 − 4x 2 )(1 −
4x 2 4x 2 )(1 − )··· 9 25
The infinite product for
√
2
The infinite product for
√
2
cos(πx) = (1 − 4x 2 )(1 −
4x 2 4x 2 )(1 − )··· 9 25
The infinite product for
√
2
4x 2 4x 2 )(1 − )··· cos(πx) = (1 − 4x 2 )(1 − 25 9 3 35 99 cos(π/4) = ··· 4 36 100
The infinite product for
√
2
4x 2 4x 2 )(1 − )··· cos(πx) = (1 − 4x 2 )(1 − 25 9 3 35 99 cos(π/4) = ··· 4 36 100 5·7 9 · 11 1 1·3 √ ··· = 2·2 6·6 10 · 10 2
The infinite product for
√
2
4x 2 4x 2 )(1 − )··· cos(πx) = (1 − 4x 2 )(1 − 25 9 3 35 99 cos(π/4) = ··· 4 36 100 5·7 9 · 11 1 1·3 √ ··· = 2·2 6·6 10 · 10 2 Therefore,
The infinite product for
√
2
4x 2 4x 2 )(1 − )··· cos(πx) = (1 − 4x 2 )(1 − 25 9 3 35 99 cos(π/4) = ··· 4 36 100 5·7 9 · 11 1 1·3 √ ··· = 2·2 6·6 10 · 10 2 Therefore, √ 2 2 6 6 10 10 · · · 2 = ··· 1 3 5 7 9 11
That’s all folks!
THE END
References
Su, Francis E., et al. ”Wallis’ Formula.” Mudd Math Fun Facts. http://www.math.hmc.edu/funfacts.
References
Su, Francis E., et al. ”Wallis’ Formula.” Mudd Math Fun Facts. http://www.math.hmc.edu/funfacts. Vandervelde, S., “Newton’s Sums and the Infinite Product Representation for sin πx,” Mathematics and Informatics Quarterly, 9 (1999), pp. 64-69.
View more...
Comments