What\'s so great about Krylov subspaces? - Mathematics

October 30, 2017 | Author: Anonymous | Category: N/A
Share Embed


Short Description

subspaces. David S. Watkins. Krylov subspaces and eigenvalue problems focus on eigenvalue problems ......

Description

Krylov subspaces David S. Watkins

What’s so great about Krylov subspaces? David S. Watkins Department of Mathematics Washington State University

Guwahati, 2013

Krylov Subspace Methods are Great Krylov subspaces David S. Watkins

Krylov subspace methods are great. “Everybody” knows this. large, sparse problems linear systems: CG, MINRES, GMRES, . . . eigenvalue problems: Lanczos, Arnoldi, . . .

Krylov Subspace Methods are Great Krylov subspaces David S. Watkins

Krylov subspace methods are great. “Everybody” knows this. large, sparse problems linear systems: CG, MINRES, GMRES, . . . eigenvalue problems: Lanczos, Arnoldi, . . .

Krylov Subspace Methods are Great Krylov subspaces David S. Watkins

Krylov subspace methods are great. “Everybody” knows this. large, sparse problems linear systems: CG, MINRES, GMRES, . . . eigenvalue problems: Lanczos, Arnoldi, . . .

Krylov Subspace Methods are Great Krylov subspaces David S. Watkins

Krylov subspace methods are great. “Everybody” knows this. large, sparse problems linear systems: CG, MINRES, GMRES, . . . eigenvalue problems: Lanczos, Arnoldi, . . .

Krylov Subspace Methods are Great Krylov subspaces David S. Watkins

Krylov subspace methods are great. “Everybody” knows this. large, sparse problems linear systems: CG, MINRES, GMRES, . . . eigenvalue problems: Lanczos, Arnoldi, . . .

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

focus on eigenvalue problems pedagogy, understanding introduce Krylov subspaces sooner relevant to small, dense problems too proselytizing

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

focus on eigenvalue problems pedagogy, understanding introduce Krylov subspaces sooner relevant to small, dense problems too proselytizing

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

focus on eigenvalue problems pedagogy, understanding introduce Krylov subspaces sooner relevant to small, dense problems too proselytizing

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

focus on eigenvalue problems pedagogy, understanding introduce Krylov subspaces sooner relevant to small, dense problems too proselytizing

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

focus on eigenvalue problems pedagogy, understanding introduce Krylov subspaces sooner relevant to small, dense problems too proselytizing

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

focus on eigenvalue problems pedagogy, understanding introduce Krylov subspaces sooner relevant to small, dense problems too proselytizing

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

reduction to upper Hessenberg form A ∈ Cn×n H = Q −1 AQ,

H upper Hessenberg

Q can be unitary first column, q1 , direction arbitrary O(n3 ) direct method

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

reduction to upper Hessenberg form A ∈ Cn×n H = Q −1 AQ,

H upper Hessenberg

Q can be unitary first column, q1 , direction arbitrary O(n3 ) direct method

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

reduction to upper Hessenberg form A ∈ Cn×n H = Q −1 AQ,

H upper Hessenberg

Q can be unitary first column, q1 , direction arbitrary O(n3 ) direct method

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

reduction to upper Hessenberg form A ∈ Cn×n H = Q −1 AQ,

H upper Hessenberg

Q can be unitary first column, q1 , direction arbitrary O(n3 ) direct method

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

reduction to upper Hessenberg form A ∈ Cn×n H = Q −1 AQ,

H upper Hessenberg

Q can be unitary first column, q1 , direction arbitrary O(n3 ) direct method

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

reduction to upper Hessenberg form A ∈ Cn×n H = Q −1 AQ,

H upper Hessenberg

Q can be unitary first column, q1 , direction arbitrary O(n3 ) direct method

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

H = Q −1 AQ,

H upper Hessenberg

for unitary Q . . . Implicit-Q Theorem: q1 determines Q and H (nearly) uniquely. Krylov subspaces lurking in background Suggestion: Bring them out into the light. Advantages: clearer picture, more general theory

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

Krylov subspace:  Kj (A, v ) = span v , Av , A2 v , . . . , Aj−1 v

Theorem: Let A = QHQ −1 , where H is properly upper Hessenberg. Then span{q1 , . . . , qj } = Kj (A, q1 ),

j = 1, . . . , n.

valid even if Q is not unitary (contrast with implicit-Q) no need for implicit-S, implicit-H, implicit-L, . . .

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

Krylov subspace:  Kj (A, v ) = span v , Av , A2 v , . . . , Aj−1 v

Theorem: Let A = QHQ −1 , where H is properly upper Hessenberg. Then span{q1 , . . . , qj } = Kj (A, q1 ),

j = 1, . . . , n.

valid even if Q is not unitary (contrast with implicit-Q) no need for implicit-S, implicit-H, implicit-L, . . .

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

Krylov subspace:  Kj (A, v ) = span v , Av , A2 v , . . . , Aj−1 v

Theorem: Let A = QHQ −1 , where H is properly upper Hessenberg. Then span{q1 , . . . , qj } = Kj (A, q1 ),

j = 1, . . . , n.

valid even if Q is not unitary (contrast with implicit-Q) no need for implicit-S, implicit-H, implicit-L, . . .

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

Krylov subspace:  Kj (A, v ) = span v , Av , A2 v , . . . , Aj−1 v

Theorem: Let A = QHQ −1 , where H is properly upper Hessenberg. Then span{q1 , . . . , qj } = Kj (A, q1 ),

j = 1, . . . , n.

valid even if Q is not unitary (contrast with implicit-Q) no need for implicit-S, implicit-H, implicit-L, . . .

Krylov subspaces and eigenvalue problems Krylov subspaces David S. Watkins

Krylov subspace:  Kj (A, v ) = span v , Av , A2 v , . . . , Aj−1 v

Theorem: Let A = QHQ −1 , where H is properly upper Hessenberg. Then span{q1 , . . . , qj } = Kj (A, q1 ),

j = 1, . . . , n.

valid even if Q is not unitary (contrast with implicit-Q) no need for implicit-S, implicit-H, implicit-L, . . .

Need for iteration Krylov subspaces David S. Watkins

Hessenberg form is not the goal. Triangular form is the goal. Hessenberg is as far as we can get with a direct method. (Abel, Galois) need to iterate

Need for iteration Krylov subspaces David S. Watkins

Hessenberg form is not the goal. Triangular form is the goal. Hessenberg is as far as we can get with a direct method. (Abel, Galois) need to iterate

Need for iteration Krylov subspaces David S. Watkins

Hessenberg form is not the goal. Triangular form is the goal. Hessenberg is as far as we can get with a direct method. (Abel, Galois) need to iterate

Need for iteration Krylov subspaces David S. Watkins

Hessenberg form is not the goal. Triangular form is the goal. Hessenberg is as far as we can get with a direct method. (Abel, Galois) need to iterate

Power method, Subspace iteration Krylov subspaces David S. Watkins

v , Av , A2 v , A3 v , . . . convergence rate | λ2 /λ1 | S, AS, A2 S, A3 S, . . . subspaces of dimension j

(| λj+1 /λj |)

Power method, Subspace iteration Krylov subspaces David S. Watkins

v , Av , A2 v , A3 v , . . . convergence rate | λ2 /λ1 | S, AS, A2 S, A3 S, . . . subspaces of dimension j

(| λj+1 /λj |)

Power method, Subspace iteration Krylov subspaces David S. Watkins

v , Av , A2 v , A3 v , . . . convergence rate | λ2 /λ1 | S, AS, A2 S, A3 S, . . . subspaces of dimension j

(| λj+1 /λj |)

Power method, Subspace iteration Krylov subspaces David S. Watkins

v , Av , A2 v , A3 v , . . . convergence rate | λ2 /λ1 | S, AS, A2 S, A3 S, . . . subspaces of dimension j

(| λj+1 /λj |)

Power method, Subspace iteration Krylov subspaces David S. Watkins

v , Av , A2 v , A3 v , . . . convergence rate | λ2 /λ1 | S, AS, A2 S, A3 S, . . . subspaces of dimension j

(| λj+1 /λj |)

Power method, Subspace iteration Krylov subspaces David S. Watkins

v , Av , A2 v , A3 v , . . . convergence rate | λ2 /λ1 | S, AS, A2 S, A3 S, . . . subspaces of dimension j

(| λj+1 /λj |)

Power method, Subspace iteration Krylov subspaces David S. Watkins

for greater flexibility shifts ρ1 , . . . , ρm

(m small)

(explanation deferred) p(A) = (A − ρ1 I ) · · · (A − ρm I ) Substitute p(A) for A S, p(A)S, p(A)2 S, p(A)3 S, . . . convergence rate | p(λj+1 )/p(λj ) |

Power method, Subspace iteration Krylov subspaces David S. Watkins

for greater flexibility shifts ρ1 , . . . , ρm

(m small)

(explanation deferred) p(A) = (A − ρ1 I ) · · · (A − ρm I ) Substitute p(A) for A S, p(A)S, p(A)2 S, p(A)3 S, . . . convergence rate | p(λj+1 )/p(λj ) |

Power method, Subspace iteration Krylov subspaces David S. Watkins

for greater flexibility shifts ρ1 , . . . , ρm

(m small)

(explanation deferred) p(A) = (A − ρ1 I ) · · · (A − ρm I ) Substitute p(A) for A S, p(A)S, p(A)2 S, p(A)3 S, . . . convergence rate | p(λj+1 )/p(λj ) |

Power method, Subspace iteration Krylov subspaces David S. Watkins

for greater flexibility shifts ρ1 , . . . , ρm

(m small)

(explanation deferred) p(A) = (A − ρ1 I ) · · · (A − ρm I ) Substitute p(A) for A S, p(A)S, p(A)2 S, p(A)3 S, . . . convergence rate | p(λj+1 )/p(λj ) |

Power method, Subspace iteration Krylov subspaces David S. Watkins

for greater flexibility shifts ρ1 , . . . , ρm

(m small)

(explanation deferred) p(A) = (A − ρ1 I ) · · · (A − ρm I ) Substitute p(A) for A S, p(A)S, p(A)2 S, p(A)3 S, . . . convergence rate | p(λj+1 )/p(λj ) |

Power method, Subspace iteration Krylov subspaces David S. Watkins

for greater flexibility shifts ρ1 , . . . , ρm

(m small)

(explanation deferred) p(A) = (A − ρ1 I ) · · · (A − ρm I ) Substitute p(A) for A S, p(A)S, p(A)2 S, p(A)3 S, . . . convergence rate | p(λj+1 )/p(λj ) |

Power method, Subspace iteration Krylov subspaces David S. Watkins

for greater flexibility shifts ρ1 , . . . , ρm

(m small)

(explanation deferred) p(A) = (A − ρ1 I ) · · · (A − ρm I ) Substitute p(A) for A S, p(A)S, p(A)2 S, p(A)3 S, . . . convergence rate | p(λj+1 )/p(λj ) |

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

take S = span{e1 , . . . , ej } p(A)S = span{p(A)e1 , . . . , p(A)ej } = span{q1 , . . . , qj } (orthonormal?) build unitary (or not) Q = [q1 · · · qj · · · ] ˆ = Q −1 AQ change coordinate system: A qk → Q −1 qk = ek span{q1 , . . . , qj } → span{e1 , . . . , ej } ready for next iteration

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

take S = span{e1 , . . . , ej } p(A)S = span{p(A)e1 , . . . , p(A)ej } = span{q1 , . . . , qj } (orthonormal?) build unitary (or not) Q = [q1 · · · qj · · · ] ˆ = Q −1 AQ change coordinate system: A qk → Q −1 qk = ek span{q1 , . . . , qj } → span{e1 , . . . , ej } ready for next iteration

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

take S = span{e1 , . . . , ej } p(A)S = span{p(A)e1 , . . . , p(A)ej } = span{q1 , . . . , qj } (orthonormal?) build unitary (or not) Q = [q1 · · · qj · · · ] ˆ = Q −1 AQ change coordinate system: A qk → Q −1 qk = ek span{q1 , . . . , qj } → span{e1 , . . . , ej } ready for next iteration

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

take S = span{e1 , . . . , ej } p(A)S = span{p(A)e1 , . . . , p(A)ej } = span{q1 , . . . , qj } (orthonormal?) build unitary (or not) Q = [q1 · · · qj · · · ] ˆ = Q −1 AQ change coordinate system: A qk → Q −1 qk = ek span{q1 , . . . , qj } → span{e1 , . . . , ej } ready for next iteration

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

take S = span{e1 , . . . , ej } p(A)S = span{p(A)e1 , . . . , p(A)ej } = span{q1 , . . . , qj } (orthonormal?) build unitary (or not) Q = [q1 · · · qj · · · ] ˆ = Q −1 AQ change coordinate system: A qk → Q −1 qk = ek span{q1 , . . . , qj } → span{e1 , . . . , ej } ready for next iteration

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

take S = span{e1 , . . . , ej } p(A)S = span{p(A)e1 , . . . , p(A)ej } = span{q1 , . . . , qj } (orthonormal?) build unitary (or not) Q = [q1 · · · qj · · · ] ˆ = Q −1 AQ change coordinate system: A qk → Q −1 qk = ek span{q1 , . . . , qj } → span{e1 , . . . , ej } ready for next iteration

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

take S = span{e1 , . . . , ej } p(A)S = span{p(A)e1 , . . . , p(A)ej } = span{q1 , . . . , qj } (orthonormal?) build unitary (or not) Q = [q1 · · · qj · · · ] ˆ = Q −1 AQ change coordinate system: A qk → Q −1 qk = ek span{q1 , . . . , qj } → span{e1 , . . . , ej } ready for next iteration

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

take S = span{e1 , . . . , ej } p(A)S = span{p(A)e1 , . . . , p(A)ej } = span{q1 , . . . , qj } (orthonormal?) build unitary (or not) Q = [q1 · · · qj · · · ] ˆ = Q −1 AQ change coordinate system: A qk → Q −1 qk = ek span{q1 , . . . , qj } → span{e1 , . . . , ej } ready for next iteration

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

This version of subspace iteration . . . . . . holds the subspace fixed while the matrix changes. . . . moving toward a matrix under which span{e1 , . . . , ej } is invariant.  A→

A11 A12 0 A22

 (A11 is j × j.)

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

This version of subspace iteration . . . . . . holds the subspace fixed while the matrix changes. . . . moving toward a matrix under which span{e1 , . . . , ej } is invariant.  A→

A11 A12 0 A22

 (A11 is j × j.)

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

This version of subspace iteration . . . . . . holds the subspace fixed while the matrix changes. . . . moving toward a matrix under which span{e1 , . . . , ej } is invariant.  A→

A11 A12 0 A22

 (A11 is j × j.)

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

This version of subspace iteration . . . . . . holds the subspace fixed while the matrix changes. . . . moving toward a matrix under which span{e1 , . . . , ej } is invariant.  A→

A11 A12 0 A22

 (A11 is j × j.)

Subspace Iteration with changes of coordinate system Krylov subspaces David S. Watkins

This version of subspace iteration . . . . . . holds the subspace fixed while the matrix changes. . . . moving toward a matrix under which span{e1 , . . . , ej } is invariant.  A→

A11 A12 0 A22

 (A11 is j × j.)

Subspace iteration and Krylov subspaces Krylov subspaces David S. Watkins

single vector q “determines” nested sequence  Kj (A, q) = span q, Aq, A2 q, . . . , Aj−1 q , j = 1, . . . , n

step of power method:

q → p(A)q . . .

implies a nested sequence of subspace iterations because ... p(A)Kj (A, q) = Kj (A, p(A)q), since p(A)A = Ap(A)

Subspace iteration and Krylov subspaces Krylov subspaces David S. Watkins

single vector q “determines” nested sequence  Kj (A, q) = span q, Aq, A2 q, . . . , Aj−1 q , j = 1, . . . , n

step of power method:

q → p(A)q . . .

implies a nested sequence of subspace iterations because ... p(A)Kj (A, q) = Kj (A, p(A)q), since p(A)A = Ap(A)

Subspace iteration and Krylov subspaces Krylov subspaces David S. Watkins

single vector q “determines” nested sequence  Kj (A, q) = span q, Aq, A2 q, . . . , Aj−1 q , j = 1, . . . , n

step of power method:

q → p(A)q . . .

implies a nested sequence of subspace iterations because ... p(A)Kj (A, q) = Kj (A, p(A)q), since p(A)A = Ap(A)

Subspace iteration and Krylov subspaces Krylov subspaces David S. Watkins

single vector q “determines” nested sequence  Kj (A, q) = span q, Aq, A2 q, . . . , Aj−1 q , j = 1, . . . , n

step of power method:

q → p(A)q . . .

implies a nested sequence of subspace iterations because ... p(A)Kj (A, q) = Kj (A, p(A)q), since p(A)A = Ap(A)

Subspace iteration and Krylov subspaces Krylov subspaces David S. Watkins

single vector q “determines” nested sequence  Kj (A, q) = span q, Aq, A2 q, . . . , Aj−1 q , j = 1, . . . , n

step of power method:

q → p(A)q . . .

implies a nested sequence of subspace iterations because ... p(A)Kj (A, q) = Kj (A, p(A)q), since p(A)A = Ap(A)

Let’s build an algorithm Krylov subspaces David S. Watkins

start with upper Hessenberg A pick shifts ρ1 , ρ2 (m = 2 for illustration)      q1 = αp(A)e1 = α(A − ρ1 I )(A − ρ2 I )e1 =    

x y z 0 .. . 0

cheap, don’t compute p(A).   Q0 = q1 · · · qn , built from q1

        

Let’s build an algorithm Krylov subspaces David S. Watkins

start with upper Hessenberg A pick shifts ρ1 , ρ2 (m = 2 for illustration)      q1 = αp(A)e1 = α(A − ρ1 I )(A − ρ2 I )e1 =    

x y z 0 .. . 0

cheap, don’t compute p(A).   Q0 = q1 · · · qn , built from q1

        

Let’s build an algorithm Krylov subspaces David S. Watkins

start with upper Hessenberg A pick shifts ρ1 , ρ2 (m = 2 for illustration)      q1 = αp(A)e1 = α(A − ρ1 I )(A − ρ2 I )e1 =    

x y z 0 .. . 0

cheap, don’t compute p(A).   Q0 = q1 · · · qn , built from q1

        

Let’s build an algorithm Krylov subspaces David S. Watkins

start with upper Hessenberg A pick shifts ρ1 , ρ2 (m = 2 for illustration)      q1 = αp(A)e1 = α(A − ρ1 I )(A − ρ2 I )e1 =    

x y z 0 .. . 0

cheap, don’t compute p(A).   Q0 = q1 · · · qn , built from q1

        

Let’s build an algorithm Krylov subspaces David S. Watkins

start with upper Hessenberg A pick shifts ρ1 , ρ2 (m = 2 for illustration)      q1 = αp(A)e1 = α(A − ρ1 I )(A − ρ2 I )e1 =    

x y z 0 .. . 0

cheap, don’t compute p(A).   Q0 = q1 · · · qn , built from q1

        

Let’s build an algorithm Krylov subspaces David S. Watkins

start with upper Hessenberg A pick shifts ρ1 , ρ2 (m = 2 for illustration)      q1 = αp(A)e1 = α(A − ρ1 I )(A − ρ2 I )e1 =    

x y z 0 .. . 0

cheap, don’t compute p(A).   Q0 = q1 · · · qn , built from q1

        

Let’s build an algorithm Krylov subspaces David S. Watkins

˜ = Q −1 AQ0 A 0 power method + change of coordinate system now return to Hessenberg form ˆ =Q ˜ −1 A ˜Q ˜ = Q −1 AQ A iteration complete!

Now repeat!

Let’s build an algorithm Krylov subspaces David S. Watkins

˜ = Q −1 AQ0 A 0 power method + change of coordinate system now return to Hessenberg form ˆ =Q ˜ −1 A ˜Q ˜ = Q −1 AQ A iteration complete!

Now repeat!

Let’s build an algorithm Krylov subspaces David S. Watkins

˜ = Q −1 AQ0 A 0 power method + change of coordinate system now return to Hessenberg form ˆ =Q ˜ −1 A ˜Q ˜ = Q −1 AQ A iteration complete!

Now repeat!

Let’s build an algorithm Krylov subspaces David S. Watkins

˜ = Q −1 AQ0 A 0 power method + change of coordinate system now return to Hessenberg form ˆ =Q ˜ −1 A ˜Q ˜ = Q −1 AQ A iteration complete!

Now repeat!

Let’s build an algorithm Krylov subspaces David S. Watkins

˜ = Q −1 AQ0 A 0 power method + change of coordinate system now return to Hessenberg form ˆ =Q ˜ −1 A ˜Q ˜ = Q −1 AQ A iteration complete!

Now repeat!

Let’s build an algorithm Krylov subspaces David S. Watkins

˜ = Q −1 AQ0 A 0 power method + change of coordinate system now return to Hessenberg form ˆ =Q ˜ −1 A ˜Q ˜ = Q −1 AQ A iteration complete!

Now repeat!

What does the algorithm do? Krylov subspaces David S. Watkins

ˆ = Q −1 AQ A q1 = αp(A)e1 ˆ Hessenberg, so A span{q1 , . . . , qj } = Kj (A, q1 ) = p(A)Kj (A, e1 ) = p(A)span{e1 , . . . , ej }

subspace iteration + change of coordinate system: span{q1 , . . . , qj } → span{e1 , . . . , ej }

j = 1, 2, . . . , n − 1

What does the algorithm do? Krylov subspaces David S. Watkins

ˆ = Q −1 AQ A q1 = αp(A)e1 ˆ Hessenberg, so A span{q1 , . . . , qj } = Kj (A, q1 ) = p(A)Kj (A, e1 ) = p(A)span{e1 , . . . , ej }

subspace iteration + change of coordinate system: span{q1 , . . . , qj } → span{e1 , . . . , ej }

j = 1, 2, . . . , n − 1

What does the algorithm do? Krylov subspaces David S. Watkins

ˆ = Q −1 AQ A q1 = αp(A)e1 ˆ Hessenberg, so A span{q1 , . . . , qj } = Kj (A, q1 ) = p(A)Kj (A, e1 ) = p(A)span{e1 , . . . , ej }

subspace iteration + change of coordinate system: span{q1 , . . . , qj } → span{e1 , . . . , ej }

j = 1, 2, . . . , n − 1

What does the algorithm do? Krylov subspaces David S. Watkins

ˆ = Q −1 AQ A q1 = αp(A)e1 ˆ Hessenberg, so A span{q1 , . . . , qj } = Kj (A, q1 ) = p(A)Kj (A, e1 ) = p(A)span{e1 , . . . , ej }

subspace iteration + change of coordinate system: span{q1 , . . . , qj } → span{e1 , . . . , ej }

j = 1, 2, . . . , n − 1

What does the algorithm do? Krylov subspaces David S. Watkins

ˆ = Q −1 AQ A q1 = αp(A)e1 ˆ Hessenberg, so A span{q1 , . . . , qj } = Kj (A, q1 ) = p(A)Kj (A, e1 ) = p(A)span{e1 , . . . , ej }

subspace iteration + change of coordinate system: span{q1 , . . . , qj } → span{e1 , . . . , ej }

j = 1, 2, . . . , n − 1

What does the algorithm do? Krylov subspaces David S. Watkins

ˆ = Q −1 AQ A q1 = αp(A)e1 ˆ Hessenberg, so A span{q1 , . . . , qj } = Kj (A, q1 ) = p(A)Kj (A, e1 ) = p(A)span{e1 , . . . , ej }

subspace iteration + change of coordinate system: span{q1 , . . . , qj } → span{e1 , . . . , ej }

j = 1, 2, . . . , n − 1

What does the algorithm do? Krylov subspaces David S. Watkins

ˆ = Q −1 AQ A q1 = αp(A)e1 ˆ Hessenberg, so A span{q1 , . . . , qj } = Kj (A, q1 ) = p(A)Kj (A, e1 ) = p(A)span{e1 , . . . , ej }

subspace iteration + change of coordinate system: span{q1 , . . . , qj } → span{e1 , . . . , ej }

j = 1, 2, . . . , n − 1

What does the algorithm do? Krylov subspaces David S. Watkins

Convergence rates: | p(λj+1 )/p(λj ) | j = 1, . . . , n − 1

All ratios matter.

What does the algorithm do? Krylov subspaces David S. Watkins

Convergence rates: | p(λj+1 )/p(λj ) | j = 1, . . . , n − 1

All ratios matter.

Implementation Krylov subspaces David S. Watkins

     q1 = αp(A)e1 =    

x y z 0 .. . 0

(case m = 2)

        

Implementation Krylov subspaces David S. Watkins

× × ×  × × ×   × ×   ×   

× × × × ×

× × × × × ×

× × × × × ×

       

Implementation Krylov subspaces David S. Watkins

       

× × × × × × × × × × × × × × ×

× × × × × ×

× × × × × ×

       

Implementation Krylov subspaces David S. Watkins

       

× × × ×

× × × ×

× × × ×

× × × × ×

× × × × × ×

× × × × × ×

       

Implementation Krylov subspaces David S. Watkins

× × ×  × × ×   × ×   × ×   × × 

× × × × ×

× × × × × ×

× × × × × ×

       

Implementation Krylov subspaces David S. Watkins

× × ×  × × ×   × ×   ×   × × 

× × × × × ×

× × × × × ×

× × × × × ×

       

Implementation Krylov subspaces David S. Watkins

× × ×  × × ×   × ×   ×   

× × × × × ×

× × × × × ×

× × × × × ×

       

Implementation Krylov subspaces David S. Watkins

× × ×  × × ×   × ×   ×   

× × × × ×

× × × × × ×

× × × × × ×

       

Implementation Krylov subspaces David S. Watkins

O(n2 ) work per iteration (cheap!) This is nothing new. John Francis’s algorithm aka implicitly-shifted QR algorithm

Implementation Krylov subspaces David S. Watkins

O(n2 ) work per iteration (cheap!) This is nothing new. John Francis’s algorithm aka implicitly-shifted QR algorithm

Implementation Krylov subspaces David S. Watkins

O(n2 ) work per iteration (cheap!) This is nothing new. John Francis’s algorithm aka implicitly-shifted QR algorithm

Implementation Krylov subspaces David S. Watkins

O(n2 ) work per iteration (cheap!) This is nothing new. John Francis’s algorithm aka implicitly-shifted QR algorithm

Detail: Choice of shifts Krylov subspaces David S. Watkins

shifts? lower right-hand corner new shifts at each step ⇒ quadratic or cubic convergence Watkins (2007, 2010)

Detail: Choice of shifts Krylov subspaces David S. Watkins

shifts? lower right-hand corner new shifts at each step ⇒ quadratic or cubic convergence Watkins (2007, 2010)

Detail: Choice of shifts Krylov subspaces David S. Watkins

shifts? lower right-hand corner new shifts at each step ⇒ quadratic or cubic convergence Watkins (2007, 2010)

Detail: Choice of shifts Krylov subspaces David S. Watkins

shifts? lower right-hand corner new shifts at each step ⇒ quadratic or cubic convergence Watkins (2007, 2010)

Detail: Choice of shifts Krylov subspaces David S. Watkins

shifts? lower right-hand corner new shifts at each step ⇒ quadratic or cubic convergence Watkins (2007, 2010)

Summary Krylov subspaces David S. Watkins

derived Francis’s algorithm made use of Krylov subspaces . . . instead of implicit-Q theorem valid for nonunitary variants

Summary Krylov subspaces David S. Watkins

derived Francis’s algorithm made use of Krylov subspaces . . . instead of implicit-Q theorem valid for nonunitary variants

Summary Krylov subspaces David S. Watkins

derived Francis’s algorithm made use of Krylov subspaces . . . instead of implicit-Q theorem valid for nonunitary variants

Summary Krylov subspaces David S. Watkins

derived Francis’s algorithm made use of Krylov subspaces . . . instead of implicit-Q theorem valid for nonunitary variants

Summary Krylov subspaces David S. Watkins

derived Francis’s algorithm made use of Krylov subspaces . . . instead of implicit-Q theorem valid for nonunitary variants

Summary Krylov subspaces David S. Watkins

no QR decompositions in sight no detour via “explicit” QR algorithm Why call it the QR algorithm? I’m calling it Francis’s algorithm. end of confusion

Summary Krylov subspaces David S. Watkins

no QR decompositions in sight no detour via “explicit” QR algorithm Why call it the QR algorithm? I’m calling it Francis’s algorithm. end of confusion

Summary Krylov subspaces David S. Watkins

no QR decompositions in sight no detour via “explicit” QR algorithm Why call it the QR algorithm? I’m calling it Francis’s algorithm. end of confusion

Summary Krylov subspaces David S. Watkins

no QR decompositions in sight no detour via “explicit” QR algorithm Why call it the QR algorithm? I’m calling it Francis’s algorithm. end of confusion

Summary Krylov subspaces David S. Watkins

no QR decompositions in sight no detour via “explicit” QR algorithm Why call it the QR algorithm? I’m calling it Francis’s algorithm. end of confusion

Advertisement Krylov subspaces David S. Watkins

Publications promoting this point of view: DSW, Francis’s Algorithm, Amer. Math. Monthly (118) 2011, pp. 387–403. DSW, Fundamentals of Matrix Computations, Third Edition, John Wiley and Sons, 2010.

Advertisement Krylov subspaces David S. Watkins

Publications promoting this point of view: DSW, Francis’s Algorithm, Amer. Math. Monthly (118) 2011, pp. 387–403. DSW, Fundamentals of Matrix Computations, Third Edition, John Wiley and Sons, 2010.

Advertisement Krylov subspaces David S. Watkins

Publications promoting this point of view: DSW, Francis’s Algorithm, Amer. Math. Monthly (118) 2011, pp. 387–403. DSW, Fundamentals of Matrix Computations, Third Edition, John Wiley and Sons, 2010.

Thank you for your kind attention Krylov subspaces David S. Watkins

Photo: Frank Uhlig

View more...

Comments

Copyright © 2017 PDFSECRET Inc.