Xerox University Microfilms
October 30, 2017 | Author: Anonymous | Category: N/A
Short Description
8.1 D iffic u ltie s of Ite ra tive Methods . 144. E. Computer Listing of the Numerical ......
Description
INFORMATION TO USERS
This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1 .T h e sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproductionr could be made from "photographs" if essential to the understanding of the dissertation. Silver prir-ts of "photographs" may be ordered at additipnal charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.
Xerox University Microfilms 300 North Zeeb Road A nn A rb or, M ic h ig a n 481 0 6
7617887
AL"M&RHOUN; MUHAMMAD ALI OPTIMAL NUMERICAL PROCEDURE TO 80LVE two- d im e n s io n a l t h r e e - phase PETROLEUM RESERVOIR SIMULATOR, THE UNIVERSITY OF OKLAHOMA# PH.D.# 1976
UniversiN
/vOoOTlms
IntematiCXVll
300n zeebroad, ann arbor, m i 48106
©
1978 MUHAMMAD A L I
A
L
L
R
I
G
H
T
S
AL-M AR HO UN
R
E
S
E
R
V
E
D
THE UNIVERSITY OF OKLAHOMA. GRADUATE COLLEGE
OPTIMAL NUMERICAL PROCEDURE TO SOLVE TWO-DIMENSIONAL THREE-PHASE PETROLEUM RESERVOIR SIMULATOR
A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in p a rtia l f u lf illm e n t o f the requirements fo r the degree o f DOCTOR OF PHILOSOPHY
By MUHAMMAD ALI AL-MARHOUN Norman, Oklahoma 1978
OPTIMAL NUMERICAL PROCEDURE TO SOLVE TWO-DIMENSIONAL THREE-PHASE PETROLEUM RESERVOIR SIMULATOR A DISSERTATION APPROVED FOR THE DEPARTMENT OF PETROLEUM ENGINEERING
By
/
ACKNOWLEDGEMENTS The author wishes to express his appreciation to the Chairman o f his Graduate Committee,
Dr. H.B. Crichlow, D ire cto r o f the department o f
Petroleum and Geological Engineering, fo r his assistance in connection w ith th is work. Appreciation is also extended to Dr. D.E. Menzie, Dr. A.W. McCray o f Petroleum Engineering Department, Dr. J.A. Payne o f Computing Sciences Department, and Dr. A.A. Aly o f In d u s tria l Engineering Department fo r th e ir re v is io n o f th is d is s e rta tio n and fo r serving as members o f the a uthor's Graduate Committee. P a rtic u la r thanks are due to the U n ive rsity of Petroleum and Minerals o f Dhahran, Saudi Arabia, fo r th e ir fin a n c ia l support. The author also wishes to make a special recognition o f his parents f o r th e ir constant support and in s p ira tio n .
ni
TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ................................................................................... i i i LIST OF TABLES..........................................................................................vi LIST OF ILLUSTRATIONS............................................................................ v f i Chapter I. II. III.
INTRODUCTION ..........................................................................
RESERVOIR MODEL...........................................................................9 FINITE DIFFERENCE 3.1 3.2 3.3 3.4
IV.
Im p lic it Solution o f Pressure ............................... 18 E x p lic it Solution o f S a tu ratio ns..............................25 D is c re tiz a tio n o f Flow C o e ffic ie n t (hX) . . . . 27 Boundary Conditions .....................................................32
Successive Overrelaxation ...................................... 34 A lte rn a tin g D irection I m p lic it ................................. 38 Strongly Im p lic it ...................................................... 47
DIRECT METHODS.........................................................................62 5.1 5.2 5.3 5.4
VI.
SYSTEM .............................................. 18
ITERATIVE METHODS.................................................................. .3 3 4.1 4.2 4.3
V.
1
LU F a c to riz a tio n ............................................................ 62 Ordering Schemes............................................................ 66 Generate-And-Solve Algorithms ............................... 77 Band M atrix T echnique.................................................77
A NEW APPROACH TOTHE APPLICATION OFDIRECT METHODS IN PETROLEUM RESERVOIRSIMULATION........................ 80 6.1 6.2 6.3
Restricted A lte rn a tin g Diagonal Ordering. . . . 80 LU Factorization Applied to RAD..............................84 Implementation o f RAD Scheme in to the Simulation Package......................................................... 92
IV
Chapter V II.
Page
SIMULATION PACKAGE ................................................................ 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9
V III.
Input S e c tio n ........................... 94 One-Time C a lcu la tio n Section................................... 99 Time Control S e ctio n ...................................................... 101 C o e ffic ie n t M a trix C alculation Section................... 103 Pressure S o lu tio n Section ....................................... 104 Saturation C a lcu la tio n Section...................................104 Mass Balance S e ctio n ...................................................... 104 Output S e ctio n .................................................................. 106 A uxiluary Section ...................................................... 106
COMPARATIVE EVALUATION ........................................................ 8.1 8.2 8.3 8.4 8.5
IX.
94
110
D if f ic u lt ie s o f Ite r a tiv e Methods ....................... 110 Storage Requirements...................................................... I l l CPU Time Com parison...................................................... 112 Mass Balance E r r o r s ...................................................... 112 Average Reservoir Pressure.......................................... 125
CONCLUSIONS....................................................................................128
NOMENCLATURE ..........................................................................................
130
REFERENCES.................................................................................................. 136 APPENDICES A.
Units and ConversionFactors ......................................
140
B.
Flow Chart Convention....................................................... 141
C.
Constant Values Used in This S tu d y .................... 142
D.
Geometry and Properties o f the Reservoir Model
E.
Computer L is tin g o f the Numerical Procedures
F.
A Sampleo f Computer Simulation Output .................
.
144
. . 158 176
LIST OF TABLES Page
Table 5.1
Work and Storage Requirements fo r ordering schemes......................74
8.1
Computer Storage Requirem ents........................................................... I l l
8.2
CPU Time fo r Homogeneous C ase........................................................... 113
8.3
CPU Time fo r Heterogeneous Case ...............................................
115
8.4
Total Mass
Balance R elative Error
fo r Homogeneous Case. .
117
8.5
Total Mass
BalanceR elative Error
fo r Heterogeneous Case.
118
8.6
O il Mass Balance R elative Error fo r Homogeneous Case. .
.
119
8.7
Oil Mass Balance R elative Error fo r Heterogeneous Case.
.
120
8.8
Water Mass
BalanceR ela tive Error fo r Homogeneous Case. .
121
8.9
Water Mass
BalanceR e lative Error
122
8.10
Gas Mass Balance R elative Error fo r Homogeneous Case. .
.
123
8.11
Gas Mass Balance R elative Error fo r Heterogeneous Case.
.
124
8.12
Average Reservoir Pressure fo r Homogeneous Case ................
126
8.13
Average Reservoir Pressure fo r Heterogeneous Case . . . .
127
VI
fo r Heterogeneous Case.
LIST OF ILLUSTRATIONS Figure
Page
1.1
Stone's Comparative Study. . .....................................................
4
1.2
Breitenbach^et a l . 's Comparative S tu d y .......................................5
1.3
Watts' Comparative Study .............................................................
1.4
Welnsteln^et a l . 's Comparative S tu d y .......................................... 7
3.1
D iscretized Reservoir System ...................................................... 19
3.2
Cell System D e f in it io n .................................................................... 20
3.3
P ro file o f Two Adjacent C e lls ........................................................ 28
3.4
Flow Chart fo r the C alculation of In te rb lo ck R elative
6
Perm eability ...................................................................................... 31 4.1
PSOR Flow Chart....................................................................................35
4.2
LSOR Flow Chart....................................................................................37
4.3
Typical P lot o f Relaxation Parameter a t Fixed Tolerance. . 39
4.4
Flow Chart fo r Close-Band Thomas Algorithm ........................... 42
4.5
Flow Chart fo r Wide-Band Thomas Algorithm ................................. 45
4.6
ADI Flow C h a r t................................................................................... 46
4.7
Cell Arrangement................................................................................48
4.8
M atrix
4.9
L and U Matrices fo r Odd-Numbered I t e r a t io n s ..........................52
4.10
B M atrix fo r Odd-Numbered Ite ra tio n s ....................................... 53
4.11
L and U Matrices fo r Even-Numbered Ite ra tio n s ..........................56
4.12
B M atrix fo r Even-Numbered Ite ra tio n s ......................................... 57
4.13
SIP Flow C h a rt.................................................................................... 61
In SIP....................................................................................51
v11
Figure
Page
5.1
J ï P= d System o f Equations.................................................................. 63
5.2
LU Fa ctorization o f % .......................................................................... 65
5.3
Standard Ordering........................................................................................68
5.4
Diagonal Ordering. .
5.5
M atrix X Corresponding
to Standard Ordering.............................. 69
5.6
M atrix X Corresponding
to Diagonal Ordering.............................. 70
5.7
A lte rn a tin g Point Ordering ................................................................
5.8
A lte rn a tin g Diagonal Ordering................................................................ 71
5.9
M atrix X Corresponding
5.10 M atrix X Corresponding
........................................
68
71
to A lte rn a tin g P oint Ordering . . . .
72
to A lte rn a tin g Diagonal Ordering. . .
73
5.11 A lte rn a tin g Line Ordering........................................................................ 75 5.12 M atrix X Corresponding to A lte rn a tin g Line Ordering......................76 6.1
RAD Ordering Along the Shortest Diagonal ...................................
6.2
RAD Ordering Along the Longest Diagonal........................................... 81
81
6.3
M a tr ix X Corresponding
to RAD Along the Shortest Diagonal. .
82
6.4
M atrix X Corresponding
to RAD Along the Longest Diagonal . .
83
6.5
General Form o f M atrix X o f RAD............................................................. 86
6.6
The Composite M atrix C} o f RAD...............................................................87
6.7
The Lower Quarter o f M atrix C| o f Semi Bandwidth m........................89
6.8
RAD Ordering Enclosing Standard Ordering ...................................
93
7.1
Simulator Flow C h a r t ................................................................................ 95
7.2
The Type o f Well I d e n t if ie r .....................................................................98
7 .3
Simulation Numbering Scheme................................................................... 100
8.1
CPU Time vs. Real Time (Homogeneous Case-345 C e lls )...................114
8.2
CPU Time vs. Real Time (Heterogeneous Case-345 C e lls ). . . . 116
V lll
Figure
Page
E .l
D iscretized Reservoir System.............................................................. 148
E.2
Reservoir Thickness ............................................................................ 149
E.3
D ig itiz e d Reservoir Thickness ........................................................ 150
E.4
Top o f the Reservoir Depth.................................................................. 151
E.5
D ig itiz e d Middle o f the Reservoir Depth .................................... 152
E.6
D ig itiz e d Reservoir I n i t i a l Pressure............................................... 153
E.7
Reservoir Heterogeneous P e rm e a b ility............................................... 154
E.8
D ig itiz e d Reservoir Heterogeneous P e rm e a b ility ........................... 155
E.9
C onfiguration o f W e lls ..........................................................................156
E.IQ Production - In je c tio n FlowR a te s .....................................................157
IX
CHAPTER I INTRODUCTION Mathematical models fo r petroleum re servoirs incorporate the re s e rv o ir physical p rop e rtie s and the in te ra c tio n o f natural and a r t i f i c i a l forces to sim ulate re s e rv o ir behavior.
Therefore,
mathematical sim u la tio n helps in understanding re s e rv o ir behavior. Such inform ation leads to the most economically de sirable form o f e x p lo ita tio n . Reservoir sim ulators are used to design the most economical secondary recovery program and to la y out the complete re s e rv o ir management from discovery to d e pletio n. Natural re se rvo irs con sist o f one, two or three phases ( o i l , water, and gas) w ith various geometries. sim ulators were developed.
Therefore, various re s e rv o ir
They s ta r t w ith one-dimensional one-phase
simple sim ulators and end up w ith complex three-dimensional th ree phase ones.
Although three-dimensional sim ulators are now a v a ila b le ,
the most popular sim u la tor is the two-dimensional one because a w e llorganized two-dimensional sim ulator can be used to approximate thre edimensional one a t a lower co st. The e ffic ie n c y o f a sim ulator as a working and economical tool hinges upon the a b i l i t y o f it s algorithm s to solve the pressure equations e ffic ie n tly .G
Most o f the computer time is spent in performing pressure 1
s o lu tio n s .
For th is reason, the best sim ulator is the one which
requires the minimum work during the pressure so lu tio n s. The pressure equations can be solved e ith e r by ite r a tiv e or d ire c t methods. Ite r a tiv e methods are by fa r the most common methods o f solving the pressure equations used in sim u la tio n .
This is because ite r a tiv e
methods are easy to program and re q u ire less storage and less computation compared to e x is tin g d ir e c t method a lg orithm s.
Hence during the early
years o f work in th is d is c ip lin e , the d ire c t s o lu tio n techniques were almost completely abandoned as a s o lu tio n process.
However, in
recent years w ith the development o f sparse m atrix techniques, the d ire c t so lu tio n process has become less c o s tly , w hile producing as good a re s u lt.
For th is reason, d ir e c t s o lu tio n techniques are once
again being considered in re s e rv o ir sim ulation areas. The e x is tin g numerical methods ( d ir e c t or ite r a tiv e ) to solve the mathematical models o f petroleum reservoirs are time consuming. Those methods consume d iffe r e n t computer time when applied on reservoirs w ith d iffe re n t c h a ra c te ris tic s . The computer time is expensive, th e re fo re , a tool to choose the fa s te s t, most e f f ic ie n t methods fo r a given re s e rv o ir is needed. A comparative study helps to show the features o f each method.
Such
inform ation leads to the choice o f the most economically s u ita b le method. The comparative studies done in lite r a tu r e are lim ite d to two or three methods and most o f these comparative evaluations are done on a system o f simulaneous equations not as p a rt of a complete sim ulation. Also most o f these comparative studies used idealized model o f fixe d rates and square re s e rv o ir w ith pre-determined flow c o e ffic ie n ts .
Stone^^ has presented a comparison among the fo llo w in g numerical procedures:
a lte rn a tin g d ire c tio n Im p lic it (AD I), stro n g ly Im p lic it
(S IP ), p o in t successive ove rre laxa tion (PSOR), and p o in t Jacobi. study was in terms o f computational work and re s id u a l.
His
He used an
Idealized square re s e rv o ir w ith fix e d flow rates and a combination o f homogeneous regions.
His re s u lts are presented In Figure 1.1.
Stone
concluded th a t both ADI and SIP possess convergence rates a great deal fa s te r than those o f the other two methods. Is s lig h t ly fa s te r than SIP.
For homogeneous case, ADI
However, SIP Is s ig n ific a n tly fa s te r
than ADI In case o f heterogeneous re se rvo irs.
Also he concluded th a t
PSOR Is more rapid than p o in t Jacobi method. Breltenbach, et a l.^ gave a very b r ie f comparison between Gauss e lim in a tio n , PSOR, and ADI.
For his model, he showed th a t PSOR and
ADI are more e f f ic ie n t than Gauss e lim in a tio n fo r more than 9x26 c e ll system.
His re s u lts are shown In Figure 1.2.
W a t t s h a s presented a comparison among ADI, SIP, lin e successive o ve rre la xa tio n (LSOR), and corrected LSOR In terms o f accuracy. re s u lts are shown In Figure 1.3.
He concluded th a t fo r two-dimensional
s tro n g ly a n iso tro p ic problems, the corrected other a v a ila b le techniques.
His
LSOR Is fa s te r than
However, In homogeneous Is o tro p ic square
problem, the corrected LSOR Is slower than ADI, SIP, and LSOR. W einstein, e t a l.^ ° have compared SIP w ith ADI fo r a two-dimensional two-phase model.
Their re s u lts are shown in Figure 1.4.
They found th a t
the computational work r a t io , which Is the r a tio o f ADI computer time to SIP computer tim e, g e nerally Increases w ith Increasing tra n s m ls s lb llIty (Pjj^ax^*
T^^Gy also found th a t ADI f a lls to converge fo r higher
tra n s m ls s lb llIty .
rPOINT-JACOQI
^/O V E R R E LA X A TIO N
g 10
ADI
STRONGLY IMPLICIT
FI XED R A T E j KY = 0. 01 31 X
31 G R I D
20 .30 40 50 COMPUTATIOMAL W ORK ( O R N O . O F I T E R A T I O N S FOR S T R ON GL Y I MP L I C I T M E T H O D )
POINT-JACCDI
Q IC
OVCRRTLAXATION
10“= ,- S T R O N G L Y I MP L I C I T
ADI
10-
i
20
30
40
SO
COMPUTAIlOrJAL W ORK ( OP N O . OF I T T R A T I O N S F O R S T R O N G L Y I MP L I C I T M E T H O D )
Figure
1 .1 -S to n e ’ s Comparative Study
Method Grid
Go u ss
SOR
ADTPIT
*** 3X5
2
5
3 x 5 x 2
5
12
9 X 10
8
11
-
18
25
19
21
40
21
21
22
13
X
11
9 X 26 9
*
26
X
5 **
**
-
-
26
X
23
94
59
62
34
X
36
302
122
111
20
X
24
564
110
X
2
-
*■ Vertical cross section ** Line SOR *** Time in second
Figure
1.2 - Breltenbach, e t a l . ' s Comparative Study
C o m o u la tio n jI Work per
C cm piilational Work per Ite ra tio n
Ite ra tio n
I SOR
I SOR
10
ISORC S IP ADI
ISORC AOI
2
10?
3
101
n n
a 10
s
II}
10
6 0
100
10
a
s
6 0
C o r.p u ta litn a l W on tor num ber of iterations
«
60
C om putational Work
lor IS O S l
tor num ber
— C O N V K R r.r .N C E CO M PA R ISO N ’ S. H O M O G E N E O U S S Q U A R E 3 1 x 3 1 G R ID , t / t y .
Figure
?0
B
c l iln ra lio n s
1er ISORl
— C O N V E R G E N C E C O M P A R IS O N S . H E T E R O G E N E O U S S Q U A R E 31 X 31 G R ID . 100 ty .
1 . 3 - Wat t s ' Comparative Study
Number P o ro m e te r P r o b le m D is s o lv e d G D rive C a s e 1*
Ite ra tio n P rocedure
''m o . qs
D i s sol v e d G as D riv e
G o S' 0 i 1
W o le r« O il R a d io l C o n in g
. of N um ber of
A ve ro g o Ite ra tio n s /
I t e r o t io n » /
T o to l T im e
W or k
St o p »
ite r o tio n s
T i m e Step
B lo c k )
(m in u te .)
R o tio
3
189
23.6
2.41
3.83
8
247
30.9
2.26
4.69
8
193
24.2
2.40
3.89
M ax SIP \
V M in A D I P /
SI P
0.9 9 9 9 4 2 ,
A D IP
0.5 6 9 X
SI P
0.9 9 9 9 9 4 2 ,
A D IP
0.231
SI P
0 .9 9 9 9 9 8
A D IP
0.2 0 3 X
SI P
0 .9995
9 "
A D IP
0.001
9**
I
66 lO "', 0 1
1 .2 2
660
C o s e 11*
In c o m p re s s ib le
/
I t e r of io n T im e ( m ill i l e c /
X
oo
lo " *, 0 25
77
3. 1
1.97
0.9 9 3
25
389
1 5 .6
1. 4 8
3.75
36
9 .6
1 .9 0
0.65
3,600
7.05 X
1 0 '^
3 .7 8
10^
* A l l K^, o f C o s o 11 a r e 10 t i m e s t h o s e o f C o s e 1» * * S i m u l o t i o a f r o m 3 0 . 4 t o 3 65 d a y s , ( T h e 0 —3 0 . 4
d o y t im e stop w o s r o t in c lu d e d ,
s in c e b o t h SIP end A O IP f o i l e d to c o n v e rg e .)
Figure 1.4-Weinstein,et al.'s Comparative Study
Price and Coats^^ have presented a comparison among fo ur d iffe r e n t ordering schemes o u tlin e d in chapter V.
A d ir e c t so lu tio n method is
used w ith these ordering'schemes to solve id ea lized re s e rv o ir problems. The Price and Coats study produces impressive re s u lts in terms o f computational work re duction.
However, these re s u lts in computational
work reduction are lim ite d to the computer time involved in e lim in a tio n p o rtio n o f non-zero elements o f the equations system and do not include the a d d itio n a l work required to reorder the c e ll system from standard ordering to the appropriate ordering. From the afore-mentioned survey, a development o f a b e tte r d ire c t method approach is needed. using a r e a lis t ic petroleum address these two areas.
A more comprehensive comparative evaluation re s e rv o ir is also needed.
This study w ill
CHAPTER I I RESERVOIR MODEL The in tro d u ctio n o f Darcy's law in to the two dimensional c o n tin u ity equation fo r each o f the three immiscible f lu id phases in petroleum reservoirs leads to the fo llo w in g system o f p a rtia l d iffe r e n tia l equations :
n 3$^ . 30^ S3T (hPo^o 37"^ ^ 37 (hOo^o
Cl Pn* ^ 7 t (^^o^o)
fo r the o il phase,
h (hPw^w - 37) + &
(^Vw -3y) +
^ I t (OPwfw)
(2.2)1
fo r the water phase, and
a
3$.
3$n
3$w
3 7(h P g ^ g"sf '^ s o ^ P o ^ o17^^ s w ^ P w ^ w 17 ^ a
30
30
+ 3 ÿ (hPg^g 1 y
+ '^so^^o^o 1 y
" ^
f It
30 '^sw^^w^w 1 ÿ ^
^ Rso^o^o +
'2.3)
10
fo r the gas phase, where
X, = k ^ "j
■J =
0,
g, w
(2.4)
These equations have been derived making the fo llo w in g assumptions: 1) Darcy's law applies 2) Composition o f each f lu id phase Is constant The generalized multiphase flow equation fo r the unsteady-state flow o f o i l , gas, and water In a porous medium Is developed by combining the three single-phase equations In to one basic equation.
In order to
do t h is , we need to express the fo llo w in g a u x llu ry equations: The p o te n tial terms are * 0
"
'’o
+ P o 9 0
( 2
- 5
)
♦ g
'
P g
+ P
g 9 0
( 2
- 6
)
*w “ P«
(2.7)
the c a p illa ry pressure terms are Pew - Po - P«
'2 .8 )
Peg = Pg - Pg
3y '
,
3y
"
* W
ï ; (*Po
■
+4^0
(
%
<
'
* Pq^o ^ - 3 Î >
&
•
^
w 3x'
' ^
(^Pw %
- &T ChX , 3x ' w
3x
'
^
S: >
The water equation (2.2) is divided by
& 3x '
-
«
and expanded by d iffe r e n tia tio n :
(hX„ w
3x
3x
'
^
The gas equation (2.3) is divided by p^ and expanded by d iffe r e n tia tio n :
.
&
(h x ,
,
12
^ &
x ( ^
pg
'
^
V
w
■" PgSg
^ i
'
3»g— ^
^ ax'
( 5 ) P 5 . +(hpQ^o)y ( Ü 2. /
.(
- jf )
="g + C’ V o ’ x ( ®*of
3X '
Pg ‘ s y '
34g
- ly )
— Og
(
5«so + (h P „x „), , 3*wf
34,- 7 ^
ay'
!V
'
®''swj
3x'
34*
4 (h p „» „)y( !îw f ! V . j ,2 1 4 , 34, ' 3y' 3 4 * '( 2 - ''"
where
^ ° ■"fe ^ ^ ^
+ 1; :
h C'Po^o “ si*
I t (PPo^o’ -
(h I t ('*’Pw\> ■
h (hPw^w “ 3T> ■ ly
• & C’Po^o 1 7 ) '
C’Pw^w
(^-'®>
Incorporating equations (2.1) and (2 .2 ) in to (2 .1 5 ), we obtain
s
=
- (
P g P g *
-
R
s
o
^
P
q
*
-
V
V
w
*
'
/
( P g A )
( 2
- ' 6
)
Combining equations (2 .1 0 ), (2 .1 1 ), (2 .1 2 ), (2.15) and (2 .1 6 ), we obtain
a 3Pn 37 (h ^t - 3 7 )
2 3y
9P^ (h^t
~hÿ'^ "
3p. ^1 - a t + Bg +
(2.17)
13
Equation (2.17) has been derived using u n ifie d SI u n its , but i f p ra c tic a l u n its (Appendix A) are used, equation (2.17) becomes
^
(h ^t " w )
â ÿ (h ^t
=
3Pn 11.57407408
+ 11.57407408 Bg + Bg + 0.001
+ Eg
(2.18)
where the to ta l m o b ility term is
•'t = -'o
"
^
(2-19)
the PVT term is
Bj =
(S„C^ + S„C„ + SgCg + C ,)
( 2 .2 0 )
I r
View more...
Comments